gecko-dev/gfx/thebes/gfxWindowsPlatform.cpp

2066 строки
66 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim: set ts=8 sts=4 et sw=4 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 15:12:37 +04:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
2006-02-01 05:35:38 +03:00
#include "gfxWindowsPlatform.h"
#include "cairo.h"
#include "mozilla/ArrayUtils.h"
2006-02-01 05:35:38 +03:00
#include "gfxImageSurface.h"
#include "gfxWindowsSurface.h"
#include "nsUnicharUtils.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/Sprintf.h"
#include "mozilla/WindowsVersion.h"
#include "nsServiceManagerUtils.h"
#include "nsTArray.h"
#include "mozilla/Telemetry.h"
#include "GeckoProfiler.h"
#include "nsIWindowsRegKey.h"
#include "nsIFile.h"
#include "plbase64.h"
#include "nsIXULRuntime.h"
#include "imgLoader.h"
#include "nsIGfxInfo.h"
#include "gfxCrashReporterUtils.h"
#include "gfxGDIFontList.h"
#include "gfxGDIFont.h"
#include "mozilla/layers/CompositorThread.h"
#include "DeviceManagerD3D9.h"
#include "mozilla/layers/ReadbackManagerD3D11.h"
#include "WinUtils.h"
#include "gfxDWriteFontList.h"
#include "gfxDWriteFonts.h"
#include "gfxDWriteCommon.h"
#include <dwrite.h>
#include "gfxTextRun.h"
#include "gfxUserFontSet.h"
#include "nsWindowsHelpers.h"
#include "gfx2DGlue.h"
#include <string>
#include <d3d10_1.h>
#include "mozilla/gfx/2D.h"
#include "nsMemory.h"
#include <d3d11.h>
#include "nsIMemoryReporter.h"
#include <winternl.h>
#include "d3dkmtQueryStatistics.h"
#include "base/thread.h"
#include "gfxPrefs.h"
#include "gfxConfig.h"
#include "VsyncSource.h"
#include "DriverCrashGuard.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/gfx/DeviceManagerDx.h"
#include "D3D11Checks.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::layers;
using namespace mozilla::widget;
using namespace mozilla::image;
IDWriteRenderingParams* GetDwriteRenderingParams(bool aGDI)
{
gfxWindowsPlatform::TextRenderingMode mode = aGDI ?
gfxWindowsPlatform::TEXT_RENDERING_GDI_CLASSIC :
gfxWindowsPlatform::TEXT_RENDERING_NORMAL;
return gfxWindowsPlatform::GetPlatform()->GetRenderingParams(mode);
}
DCFromDrawTarget::DCFromDrawTarget(DrawTarget& aDrawTarget)
{
mDC = nullptr;
if (aDrawTarget.GetBackendType() == BackendType::CAIRO) {
cairo_t* ctx = static_cast<cairo_t*>
(aDrawTarget.GetNativeSurface(NativeSurfaceType::CAIRO_CONTEXT));
if (ctx) {
cairo_surface_t* surf = cairo_get_group_target(ctx);
if (surf) {
cairo_surface_type_t surfaceType = cairo_surface_get_type(surf);
if (surfaceType == CAIRO_SURFACE_TYPE_WIN32 ||
surfaceType == CAIRO_SURFACE_TYPE_WIN32_PRINTING) {
mDC = cairo_win32_surface_get_dc(surf);
mNeedsRelease = false;
SaveDC(mDC);
cairo_scaled_font_t* scaled = cairo_get_scaled_font(ctx);
cairo_win32_scaled_font_select_font(scaled, mDC);
}
}
}
}
if (!mDC) {
// Get the whole screen DC:
mDC = GetDC(nullptr);
SetGraphicsMode(mDC, GM_ADVANCED);
mNeedsRelease = true;
}
}
class GfxD2DVramReporter final : public nsIMemoryReporter
{
~GfxD2DVramReporter() {}
public:
NS_DECL_ISUPPORTS
NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData, bool aAnonymize) override
{
MOZ_COLLECT_REPORT(
"gfx-d2d-vram-draw-target", KIND_OTHER, UNITS_BYTES,
Factory::GetD2DVRAMUsageDrawTarget(),
"Video memory used by D2D DrawTargets.");
MOZ_COLLECT_REPORT(
"gfx-d2d-vram-source-surface", KIND_OTHER, UNITS_BYTES,
Factory::GetD2DVRAMUsageSourceSurface(),
"Video memory used by D2D SourceSurfaces.");
return NS_OK;
}
};
NS_IMPL_ISUPPORTS(GfxD2DVramReporter, nsIMemoryReporter)
#define GFX_USE_CLEARTYPE_ALWAYS "gfx.font_rendering.cleartype.always_use_for_content"
#define GFX_DOWNLOADABLE_FONTS_USE_CLEARTYPE "gfx.font_rendering.cleartype.use_for_downloadable_fonts"
#define GFX_CLEARTYPE_PARAMS "gfx.font_rendering.cleartype_params."
#define GFX_CLEARTYPE_PARAMS_GAMMA "gfx.font_rendering.cleartype_params.gamma"
#define GFX_CLEARTYPE_PARAMS_CONTRAST "gfx.font_rendering.cleartype_params.enhanced_contrast"
#define GFX_CLEARTYPE_PARAMS_LEVEL "gfx.font_rendering.cleartype_params.cleartype_level"
#define GFX_CLEARTYPE_PARAMS_STRUCTURE "gfx.font_rendering.cleartype_params.pixel_structure"
#define GFX_CLEARTYPE_PARAMS_MODE "gfx.font_rendering.cleartype_params.rendering_mode"
class GPUAdapterReporter final : public nsIMemoryReporter
{
// Callers must Release the DXGIAdapter after use or risk mem-leak
static bool GetDXGIAdapter(IDXGIAdapter **aDXGIAdapter)
{
ID3D11Device *d3d11Device;
IDXGIDevice *dxgiDevice;
bool result = false;
if ((d3d11Device = mozilla::gfx::Factory::GetDirect3D11Device())) {
if (d3d11Device->QueryInterface(__uuidof(IDXGIDevice), (void **)&dxgiDevice) == S_OK) {
result = (dxgiDevice->GetAdapter(aDXGIAdapter) == S_OK);
dxgiDevice->Release();
}
}
return result;
}
~GPUAdapterReporter() {}
public:
NS_DECL_ISUPPORTS
NS_IMETHOD
CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
bool aAnonymize) override
{
HANDLE ProcessHandle = GetCurrentProcess();
int64_t dedicatedBytesUsed = 0;
int64_t sharedBytesUsed = 0;
int64_t committedBytesUsed = 0;
IDXGIAdapter *DXGIAdapter;
HMODULE gdi32Handle;
PFND3DKMTQS queryD3DKMTStatistics = nullptr;
if ((gdi32Handle = LoadLibrary(TEXT("gdi32.dll"))))
queryD3DKMTStatistics = (PFND3DKMTQS)GetProcAddress(gdi32Handle, "D3DKMTQueryStatistics");
if (queryD3DKMTStatistics && GetDXGIAdapter(&DXGIAdapter)) {
// Most of this block is understood thanks to wj32's work on Process Hacker
DXGI_ADAPTER_DESC adapterDesc;
D3DKMTQS queryStatistics;
DXGIAdapter->GetDesc(&adapterDesc);
DXGIAdapter->Release();
memset(&queryStatistics, 0, sizeof(D3DKMTQS));
queryStatistics.Type = D3DKMTQS_PROCESS;
queryStatistics.AdapterLuid = adapterDesc.AdapterLuid;
queryStatistics.hProcess = ProcessHandle;
if (NT_SUCCESS(queryD3DKMTStatistics(&queryStatistics))) {
committedBytesUsed = queryStatistics.QueryResult.ProcessInfo.SystemMemory.BytesAllocated;
}
memset(&queryStatistics, 0, sizeof(D3DKMTQS));
queryStatistics.Type = D3DKMTQS_ADAPTER;
queryStatistics.AdapterLuid = adapterDesc.AdapterLuid;
if (NT_SUCCESS(queryD3DKMTStatistics(&queryStatistics))) {
ULONG i;
ULONG segmentCount = queryStatistics.QueryResult.AdapterInfo.NbSegments;
for (i = 0; i < segmentCount; i++) {
memset(&queryStatistics, 0, sizeof(D3DKMTQS));
queryStatistics.Type = D3DKMTQS_SEGMENT;
queryStatistics.AdapterLuid = adapterDesc.AdapterLuid;
queryStatistics.QuerySegment.SegmentId = i;
if (NT_SUCCESS(queryD3DKMTStatistics(&queryStatistics))) {
bool aperture;
// SegmentInformation has a different definition in Win7 than later versions
if (!IsWin8OrLater())
aperture = queryStatistics.QueryResult.SegmentInfoWin7.Aperture;
else
aperture = queryStatistics.QueryResult.SegmentInfoWin8.Aperture;
memset(&queryStatistics, 0, sizeof(D3DKMTQS));
queryStatistics.Type = D3DKMTQS_PROCESS_SEGMENT;
queryStatistics.AdapterLuid = adapterDesc.AdapterLuid;
queryStatistics.hProcess = ProcessHandle;
queryStatistics.QueryProcessSegment.SegmentId = i;
if (NT_SUCCESS(queryD3DKMTStatistics(&queryStatistics))) {
ULONGLONG bytesCommitted;
if (!IsWin8OrLater())
bytesCommitted = queryStatistics.QueryResult.ProcessSegmentInfo.Win7.BytesCommitted;
else
bytesCommitted = queryStatistics.QueryResult.ProcessSegmentInfo.Win8.BytesCommitted;
if (aperture)
sharedBytesUsed += bytesCommitted;
else
dedicatedBytesUsed += bytesCommitted;
}
}
}
}
}
FreeLibrary(gdi32Handle);
MOZ_COLLECT_REPORT(
"gpu-committed", KIND_OTHER, UNITS_BYTES, committedBytesUsed,
"Memory committed by the Windows graphics system.");
MOZ_COLLECT_REPORT(
"gpu-dedicated", KIND_OTHER, UNITS_BYTES,
dedicatedBytesUsed,
"Out-of-process memory allocated for this process in a physical "
"GPU adapter's memory.");
MOZ_COLLECT_REPORT(
"gpu-shared", KIND_OTHER, UNITS_BYTES,
sharedBytesUsed,
"In-process memory that is shared with the GPU.");
return NS_OK;
}
};
NS_IMPL_ISUPPORTS(GPUAdapterReporter, nsIMemoryReporter)
Atomic<size_t> gfxWindowsPlatform::sD3D11SharedTextures;
Atomic<size_t> gfxWindowsPlatform::sD3D9SharedTextures;
class D3DSharedTexturesReporter final : public nsIMemoryReporter
{
~D3DSharedTexturesReporter() {}
public:
NS_DECL_ISUPPORTS
NS_IMETHOD CollectReports(nsIHandleReportCallback *aHandleReport,
nsISupports* aData, bool aAnonymize) override
{
if (gfxWindowsPlatform::sD3D11SharedTextures > 0) {
MOZ_COLLECT_REPORT(
"d3d11-shared-textures", KIND_OTHER, UNITS_BYTES,
gfxWindowsPlatform::sD3D11SharedTextures,
"D3D11 shared textures.");
}
if (gfxWindowsPlatform::sD3D9SharedTextures > 0) {
MOZ_COLLECT_REPORT(
"d3d9-shared-textures", KIND_OTHER, UNITS_BYTES,
gfxWindowsPlatform::sD3D9SharedTextures,
"D3D9 shared textures.");
}
return NS_OK;
}
};
NS_IMPL_ISUPPORTS(D3DSharedTexturesReporter, nsIMemoryReporter)
2006-02-01 05:35:38 +03:00
gfxWindowsPlatform::gfxWindowsPlatform()
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
: mRenderMode(RENDER_GDI)
2006-02-01 05:35:38 +03:00
{
mUseClearTypeForDownloadableFonts = UNINITIALIZED_VALUE;
mUseClearTypeAlways = UNINITIALIZED_VALUE;
/*
* Initialize COM
*/
CoInitialize(nullptr);
RegisterStrongMemoryReporter(new GfxD2DVramReporter());
RegisterStrongMemoryReporter(new GPUAdapterReporter());
RegisterStrongMemoryReporter(new D3DSharedTexturesReporter());
}
gfxWindowsPlatform::~gfxWindowsPlatform()
{
mozilla::gfx::Factory::D2DCleanup();
DeviceManagerD3D9::Shutdown();
DeviceManagerDx::Shutdown();
/*
* Uninitialize COM
*/
CoUninitialize();
}
static void
UpdateANGLEConfig()
{
if (!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
gfxConfig::Disable(Feature::D3D11_HW_ANGLE, FeatureStatus::Disabled, "D3D11 compositing is disabled");
}
}
void
gfxWindowsPlatform::InitAcceleration()
{
gfxPlatform::InitAcceleration();
// Set up the D3D11 feature levels we can ask for.
if (IsWin8OrLater()) {
mFeatureLevels.AppendElement(D3D_FEATURE_LEVEL_11_1);
}
mFeatureLevels.AppendElement(D3D_FEATURE_LEVEL_11_0);
mFeatureLevels.AppendElement(D3D_FEATURE_LEVEL_10_1);
mFeatureLevels.AppendElement(D3D_FEATURE_LEVEL_10_0);
mFeatureLevels.AppendElement(D3D_FEATURE_LEVEL_9_3);
DeviceManagerDx::Init();
DeviceManagerD3D9::Init();
InitializeConfig();
InitializeDevices();
UpdateANGLEConfig();
UpdateRenderMode();
// If we have Skia and we didn't init dwrite already, do it now.
if (!mDWriteFactory && GetDefaultContentBackend() == BackendType::SKIA) {
InitDWriteSupport();
}
// CanUseHardwareVideoDecoding depends on DeviceManagerDx state,
// so update the cached value now.
UpdateCanUseHardwareVideoDecoding();
}
bool
gfxWindowsPlatform::CanUseHardwareVideoDecoding()
{
DeviceManagerDx* dm = DeviceManagerDx::Get();
if (!dm) {
return false;
}
if (!gfxPrefs::LayersPreferD3D9() && !dm->TextureSharingWorks()) {
return false;
}
return !dm->IsWARP() && gfxPlatform::CanUseHardwareVideoDecoding();
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
bool
gfxWindowsPlatform::InitDWriteSupport()
{
// DWrite is only supported on Windows 7 with the platform update and higher.
// We check this by seeing if D2D1 support is available.
if (!Factory::SupportsD2D1()) {
return false;
}
mozilla::ScopedGfxFeatureReporter reporter("DWrite");
decltype(DWriteCreateFactory)* createDWriteFactory = (decltype(DWriteCreateFactory)*)
GetProcAddress(LoadLibraryW(L"dwrite.dll"), "DWriteCreateFactory");
if (!createDWriteFactory) {
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
return false;
}
// I need a direct pointer to be able to cast to IUnknown**, I also need to
// remember to release this because the nsRefPtr will AddRef it.
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<IDWriteFactory> factory;
HRESULT hr = createDWriteFactory(
DWRITE_FACTORY_TYPE_SHARED,
__uuidof(IDWriteFactory),
(IUnknown **)((IDWriteFactory **)getter_AddRefs(factory)));
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
if (FAILED(hr) || !factory) {
return false;
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
mDWriteFactory = factory;
Factory::SetDWriteFactory(mDWriteFactory);
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
SetupClearTypeParams();
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
reporter.SetSuccessful();
return true;
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
bool
gfxWindowsPlatform::HandleDeviceReset()
{
DeviceResetReason resetReason = DeviceResetReason::OK;
if (!DidRenderingDeviceReset(&resetReason)) {
return false;
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
if (resetReason != DeviceResetReason::FORCED_RESET) {
Telemetry::Accumulate(Telemetry::DEVICE_RESET_REASON, uint32_t(resetReason));
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
// Remove devices and adapters.
DeviceManagerDx::Get()->ResetDevices();
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
imgLoader::NormalLoader()->ClearCache(true);
imgLoader::NormalLoader()->ClearCache(false);
imgLoader::PrivateBrowsingLoader()->ClearCache(true);
imgLoader::PrivateBrowsingLoader()->ClearCache(false);
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
gfxAlphaBoxBlur::ShutdownBlurCache();
if (XRE_IsContentProcess()) {
// Fetch updated device parameters.
FetchAndImportContentDeviceData();
UpdateANGLEConfig();
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
InitializeDevices();
UpdateANGLEConfig();
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
return true;
}
void
gfxWindowsPlatform::UpdateBackendPrefs()
{
uint32_t canvasMask = BackendTypeBit(BackendType::CAIRO) |
BackendTypeBit(BackendType::SKIA);
uint32_t contentMask = BackendTypeBit(BackendType::CAIRO) |
BackendTypeBit(BackendType::SKIA);
BackendType defaultBackend = BackendType::CAIRO;
if (gfxConfig::IsEnabled(Feature::DIRECT2D) && Factory::GetD2D1Device()) {
contentMask |= BackendTypeBit(BackendType::DIRECT2D1_1);
canvasMask |= BackendTypeBit(BackendType::DIRECT2D1_1);
defaultBackend = BackendType::DIRECT2D1_1;
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
}
InitBackendPrefs(canvasMask, defaultBackend, contentMask, defaultBackend);
}
bool
gfxWindowsPlatform::IsDirect2DBackend()
{
return GetDefaultContentBackend() == BackendType::DIRECT2D1_1;
}
void
gfxWindowsPlatform::UpdateRenderMode()
{
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
bool didReset = HandleDeviceReset();
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
UpdateBackendPrefs();
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
if (didReset) {
mScreenReferenceDrawTarget =
CreateOffscreenContentDrawTarget(IntSize(1, 1), SurfaceFormat::B8G8R8A8);
if (!mScreenReferenceDrawTarget) {
gfxCriticalNote << "Failed to update reference draw target after device reset"
<< ", D3D11 device:" << hexa(Factory::GetDirect3D11Device())
<< ", D3D11 status:" << FeatureStatusToString(gfxConfig::GetValue(Feature::D3D11_COMPOSITING))
<< ", D2D1 device:" << hexa(Factory::GetD2D1Device())
<< ", D2D1 status:" << FeatureStatusToString(gfxConfig::GetValue(Feature::DIRECT2D))
<< ", content:" << int(GetDefaultContentBackend())
<< ", compositor:" << int(GetCompositorBackend());
MOZ_CRASH("GFX: Failed to update reference draw target after device reset");
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
}
}
mozilla::gfx::BackendType
gfxWindowsPlatform::GetContentBackendFor(mozilla::layers::LayersBackend aLayers)
{
mozilla::gfx::BackendType defaultBackend = gfxPlatform::GetDefaultContentBackend();
if (aLayers == LayersBackend::LAYERS_D3D11) {
return defaultBackend;
}
if (defaultBackend == BackendType::DIRECT2D1_1) {
// We can't have D2D without D3D11 layers, so fallback to Cairo.
return BackendType::CAIRO;
}
// Otherwise we have some non-accelerated backend and that's ok.
return defaultBackend;
}
gfxPlatformFontList*
gfxWindowsPlatform::CreatePlatformFontList()
{
gfxPlatformFontList *pfl;
// bug 630201 - older pre-RTM versions of Direct2D/DirectWrite cause odd
// crashers so blacklist them altogether
if (IsNotWin7PreRTM() && GetDWriteFactory()) {
pfl = new gfxDWriteFontList();
if (NS_SUCCEEDED(pfl->InitFontList())) {
return pfl;
}
// DWrite font initialization failed! Don't know why this would happen,
// but apparently it can - see bug 594865.
// So we're going to fall back to GDI fonts & rendering.
gfxPlatformFontList::Shutdown();
DisableD2D(FeatureStatus::Failed, "Failed to initialize fonts",
NS_LITERAL_CSTRING("FEATURE_FAILURE_FONT_FAIL"));
}
pfl = new gfxGDIFontList();
if (NS_SUCCEEDED(pfl->InitFontList())) {
return pfl;
}
gfxPlatformFontList::Shutdown();
return nullptr;
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
// This function will permanently disable D2D for the session. It's intended to
// be used when, after initially chosing to use Direct2D, we encounter a
// scenario we can't support.
//
// This is called during gfxPlatform::Init() so at this point there should be no
// DrawTargetD2D/1 instances.
void
gfxWindowsPlatform::DisableD2D(FeatureStatus aStatus, const char* aMessage,
const nsACString& aFailureId)
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
{
gfxConfig::SetFailed(Feature::DIRECT2D, aStatus, aMessage, aFailureId);
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
Factory::SetDirect3D11Device(nullptr);
UpdateBackendPrefs();
}
already_AddRefed<gfxASurface>
gfxWindowsPlatform::CreateOffscreenSurface(const IntSize& aSize,
gfxImageFormat aFormat)
2006-02-01 05:35:38 +03:00
{
if (!Factory::AllowedSurfaceSize(aSize)) {
return nullptr;
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<gfxASurface> surf = nullptr;
#ifdef CAIRO_HAS_WIN32_SURFACE
if (mRenderMode == RENDER_GDI || mRenderMode == RENDER_DIRECT2D)
surf = new gfxWindowsSurface(aSize, aFormat);
#endif
if (!surf || surf->CairoStatus()) {
surf = new gfxImageSurface(aSize, aFormat);
}
return surf.forget();
}
already_AddRefed<ScaledFont>
gfxWindowsPlatform::GetScaledFontForFont(DrawTarget* aTarget, gfxFont *aFont)
{
if (aFont->GetType() == gfxFont::FONT_TYPE_DWRITE) {
gfxDWriteFont *font = static_cast<gfxDWriteFont*>(aFont);
NativeFont nativeFont;
nativeFont.mType = NativeFontType::DWRITE_FONT_FACE;
nativeFont.mFont = font->GetFontFace();
if (aTarget->GetBackendType() == BackendType::CAIRO) {
return Factory::CreateScaledFontWithCairo(nativeFont,
font->GetAdjustedSize(),
font->GetCairoScaledFont());
}
return Factory::CreateScaledFontForNativeFont(nativeFont,
font->GetAdjustedSize());
}
NS_ASSERTION(aFont->GetType() == gfxFont::FONT_TYPE_GDI,
"Fonts on windows should be GDI or DWrite!");
NativeFont nativeFont;
nativeFont.mType = NativeFontType::GDI_FONT_FACE;
LOGFONT lf;
GetObject(static_cast<gfxGDIFont*>(aFont)->GetHFONT(), sizeof(LOGFONT), &lf);
nativeFont.mFont = &lf;
if (aTarget->GetBackendType() == BackendType::CAIRO) {
return Factory::CreateScaledFontWithCairo(nativeFont,
aFont->GetAdjustedSize(),
aFont->GetCairoScaledFont());
}
return Factory::CreateScaledFontForNativeFont(nativeFont, aFont->GetAdjustedSize());
}
static const char kFontAparajita[] = "Aparajita";
static const char kFontArabicTypesetting[] = "Arabic Typesetting";
static const char kFontArial[] = "Arial";
static const char kFontArialUnicodeMS[] = "Arial Unicode MS";
static const char kFontCambria[] = "Cambria";
static const char kFontCambriaMath[] = "Cambria Math";
static const char kFontEbrima[] = "Ebrima";
static const char kFontEstrangeloEdessa[] = "Estrangelo Edessa";
static const char kFontEuphemia[] = "Euphemia";
static const char kFontEmojiOneMozilla[] = "EmojiOne Mozilla";
static const char kFontGabriola[] = "Gabriola";
static const char kFontJavaneseText[] = "Javanese Text";
static const char kFontKhmerUI[] = "Khmer UI";
static const char kFontLaoUI[] = "Lao UI";
static const char kFontLeelawadeeUI[] = "Leelawadee UI";
static const char kFontLucidaSansUnicode[] = "Lucida Sans Unicode";
static const char kFontMVBoli[] = "MV Boli";
static const char kFontMalgunGothic[] = "Malgun Gothic";
static const char kFontMicrosoftJhengHei[] = "Microsoft JhengHei";
static const char kFontMicrosoftNewTaiLue[] = "Microsoft New Tai Lue";
static const char kFontMicrosoftPhagsPa[] = "Microsoft PhagsPa";
static const char kFontMicrosoftTaiLe[] = "Microsoft Tai Le";
static const char kFontMicrosoftUighur[] = "Microsoft Uighur";
static const char kFontMicrosoftYaHei[] = "Microsoft YaHei";
static const char kFontMicrosoftYiBaiti[] = "Microsoft Yi Baiti";
static const char kFontMeiryo[] = "Meiryo";
static const char kFontMongolianBaiti[] = "Mongolian Baiti";
static const char kFontMyanmarText[] = "Myanmar Text";
static const char kFontNirmalaUI[] = "Nirmala UI";
static const char kFontNyala[] = "Nyala";
static const char kFontPlantagenetCherokee[] = "Plantagenet Cherokee";
static const char kFontSegoeUI[] = "Segoe UI";
static const char kFontSegoeUIEmoji[] = "Segoe UI Emoji";
static const char kFontSegoeUISymbol[] = "Segoe UI Symbol";
static const char kFontSylfaen[] = "Sylfaen";
static const char kFontTraditionalArabic[] = "Traditional Arabic";
static const char kFontUtsaah[] = "Utsaah";
static const char kFontYuGothic[] = "Yu Gothic";
void
gfxWindowsPlatform::GetCommonFallbackFonts(uint32_t aCh, uint32_t aNextCh,
Script aRunScript,
nsTArray<const char*>& aFontList)
{
if (aNextCh == 0xfe0fu) {
aFontList.AppendElement(kFontSegoeUIEmoji);
aFontList.AppendElement(kFontEmojiOneMozilla);
}
// Arial is used as the default fallback for system fallback
aFontList.AppendElement(kFontArial);
if (!IS_IN_BMP(aCh)) {
uint32_t p = aCh >> 16;
if (p == 1) { // SMP plane
if (aNextCh == 0xfe0eu) {
aFontList.AppendElement(kFontSegoeUISymbol);
aFontList.AppendElement(kFontSegoeUIEmoji);
aFontList.AppendElement(kFontEmojiOneMozilla);
} else {
if (aNextCh != 0xfe0fu) {
aFontList.AppendElement(kFontSegoeUIEmoji);
aFontList.AppendElement(kFontEmojiOneMozilla);
}
aFontList.AppendElement(kFontSegoeUISymbol);
}
aFontList.AppendElement(kFontEbrima);
aFontList.AppendElement(kFontNirmalaUI);
aFontList.AppendElement(kFontCambriaMath);
}
} else {
uint32_t b = (aCh >> 8) & 0xff;
switch (b) {
case 0x05:
aFontList.AppendElement(kFontEstrangeloEdessa);
aFontList.AppendElement(kFontCambria);
break;
case 0x06:
aFontList.AppendElement(kFontMicrosoftUighur);
break;
case 0x07:
aFontList.AppendElement(kFontEstrangeloEdessa);
aFontList.AppendElement(kFontMVBoli);
aFontList.AppendElement(kFontEbrima);
break;
case 0x09:
aFontList.AppendElement(kFontNirmalaUI);
aFontList.AppendElement(kFontUtsaah);
aFontList.AppendElement(kFontAparajita);
break;
case 0x0e:
aFontList.AppendElement(kFontLaoUI);
break;
case 0x10:
aFontList.AppendElement(kFontMyanmarText);
break;
case 0x11:
aFontList.AppendElement(kFontMalgunGothic);
break;
case 0x12:
case 0x13:
aFontList.AppendElement(kFontNyala);
aFontList.AppendElement(kFontPlantagenetCherokee);
break;
case 0x14:
case 0x15:
case 0x16:
aFontList.AppendElement(kFontEuphemia);
aFontList.AppendElement(kFontSegoeUISymbol);
break;
case 0x17:
aFontList.AppendElement(kFontKhmerUI);
break;
case 0x18: // Mongolian
aFontList.AppendElement(kFontMongolianBaiti);
aFontList.AppendElement(kFontEuphemia);
break;
case 0x19:
aFontList.AppendElement(kFontMicrosoftTaiLe);
aFontList.AppendElement(kFontMicrosoftNewTaiLue);
aFontList.AppendElement(kFontKhmerUI);
break;
break;
case 0x1a:
aFontList.AppendElement(kFontLeelawadeeUI);
break;
case 0x1c:
aFontList.AppendElement(kFontNirmalaUI);
break;
case 0x20: // Symbol ranges
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
aFontList.AppendElement(kFontSegoeUI);
aFontList.AppendElement(kFontSegoeUISymbol);
aFontList.AppendElement(kFontCambria);
aFontList.AppendElement(kFontMeiryo);
aFontList.AppendElement(kFontArial);
aFontList.AppendElement(kFontLucidaSansUnicode);
aFontList.AppendElement(kFontEbrima);
break;
case 0x2d:
case 0x2e:
case 0x2f:
aFontList.AppendElement(kFontEbrima);
aFontList.AppendElement(kFontNyala);
aFontList.AppendElement(kFontSegoeUI);
aFontList.AppendElement(kFontSegoeUISymbol);
aFontList.AppendElement(kFontMeiryo);
break;
case 0x28: // Braille
aFontList.AppendElement(kFontSegoeUISymbol);
break;
case 0x30:
case 0x31:
aFontList.AppendElement(kFontMicrosoftYaHei);
break;
case 0x32:
aFontList.AppendElement(kFontMalgunGothic);
break;
case 0x4d:
aFontList.AppendElement(kFontSegoeUISymbol);
break;
case 0x9f:
aFontList.AppendElement(kFontMicrosoftYaHei);
aFontList.AppendElement(kFontYuGothic);
break;
case 0xa0: // Yi
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
aFontList.AppendElement(kFontMicrosoftYiBaiti);
aFontList.AppendElement(kFontSegoeUI);
break;
case 0xa5:
case 0xa6:
case 0xa7:
aFontList.AppendElement(kFontEbrima);
aFontList.AppendElement(kFontSegoeUI);
aFontList.AppendElement(kFontCambriaMath);
break;
case 0xa8:
aFontList.AppendElement(kFontMicrosoftPhagsPa);
aFontList.AppendElement(kFontNirmalaUI);
break;
case 0xa9:
aFontList.AppendElement(kFontMalgunGothic);
aFontList.AppendElement(kFontJavaneseText);
break;
case 0xaa:
aFontList.AppendElement(kFontMyanmarText);
break;
case 0xab:
aFontList.AppendElement(kFontEbrima);
aFontList.AppendElement(kFontNyala);
break;
case 0xd7:
aFontList.AppendElement(kFontMalgunGothic);
break;
case 0xfb:
aFontList.AppendElement(kFontMicrosoftUighur);
aFontList.AppendElement(kFontGabriola);
aFontList.AppendElement(kFontSylfaen);
break;
case 0xfc:
case 0xfd:
aFontList.AppendElement(kFontTraditionalArabic);
aFontList.AppendElement(kFontArabicTypesetting);
break;
case 0xfe:
aFontList.AppendElement(kFontTraditionalArabic);
aFontList.AppendElement(kFontMicrosoftJhengHei);
break;
case 0xff:
aFontList.AppendElement(kFontMicrosoftJhengHei);
break;
default:
break;
}
}
// Arial Unicode MS has lots of glyphs for obscure characters,
// use it as a last resort
aFontList.AppendElement(kFontArialUnicodeMS);
}
gfxFontGroup *
gfxWindowsPlatform::CreateFontGroup(const FontFamilyList& aFontFamilyList,
const gfxFontStyle *aStyle,
gfxTextPerfMetrics* aTextPerf,
gfxUserFontSet *aUserFontSet,
gfxFloat aDevToCssSize)
{
return new gfxFontGroup(aFontFamilyList, aStyle, aTextPerf,
aUserFontSet, aDevToCssSize);
}
bool
gfxWindowsPlatform::IsFontFormatSupported(nsIURI *aFontURI, uint32_t aFormatFlags)
{
// check for strange format flags
NS_ASSERTION(!(aFormatFlags & gfxUserFontSet::FLAG_FORMAT_NOT_USED),
"strange font format hint set");
// accept supported formats
if (aFormatFlags & gfxUserFontSet::FLAG_FORMATS_COMMON) {
return true;
}
// reject all other formats, known and unknown
if (aFormatFlags != 0) {
return false;
}
// no format hint set, need to look at data
return true;
}
bool
gfxWindowsPlatform::DidRenderingDeviceReset(DeviceResetReason* aResetReason)
{
DeviceManagerDx* dm = DeviceManagerDx::Get();
if (!dm) {
return false;
}
return dm->HasDeviceReset(aResetReason);
}
void
gfxWindowsPlatform::CompositorUpdated()
{
DeviceManagerDx::Get()->ForceDeviceReset(ForcedDeviceResetReason::COMPOSITOR_UPDATED);
UpdateRenderMode();
}
BOOL CALLBACK
InvalidateWindowForDeviceReset(HWND aWnd, LPARAM aMsg)
{
RedrawWindow(aWnd, nullptr, nullptr,
RDW_INVALIDATE|RDW_INTERNALPAINT|RDW_FRAME);
return TRUE;
}
void
gfxWindowsPlatform::SchedulePaintIfDeviceReset()
{
PROFILER_LABEL_FUNC(js::ProfileEntry::Category::GRAPHICS);
DeviceResetReason resetReason = DeviceResetReason::OK;
if (!DidRenderingDeviceReset(&resetReason)) {
return;
}
gfxCriticalNote << "(gfxWindowsPlatform) Detected device reset: " << (int)resetReason;
// Trigger an ::OnPaint for each window.
::EnumThreadWindows(GetCurrentThreadId(),
InvalidateWindowForDeviceReset,
0);
gfxCriticalNote << "(gfxWindowsPlatform) Finished device reset.";
}
void
gfxWindowsPlatform::GetPlatformCMSOutputProfile(void* &mem, size_t &mem_size)
{
WCHAR str[MAX_PATH];
DWORD size = MAX_PATH;
BOOL res;
mem = nullptr;
mem_size = 0;
HDC dc = GetDC(nullptr);
if (!dc)
return;
MOZ_SEH_TRY {
res = GetICMProfileW(dc, &size, (LPWSTR)&str);
} MOZ_SEH_EXCEPT(GetExceptionCode() == EXCEPTION_ILLEGAL_INSTRUCTION) {
res = FALSE;
}
ReleaseDC(nullptr, dc);
if (!res)
return;
#ifdef _WIN32
qcms_data_from_unicode_path(str, &mem, &mem_size);
#ifdef DEBUG_tor
if (mem_size > 0)
fprintf(stderr,
"ICM profile read from %s successfully\n",
NS_ConvertUTF16toUTF8(str).get());
#endif // DEBUG_tor
#endif // _WIN32
}
bool
gfxWindowsPlatform::UseClearTypeForDownloadableFonts()
{
if (mUseClearTypeForDownloadableFonts == UNINITIALIZED_VALUE) {
mUseClearTypeForDownloadableFonts = Preferences::GetBool(GFX_DOWNLOADABLE_FONTS_USE_CLEARTYPE, true);
}
return mUseClearTypeForDownloadableFonts;
}
bool
gfxWindowsPlatform::UseClearTypeAlways()
{
if (mUseClearTypeAlways == UNINITIALIZED_VALUE) {
mUseClearTypeAlways = Preferences::GetBool(GFX_USE_CLEARTYPE_ALWAYS, false);
}
return mUseClearTypeAlways;
}
void
gfxWindowsPlatform::GetDLLVersion(char16ptr_t aDLLPath, nsAString& aVersion)
{
DWORD versInfoSize, vers[4] = {0};
// version info not available case
aVersion.AssignLiteral(u"0.0.0.0");
versInfoSize = GetFileVersionInfoSizeW(aDLLPath, nullptr);
AutoTArray<BYTE,512> versionInfo;
if (versInfoSize == 0 ||
!versionInfo.AppendElements(uint32_t(versInfoSize)))
{
return;
}
if (!GetFileVersionInfoW(aDLLPath, 0, versInfoSize,
LPBYTE(versionInfo.Elements())))
{
return;
}
UINT len = 0;
VS_FIXEDFILEINFO *fileInfo = nullptr;
if (!VerQueryValue(LPBYTE(versionInfo.Elements()), TEXT("\\"),
(LPVOID *)&fileInfo, &len) ||
len == 0 ||
fileInfo == nullptr)
{
return;
}
DWORD fileVersMS = fileInfo->dwFileVersionMS;
DWORD fileVersLS = fileInfo->dwFileVersionLS;
vers[0] = HIWORD(fileVersMS);
vers[1] = LOWORD(fileVersMS);
vers[2] = HIWORD(fileVersLS);
vers[3] = LOWORD(fileVersLS);
char buf[256];
SprintfLiteral(buf, "%u.%u.%u.%u", vers[0], vers[1], vers[2], vers[3]);
aVersion.Assign(NS_ConvertUTF8toUTF16(buf));
}
void
gfxWindowsPlatform::GetCleartypeParams(nsTArray<ClearTypeParameterInfo>& aParams)
{
HKEY hKey, subKey;
DWORD i, rv, size, type;
WCHAR displayName[256], subkeyName[256];
aParams.Clear();
// construct subkeys based on HKLM subkeys, assume they are same for HKCU
rv = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
L"Software\\Microsoft\\Avalon.Graphics",
0, KEY_READ, &hKey);
if (rv != ERROR_SUCCESS) {
return;
}
// enumerate over subkeys
for (i = 0, rv = ERROR_SUCCESS; rv != ERROR_NO_MORE_ITEMS; i++) {
size = ArrayLength(displayName);
rv = RegEnumKeyExW(hKey, i, displayName, &size,
nullptr, nullptr, nullptr, nullptr);
if (rv != ERROR_SUCCESS) {
continue;
}
ClearTypeParameterInfo ctinfo;
ctinfo.displayName.Assign(displayName);
DWORD subrv, value;
bool foundData = false;
swprintf_s(subkeyName, ArrayLength(subkeyName),
L"Software\\Microsoft\\Avalon.Graphics\\%s", displayName);
// subkey for gamma, pixel structure
subrv = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
subkeyName, 0, KEY_QUERY_VALUE, &subKey);
if (subrv == ERROR_SUCCESS) {
size = sizeof(value);
subrv = RegQueryValueExW(subKey, L"GammaLevel", nullptr, &type,
(LPBYTE)&value, &size);
if (subrv == ERROR_SUCCESS && type == REG_DWORD) {
foundData = true;
ctinfo.gamma = value;
}
size = sizeof(value);
subrv = RegQueryValueExW(subKey, L"PixelStructure", nullptr, &type,
(LPBYTE)&value, &size);
if (subrv == ERROR_SUCCESS && type == REG_DWORD) {
foundData = true;
ctinfo.pixelStructure = value;
}
RegCloseKey(subKey);
}
// subkey for cleartype level, enhanced contrast
subrv = RegOpenKeyExW(HKEY_CURRENT_USER,
subkeyName, 0, KEY_QUERY_VALUE, &subKey);
if (subrv == ERROR_SUCCESS) {
size = sizeof(value);
subrv = RegQueryValueExW(subKey, L"ClearTypeLevel", nullptr, &type,
(LPBYTE)&value, &size);
if (subrv == ERROR_SUCCESS && type == REG_DWORD) {
foundData = true;
ctinfo.clearTypeLevel = value;
}
size = sizeof(value);
subrv = RegQueryValueExW(subKey, L"EnhancedContrastLevel",
nullptr, &type, (LPBYTE)&value, &size);
if (subrv == ERROR_SUCCESS && type == REG_DWORD) {
foundData = true;
ctinfo.enhancedContrast = value;
}
RegCloseKey(subKey);
}
if (foundData) {
aParams.AppendElement(ctinfo);
}
}
RegCloseKey(hKey);
}
void
gfxWindowsPlatform::FontsPrefsChanged(const char *aPref)
{
bool clearTextFontCaches = true;
gfxPlatform::FontsPrefsChanged(aPref);
if (!aPref) {
mUseClearTypeForDownloadableFonts = UNINITIALIZED_VALUE;
mUseClearTypeAlways = UNINITIALIZED_VALUE;
} else if (!strcmp(GFX_DOWNLOADABLE_FONTS_USE_CLEARTYPE, aPref)) {
mUseClearTypeForDownloadableFonts = UNINITIALIZED_VALUE;
} else if (!strcmp(GFX_USE_CLEARTYPE_ALWAYS, aPref)) {
mUseClearTypeAlways = UNINITIALIZED_VALUE;
} else if (!strncmp(GFX_CLEARTYPE_PARAMS, aPref, strlen(GFX_CLEARTYPE_PARAMS))) {
SetupClearTypeParams();
} else {
clearTextFontCaches = false;
}
if (clearTextFontCaches) {
gfxFontCache *fc = gfxFontCache::GetCache();
if (fc) {
fc->Flush();
}
}
}
#define ENHANCED_CONTRAST_REGISTRY_KEY \
HKEY_CURRENT_USER, "Software\\Microsoft\\Avalon.Graphics\\DISPLAY1\\EnhancedContrastLevel"
void
gfxWindowsPlatform::SetupClearTypeParams()
{
if (GetDWriteFactory()) {
// any missing prefs will default to invalid (-1) and be ignored;
// out-of-range values will also be ignored
FLOAT gamma = -1.0;
FLOAT contrast = -1.0;
FLOAT level = -1.0;
int geometry = -1;
int mode = -1;
int32_t value;
if (NS_SUCCEEDED(Preferences::GetInt(GFX_CLEARTYPE_PARAMS_GAMMA, &value))) {
if (value >= 1000 && value <= 2200) {
gamma = FLOAT(value / 1000.0);
}
}
if (NS_SUCCEEDED(Preferences::GetInt(GFX_CLEARTYPE_PARAMS_CONTRAST, &value))) {
if (value >= 0 && value <= 1000) {
contrast = FLOAT(value / 100.0);
}
}
if (NS_SUCCEEDED(Preferences::GetInt(GFX_CLEARTYPE_PARAMS_LEVEL, &value))) {
if (value >= 0 && value <= 100) {
level = FLOAT(value / 100.0);
}
}
if (NS_SUCCEEDED(Preferences::GetInt(GFX_CLEARTYPE_PARAMS_STRUCTURE, &value))) {
if (value >= 0 && value <= 2) {
geometry = value;
}
}
if (NS_SUCCEEDED(Preferences::GetInt(GFX_CLEARTYPE_PARAMS_MODE, &value))) {
if (value >= 0 && value <= 5) {
mode = value;
}
}
cairo_dwrite_set_cleartype_params(gamma, contrast, level, geometry, mode);
switch (mode) {
case DWRITE_RENDERING_MODE_ALIASED:
case DWRITE_RENDERING_MODE_CLEARTYPE_GDI_CLASSIC:
mMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC;
break;
case DWRITE_RENDERING_MODE_CLEARTYPE_GDI_NATURAL:
mMeasuringMode = DWRITE_MEASURING_MODE_GDI_NATURAL;
break;
default:
mMeasuringMode = DWRITE_MEASURING_MODE_NATURAL;
break;
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<IDWriteRenderingParams> defaultRenderingParams;
GetDWriteFactory()->CreateRenderingParams(getter_AddRefs(defaultRenderingParams));
// For EnhancedContrast, we override the default if the user has not set it
// in the registry (by using the ClearType Tuner).
if (contrast >= 0.0 && contrast <= 10.0) {
contrast = contrast;
} else {
HKEY hKey;
if (RegOpenKeyExA(ENHANCED_CONTRAST_REGISTRY_KEY,
0, KEY_READ, &hKey) == ERROR_SUCCESS)
{
contrast = defaultRenderingParams->GetEnhancedContrast();
RegCloseKey(hKey);
} else {
contrast = 1.0;
}
}
// For parameters that have not been explicitly set,
// we copy values from default params (or our overridden value for contrast)
if (gamma < 1.0 || gamma > 2.2) {
gamma = defaultRenderingParams->GetGamma();
}
if (level < 0.0 || level > 1.0) {
level = defaultRenderingParams->GetClearTypeLevel();
}
DWRITE_PIXEL_GEOMETRY dwriteGeometry =
static_cast<DWRITE_PIXEL_GEOMETRY>(geometry);
DWRITE_RENDERING_MODE renderMode =
static_cast<DWRITE_RENDERING_MODE>(mode);
if (dwriteGeometry < DWRITE_PIXEL_GEOMETRY_FLAT ||
dwriteGeometry > DWRITE_PIXEL_GEOMETRY_BGR) {
dwriteGeometry = defaultRenderingParams->GetPixelGeometry();
}
if (renderMode < DWRITE_RENDERING_MODE_DEFAULT ||
renderMode > DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL_SYMMETRIC) {
renderMode = defaultRenderingParams->GetRenderingMode();
}
mRenderingParams[TEXT_RENDERING_NO_CLEARTYPE] = defaultRenderingParams;
GetDWriteFactory()->CreateCustomRenderingParams(gamma, contrast, level,
dwriteGeometry, renderMode,
getter_AddRefs(mRenderingParams[TEXT_RENDERING_NORMAL]));
GetDWriteFactory()->CreateCustomRenderingParams(gamma, contrast, level,
dwriteGeometry, DWRITE_RENDERING_MODE_CLEARTYPE_GDI_CLASSIC,
getter_AddRefs(mRenderingParams[TEXT_RENDERING_GDI_CLASSIC]));
}
}
ReadbackManagerD3D11*
gfxWindowsPlatform::GetReadbackManager()
{
if (!mD3D11ReadbackManager) {
mD3D11ReadbackManager = new ReadbackManagerD3D11();
}
return mD3D11ReadbackManager;
}
bool
gfxWindowsPlatform::IsOptimus()
{
static int knowIsOptimus = -1;
if (knowIsOptimus == -1) {
// other potential optimus -- nvd3d9wrapx.dll & nvdxgiwrap.dll
if (GetModuleHandleA("nvumdshim.dll") ||
GetModuleHandleA("nvumdshimx.dll"))
{
knowIsOptimus = 1;
} else {
knowIsOptimus = 0;
}
}
return knowIsOptimus;
}
static inline bool
IsWARPStable()
{
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
// It seems like nvdxgiwrap makes a mess of WARP. See bug 1154703.
if (!IsWin8OrLater() || GetModuleHandleA("nvdxgiwrap.dll")) {
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
return false;
}
return true;
}
static void
InitializeANGLEConfig()
{
FeatureState& d3d11ANGLE = gfxConfig::GetFeature(Feature::D3D11_HW_ANGLE);
if (!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
d3d11ANGLE.DisableByDefault(FeatureStatus::Unavailable, "D3D11 compositing is disabled",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D3D11_DISABLED"));
return;
}
d3d11ANGLE.EnableByDefault();
nsCString message;
nsCString failureId;
if (!gfxPlatform::IsGfxInfoStatusOkay(nsIGfxInfo::FEATURE_DIRECT3D_11_ANGLE, &message,
failureId)) {
d3d11ANGLE.Disable(FeatureStatus::Blacklisted, message.get(), failureId);
}
}
void
gfxWindowsPlatform::InitializeDirectDrawConfig()
{
MOZ_ASSERT(XRE_IsParentProcess());
FeatureState& ddraw = gfxConfig::GetFeature(Feature::DIRECT_DRAW);
ddraw.EnableByDefault();
}
void
gfxWindowsPlatform::InitializeConfig()
{
if (XRE_IsParentProcess()) {
// The parent process first determines which features can be attempted.
// This information is relayed to content processes and the GPU process.
InitializeD3D9Config();
InitializeD3D11Config();
InitializeANGLEConfig();
InitializeD2DConfig();
} else {
FetchAndImportContentDeviceData();
InitializeANGLEConfig();
}
}
void
gfxWindowsPlatform::InitializeD3D9Config()
{
MOZ_ASSERT(XRE_IsParentProcess());
FeatureState& d3d9 = gfxConfig::GetFeature(Feature::D3D9_COMPOSITING);
if (!gfxConfig::IsEnabled(Feature::HW_COMPOSITING)) {
d3d9.DisableByDefault(FeatureStatus::Unavailable, "Hardware compositing is disabled",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D3D9_NEED_HWCOMP"));
return;
}
d3d9.SetDefaultFromPref(
gfxPrefs::GetLayersAllowD3D9FallbackPrefName(),
true,
gfxPrefs::GetLayersAllowD3D9FallbackPrefDefault());
if (!d3d9.IsEnabled() && gfxPrefs::LayersPreferD3D9()) {
d3d9.UserEnable("Direct3D9 enabled via layers.prefer-d3d9");
}
nsCString message;
nsCString failureId;
if (!gfxPlatform::IsGfxInfoStatusOkay(nsIGfxInfo::FEATURE_DIRECT3D_9_LAYERS, &message,
failureId)) {
d3d9.Disable(FeatureStatus::Blacklisted, message.get(), failureId);
}
if (gfxConfig::IsForcedOnByUser(Feature::HW_COMPOSITING)) {
d3d9.UserForceEnable("Hardware compositing is force-enabled");
}
}
void
gfxWindowsPlatform::InitializeD3D11Config()
{
MOZ_ASSERT(XRE_IsParentProcess());
FeatureState& d3d11 = gfxConfig::GetFeature(Feature::D3D11_COMPOSITING);
if (!gfxConfig::IsEnabled(Feature::HW_COMPOSITING)) {
d3d11.DisableByDefault(FeatureStatus::Unavailable, "Hardware compositing is disabled",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D3D11_NEED_HWCOMP"));
return;
}
d3d11.EnableByDefault();
// If the user prefers D3D9, act as though they disabled D3D11.
if (gfxPrefs::LayersPreferD3D9()) {
d3d11.UserDisable("Disabled due to user preference for Direct3D 9",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D3D11_PREF"));
return;
}
nsCString message;
nsCString failureId;
if (!gfxPlatform::IsGfxInfoStatusOkay(nsIGfxInfo::FEATURE_DIRECT3D_11_LAYERS, &message, failureId)) {
d3d11.Disable(FeatureStatus::Blacklisted, message.get(), failureId);
}
// Check if the user really, really wants WARP.
if (gfxPrefs::LayersD3D11ForceWARP()) {
// Force D3D11 on even if we disabled it.
d3d11.UserForceEnable("User force-enabled WARP");
}
}
/* static */ void
gfxWindowsPlatform::RecordContentDeviceFailure(TelemetryDeviceCode aDevice)
{
// If the parent process fails to acquire a device, we record this
// normally as part of the environment. The exceptional case we're
// looking for here is when the parent process successfully acquires
// a device, but the content process fails to acquire the same device.
// This would not normally be displayed in about:support.
if (!XRE_IsContentProcess()) {
return;
}
Telemetry::Accumulate(Telemetry::GFX_CONTENT_FAILED_TO_ACQUIRE_DEVICE, uint32_t(aDevice));
}
void
gfxWindowsPlatform::InitializeDevices()
{
if (XRE_IsParentProcess()) {
// If we're the UI process, and the GPU process is enabled, then we don't
// initialize any DirectX devices. We do leave them enabled in gfxConfig
// though. If the GPU process fails to create these devices it will send
// a message back and we'll update their status.
if (InitGPUProcessSupport()) {
return;
}
// No GPU process, continue initializing devices as normal.
}
// If acceleration is disabled, we refuse to initialize anything.
if (!gfxConfig::IsEnabled(Feature::HW_COMPOSITING)) {
return;
}
// If we previously crashed initializing devices, bail out now.
D3D11LayersCrashGuard detectCrashes;
if (detectCrashes.Crashed()) {
gfxConfig::SetFailed(Feature::HW_COMPOSITING,
FeatureStatus::CrashedOnStartup,
"Crashed during startup in a previous session");
gfxConfig::SetFailed(Feature::D3D11_COMPOSITING,
FeatureStatus::CrashedOnStartup,
"Harware acceleration crashed during startup in a previous session");
gfxConfig::SetFailed(Feature::DIRECT2D,
FeatureStatus::CrashedOnStartup,
"Harware acceleration crashed during startup in a previous session");
return;
}
bool shouldUseD2D = gfxConfig::IsEnabled(Feature::DIRECT2D);
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
// First, initialize D3D11. If this succeeds we attempt to use Direct2D.
InitializeD3D11();
InitializeD2D();
if (!gfxConfig::IsEnabled(Feature::DIRECT2D) &&
XRE_IsContentProcess() &&
shouldUseD2D)
{
RecordContentDeviceFailure(TelemetryDeviceCode::D2D1);
}
}
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
void
gfxWindowsPlatform::InitializeD3D11()
{
// This function attempts to initialize our D3D11 devices, if the hardware
// is not blacklisted for D3D11 layers. This first attempt will try to create
// a hardware accelerated device. If this creation fails or the hardware is
// blacklisted, then this function will abort if WARP is disabled, causing us
// to fallback to D3D9 or Basic layers. If WARP is not disabled it will use
// a WARP device which should always be available on Windows 7 and higher.
if (!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
return;
}
DeviceManagerDx* dm = DeviceManagerDx::Get();
if (XRE_IsParentProcess()) {
if (!dm->CreateCompositorDevices()) {
return;
}
}
dm->CreateContentDevices();
// Content process failed to create the d3d11 device while parent process
// succeed.
if (XRE_IsContentProcess() &&
!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
gfxCriticalError() << "[D3D11] Failed to create the D3D11 device in content \
process.";
}
}
void
gfxWindowsPlatform::InitializeD2DConfig()
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
{
FeatureState& d2d1 = gfxConfig::GetFeature(Feature::DIRECT2D);
if (!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
d2d1.DisableByDefault(FeatureStatus::Unavailable, "Direct2D requires Direct3D 11 compositing",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_D3D11_COMP"));
return;
}
d2d1.SetDefaultFromPref(
gfxPrefs::GetDirect2DDisabledPrefName(),
false,
gfxPrefs::GetDirect2DDisabledPrefDefault());
nsCString message;
nsCString failureId;
if (!gfxPlatform::IsGfxInfoStatusOkay(nsIGfxInfo::FEATURE_DIRECT2D, &message, failureId)) {
d2d1.Disable(FeatureStatus::Blacklisted, message.get(), failureId);
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
}
if (!d2d1.IsEnabled() && gfxPrefs::Direct2DForceEnabled()) {
d2d1.UserForceEnable("Force-enabled via user-preference");
}
}
void
gfxWindowsPlatform::InitializeD2D()
{
ScopedGfxFeatureReporter d2d1_1("D2D1.1");
FeatureState& d2d1 = gfxConfig::GetFeature(Feature::DIRECT2D);
DeviceManagerDx* dm = DeviceManagerDx::Get();
// We don't know this value ahead of time, but the user can force-override
// it, so we use Disable instead of SetFailed.
if (dm->IsWARP()) {
d2d1.Disable(FeatureStatus::Blocked, "Direct2D is not compatible with Direct3D11 WARP",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_WARP_BLOCK"));
}
// If we pass all the initial checks, we can proceed to runtime decisions.
if (!d2d1.IsEnabled()) {
return;
}
if (!Factory::SupportsD2D1()) {
d2d1.SetFailed(FeatureStatus::Unavailable, "Failed to acquire a Direct2D 1.1 factory",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_FACTORY"));
return;
}
if (!dm->GetContentDevice()) {
d2d1.SetFailed(FeatureStatus::Failed, "Failed to acquire a Direct3D 11 content device",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_DEVICE"));
return;
}
if (!dm->TextureSharingWorks()) {
d2d1.SetFailed(FeatureStatus::Failed, "Direct3D11 device does not support texture sharing",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_TXT_SHARING"));
return;
}
// Using Direct2D depends on DWrite support.
if (!mDWriteFactory && !InitDWriteSupport()) {
d2d1.SetFailed(FeatureStatus::Failed, "Failed to initialize DirectWrite support",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_DWRITE"));
return;
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
}
// Verify that Direct2D device creation succeeded.
RefPtr<ID3D11Device> contentDevice = dm->GetContentDevice();
if (!Factory::SetDirect3D11Device(contentDevice)) {
d2d1.SetFailed(FeatureStatus::Failed, "Failed to create a Direct2D device",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_CREATE_FAILED"));
return;
}
MOZ_ASSERT(d2d1.IsEnabled());
Refactor graphics device initialization on Windows. (bug 1183910 part 1, r=mattwoodrow,bas) This patch addresses a number of inconsistencies in the device initialization process, as well as simplifying it for future use. All device decisions are now explicitly made up-front during startup, rather than implicitly or on-demand. In addition a number of restrictions have been placed on when we can construct devices. Full change list: (1) We no longer attempt to use D3D11 if acceleration is disabled or D3D9 is preferred. This is a departure from our previous behavior, where we would construct these devices but then not use them as a compositor backend. (2) D3D11 startup no longer creates a content device (this is reserved for D2D initialization). (3) D2D is only attempted if we managed to create a D3D11 compositor device. This is a departure from previous behavior where if D3D11 was not used for compositing, we could still create its machinery to use D2D as a content backend. (4) D2D 1.1 initialization is now directly responsible for creating a D3D11 content device. (5) D2D 1.0 and 1.1 logic have been disentangled for clarity. (6) UpdateRenderMode() has been split up, so we can update backend prefs out of band with device resets. (7) mUseGDIFonts and mUseDirectWrite have been removed as their state was confusing. Instead, D2D now depends on DWrite initialization succeeding. If later we fail to get a DWrite font list, we revert our decision to use Direct2D. (8) Device resets now clear a little more state, including the devices set in Moz2D Factory. (9) We no longer create a DWrite text analyzer as it was unused.
2015-07-29 02:52:54 +03:00
d2d1_1.SetSuccessful();
}
bool
gfxWindowsPlatform::InitGPUProcessSupport()
{
FeatureState& gpuProc = gfxConfig::GetFeature(Feature::GPU_PROCESS);
if (!gpuProc.IsEnabled()) {
return false;
}
if (!gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
// Don't use the GPU process if not using D3D11.
gpuProc.Disable(
FeatureStatus::Unavailable,
"Not using GPU Process since D3D11 is unavailable",
NS_LITERAL_CSTRING("FEATURE_FAILURE_NO_D3D11"));
} else if (!IsWin7SP1OrLater()) {
// On Windows 7 Pre-SP1, DXGI 1.2 is not available and remote presentation
// for D3D11 will not work. Rather than take a regression and use D3D9, we
// revert back to in-process rendering.
gpuProc.Disable(
FeatureStatus::Unavailable,
"Windows 7 Pre-SP1 cannot use the GPU process",
NS_LITERAL_CSTRING("FEATURE_FAILURE_OLD_WINDOWS"));
} else if (!IsWin8OrLater()) {
// Windows 7 SP1 can have DXGI 1.2 only via the Platform Update, so we
// explicitly check for that here.
if (!DeviceManagerDx::Get()->CheckRemotePresentSupport()) {
gpuProc.Disable(
FeatureStatus::Unavailable,
"GPU Process requires the Windows 7 Platform Update",
NS_LITERAL_CSTRING("FEATURE_FAILURE_PLATFORM_UPDATE"));
} else {
// Clear anything cached by the above call since we don't need it.
DeviceManagerDx::Get()->ResetDevices();
}
}
// If we're still enabled at this point, the user set the force-enabled pref.
return gpuProc.IsEnabled();
}
bool
gfxWindowsPlatform::DwmCompositionEnabled()
{
MOZ_ASSERT(WinUtils::dwmIsCompositionEnabledPtr);
BOOL dwmEnabled = false;
if (FAILED(WinUtils::dwmIsCompositionEnabledPtr(&dwmEnabled))) {
return false;
}
return dwmEnabled;
}
class D3DVsyncSource final : public VsyncSource
{
public:
class D3DVsyncDisplay final : public VsyncSource::Display
{
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(D3DVsyncDisplay)
public:
D3DVsyncDisplay()
: mPrevVsync(TimeStamp::Now())
, mVsyncEnabledLock("D3DVsyncEnabledLock")
, mVsyncEnabled(false)
{
mVsyncThread = new base::Thread("WindowsVsyncThread");
MOZ_RELEASE_ASSERT(mVsyncThread->Start(), "GFX: Could not start Windows vsync thread");
SetVsyncRate();
}
void SetVsyncRate()
{
if (!gfxWindowsPlatform::GetPlatform()->DwmCompositionEnabled()) {
mVsyncRate = TimeDuration::FromMilliseconds(1000.0 / 60.0);
return;
}
DWM_TIMING_INFO vblankTime;
// Make sure to init the cbSize, otherwise GetCompositionTiming will fail
vblankTime.cbSize = sizeof(DWM_TIMING_INFO);
HRESULT hr = WinUtils::dwmGetCompositionTimingInfoPtr(0, &vblankTime);
if (SUCCEEDED(hr)) {
UNSIGNED_RATIO refreshRate = vblankTime.rateRefresh;
// We get the rate in hertz / time, but we want the rate in ms.
float rate = ((float) refreshRate.uiDenominator
/ (float) refreshRate.uiNumerator) * 1000;
mVsyncRate = TimeDuration::FromMilliseconds(rate);
} else {
mVsyncRate = TimeDuration::FromMilliseconds(1000.0 / 60.0);
}
}
virtual void Shutdown() override
{
MOZ_ASSERT(NS_IsMainThread());
DisableVsync();
mVsyncThread->Stop();
delete mVsyncThread;
}
virtual void EnableVsync() override
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mVsyncThread->IsRunning());
{ // scope lock
MonitorAutoLock lock(mVsyncEnabledLock);
if (mVsyncEnabled) {
return;
}
mVsyncEnabled = true;
}
mVsyncThread->message_loop()->PostTask(
NewRunnableMethod(this, &D3DVsyncDisplay::VBlankLoop));
}
virtual void DisableVsync() override
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mVsyncThread->IsRunning());
MonitorAutoLock lock(mVsyncEnabledLock);
if (!mVsyncEnabled) {
return;
}
mVsyncEnabled = false;
}
virtual bool IsVsyncEnabled() override
{
MOZ_ASSERT(NS_IsMainThread());
MonitorAutoLock lock(mVsyncEnabledLock);
return mVsyncEnabled;
}
virtual TimeDuration GetVsyncRate() override
{
return mVsyncRate;
}
void ScheduleSoftwareVsync(TimeStamp aVsyncTimestamp)
{
MOZ_ASSERT(IsInVsyncThread());
NS_WARNING("DwmComposition dynamically disabled, falling back to software timers");
TimeStamp nextVsync = aVsyncTimestamp + mVsyncRate;
TimeDuration delay = nextVsync - TimeStamp::Now();
if (delay.ToMilliseconds() < 0) {
delay = mozilla::TimeDuration::FromMilliseconds(0);
}
mVsyncThread->message_loop()->PostDelayedTask(
NewRunnableMethod(this, &D3DVsyncDisplay::VBlankLoop),
delay.ToMilliseconds());
}
// Returns the timestamp for the just happened vsync
TimeStamp GetVBlankTime()
{
TimeStamp vsync = TimeStamp::Now();
TimeStamp now = vsync;
DWM_TIMING_INFO vblankTime;
// Make sure to init the cbSize, otherwise
// GetCompositionTiming will fail
vblankTime.cbSize = sizeof(DWM_TIMING_INFO);
HRESULT hr = WinUtils::dwmGetCompositionTimingInfoPtr(0, &vblankTime);
if (!SUCCEEDED(hr)) {
return vsync;
}
LARGE_INTEGER frequency;
QueryPerformanceFrequency(&frequency);
LARGE_INTEGER qpcNow;
QueryPerformanceCounter(&qpcNow);
const int microseconds = 1000000;
int64_t adjust = qpcNow.QuadPart - vblankTime.qpcVBlank;
int64_t usAdjust = (adjust * microseconds) / frequency.QuadPart;
vsync -= TimeDuration::FromMicroseconds((double) usAdjust);
if (IsWin10OrLater()) {
// On Windows 10 and on, DWMGetCompositionTimingInfo, mostly
// reports the upcoming vsync time, which is in the future.
// It can also sometimes report a vblank time in the past.
// Since large parts of Gecko assume TimeStamps can't be in future,
// use the previous vsync.
// Windows 10 and Intel HD vsync timestamps are messy and
// all over the place once in a while. Most of the time,
// it reports the upcoming vsync. Sometimes, that upcoming
// vsync is in the past. Sometimes that upcoming vsync is before
// the previously seen vsync.
// In these error cases, normalize to Now();
if (vsync >= now) {
vsync = vsync - mVsyncRate;
}
}
// On Windows 7 and 8, DwmFlush wakes up AFTER qpcVBlankTime
// from DWMGetCompositionTimingInfo. We can return the adjusted vsync.
if (vsync >= now) {
vsync = now;
}
// Our vsync time is some time very far in the past, adjust to Now.
// 4 ms is arbitrary, so feel free to pick something else if this isn't
// working. See the comment above within IsWin10OrLater().
if ((now - vsync).ToMilliseconds() > 4.0) {
vsync = now;
}
return vsync;
}
void VBlankLoop()
{
MOZ_ASSERT(IsInVsyncThread());
MOZ_ASSERT(sizeof(int64_t) == sizeof(QPC_TIME));
TimeStamp vsync = TimeStamp::Now();
mPrevVsync = TimeStamp();
TimeStamp flushTime = TimeStamp::Now();
TimeDuration longVBlank = mVsyncRate * 2;
for (;;) {
{ // scope lock
MonitorAutoLock lock(mVsyncEnabledLock);
if (!mVsyncEnabled) return;
}
// Large parts of gecko assume that the refresh driver timestamp
// must be <= Now() and cannot be in the future.
MOZ_ASSERT(vsync <= TimeStamp::Now());
Display::NotifyVsync(vsync);
// DwmComposition can be dynamically enabled/disabled
// so we have to check every time that it's available.
// When it is unavailable, we fallback to software but will try
// to get back to dwm rendering once it's re-enabled
if (!gfxWindowsPlatform::GetPlatform()->DwmCompositionEnabled()) {
ScheduleSoftwareVsync(vsync);
return;
}
// Using WaitForVBlank, the whole system dies because WaitForVBlank
// only works if it's run on the same thread as the Present();
HRESULT hr = WinUtils::dwmFlushProcPtr();
if (!SUCCEEDED(hr)) {
// DWMFlush isn't working, fallback to software vsync.
ScheduleSoftwareVsync(TimeStamp::Now());
return;
}
TimeStamp now = TimeStamp::Now();
TimeDuration flushDiff = now - flushTime;
flushTime = now;
if ((flushDiff > longVBlank) || mPrevVsync.IsNull()) {
// Our vblank took longer than 2 intervals, readjust our timestamps
vsync = GetVBlankTime();
mPrevVsync = vsync;
} else {
// Instead of giving the actual vsync time, a constant interval
// between vblanks instead of the noise generated via hardware
// is actually what we want. Most apps just care about the diff
// between vblanks to animate, so a clean constant interval is
// smoother.
vsync = mPrevVsync + mVsyncRate;
if (vsync > now) {
// DWMFlush woke up very early, so readjust our times again
vsync = GetVBlankTime();
}
if (vsync <= mPrevVsync) {
vsync = TimeStamp::Now();
}
if ((now - vsync).ToMilliseconds() > 2.0) {
// Account for time drift here where vsync never quite catches up to
// Now and we'd fall ever so slightly further behind Now().
vsync = GetVBlankTime();
}
mPrevVsync = vsync;
}
} // end for
}
private:
virtual ~D3DVsyncDisplay()
{
MOZ_ASSERT(NS_IsMainThread());
}
bool IsInVsyncThread()
{
return mVsyncThread->thread_id() == PlatformThread::CurrentId();
}
TimeStamp mPrevVsync;
Monitor mVsyncEnabledLock;
base::Thread* mVsyncThread;
TimeDuration mVsyncRate;
bool mVsyncEnabled;
}; // end d3dvsyncdisplay
D3DVsyncSource()
{
mPrimaryDisplay = new D3DVsyncDisplay();
}
virtual Display& GetGlobalDisplay() override
{
return *mPrimaryDisplay;
}
private:
virtual ~D3DVsyncSource()
{
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<D3DVsyncDisplay> mPrimaryDisplay;
}; // end D3DVsyncSource
already_AddRefed<mozilla::gfx::VsyncSource>
gfxWindowsPlatform::CreateHardwareVsyncSource()
{
MOZ_RELEASE_ASSERT(NS_IsMainThread(), "GFX: Not in main thread.");
if (!WinUtils::dwmIsCompositionEnabledPtr) {
NS_WARNING("Dwm composition not available, falling back to software vsync");
return gfxPlatform::CreateHardwareVsyncSource();
}
BOOL dwmEnabled = false;
WinUtils::dwmIsCompositionEnabledPtr(&dwmEnabled);
if (!dwmEnabled) {
NS_WARNING("DWM not enabled, falling back to software vsync");
return gfxPlatform::CreateHardwareVsyncSource();
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<VsyncSource> d3dVsyncSource = new D3DVsyncSource();
return d3dVsyncSource.forget();
}
bool
gfxWindowsPlatform::SupportsApzTouchInput() const
{
int value = gfxPrefs::TouchEventsEnabled();
return value == 1 || value == 2;
}
void
gfxWindowsPlatform::GetAcceleratedCompositorBackends(nsTArray<LayersBackend>& aBackends)
{
if (gfxConfig::IsEnabled(Feature::OPENGL_COMPOSITING) && gfxPrefs::LayersPreferOpenGL()) {
aBackends.AppendElement(LayersBackend::LAYERS_OPENGL);
}
if (gfxConfig::IsEnabled(Feature::D3D9_COMPOSITING) && gfxPrefs::LayersPreferD3D9()) {
aBackends.AppendElement(LayersBackend::LAYERS_D3D9);
}
if (gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
aBackends.AppendElement(LayersBackend::LAYERS_D3D11);
}
if (gfxConfig::IsEnabled(Feature::D3D9_COMPOSITING) && !gfxPrefs::LayersPreferD3D9()) {
aBackends.AppendElement(LayersBackend::LAYERS_D3D9);
}
}
void
gfxWindowsPlatform::ImportGPUDeviceData(const mozilla::gfx::GPUDeviceData& aData)
{
MOZ_ASSERT(XRE_IsParentProcess());
gfxPlatform::ImportGPUDeviceData(aData);
gfxConfig::ImportChange(Feature::D3D11_COMPOSITING, aData.d3d11Compositing());
gfxConfig::ImportChange(Feature::D3D9_COMPOSITING, aData.d3d9Compositing());
DeviceManagerDx* dm = DeviceManagerDx::Get();
if (gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
dm->ImportDeviceInfo(aData.gpuDevice().get_D3D11DeviceStatus());
} else {
// There should be no devices, so this just takes away the device status.
dm->ResetDevices();
// Make sure we disable D2D if content processes might use it.
FeatureState& d2d1 = gfxConfig::GetFeature(Feature::DIRECT2D);
if (d2d1.IsEnabled()) {
d2d1.SetFailed(
FeatureStatus::Unavailable,
"Direct2D requires Direct3D 11 compositing",
NS_LITERAL_CSTRING("FEATURE_FAILURE_D2D_D3D11_COMP"));
}
}
// CanUseHardwareVideoDecoding depends on d3d11 state, so update
// the cached value now.
UpdateCanUseHardwareVideoDecoding();
// For completeness (and messaging in about:support). Content recomputes this
// on its own, and we won't use ANGLE in the UI process if we're using a GPU
// process.
UpdateANGLEConfig();
}
void
gfxWindowsPlatform::ImportContentDeviceData(const mozilla::gfx::ContentDeviceData& aData)
{
MOZ_ASSERT(XRE_IsContentProcess());
gfxPlatform::ImportContentDeviceData(aData);
const DevicePrefs& prefs = aData.prefs();
gfxConfig::Inherit(Feature::D3D11_COMPOSITING, prefs.d3d11Compositing());
gfxConfig::Inherit(Feature::D3D9_COMPOSITING, prefs.d3d9Compositing());
gfxConfig::Inherit(Feature::DIRECT2D, prefs.useD2D1());
if (gfxConfig::IsEnabled(Feature::D3D11_COMPOSITING)) {
DeviceManagerDx* dm = DeviceManagerDx::Get();
dm->ImportDeviceInfo(aData.d3d11());
}
}
void
gfxWindowsPlatform::BuildContentDeviceData(ContentDeviceData* aOut)
{
// Check for device resets before giving back new graphics information.
UpdateRenderMode();
gfxPlatform::BuildContentDeviceData(aOut);
const FeatureState& d3d11 = gfxConfig::GetFeature(Feature::D3D11_COMPOSITING);
aOut->prefs().d3d11Compositing() = d3d11.GetValue();
aOut->prefs().d3d9Compositing() = gfxConfig::GetValue(Feature::D3D9_COMPOSITING);
aOut->prefs().useD2D1() = gfxConfig::GetValue(Feature::DIRECT2D);
if (d3d11.IsEnabled()) {
DeviceManagerDx* dm = DeviceManagerDx::Get();
dm->ExportDeviceInfo(&aOut->d3d11());
}
}
bool
gfxWindowsPlatform::SupportsPluginDirectDXGIDrawing()
{
DeviceManagerDx* dm = DeviceManagerDx::Get();
if (!dm->GetContentDevice() || !dm->TextureSharingWorks()) {
return false;
}
return true;
}