gecko-dev/ipc/unixsocket/SocketBase.cpp

450 строки
8.9 KiB
C++
Исходник Обычный вид История

/* -*- Mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; tab-width: 40 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include "SocketBase.h"
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include "nsISupportsImpl.h" // for MOZ_COUNT_CTOR, MOZ_COUNT_DTOR
namespace mozilla {
namespace ipc {
//
// UnixSocketIOBuffer
//
UnixSocketBuffer::UnixSocketBuffer()
: mSize(0)
, mOffset(0)
, mAvailableSpace(0)
, mData(nullptr)
{
MOZ_COUNT_CTOR(UnixSocketBuffer);
}
UnixSocketBuffer::~UnixSocketBuffer()
{
MOZ_COUNT_DTOR(UnixSocketBuffer);
// Make sure that the caller released the buffer's memory.
MOZ_ASSERT(!GetBuffer());
}
const uint8_t*
UnixSocketBuffer::Consume(size_t aLen)
{
if (NS_WARN_IF(GetSize() < aLen)) {
return nullptr;
}
uint8_t* data = mData + mOffset;
mOffset += aLen;
return data;
}
nsresult
UnixSocketBuffer::Read(void* aValue, size_t aLen)
{
const uint8_t* data = Consume(aLen);
if (!data) {
return NS_ERROR_OUT_OF_MEMORY;
}
memcpy(aValue, data, aLen);
return NS_OK;
}
uint8_t*
UnixSocketBuffer::Append(size_t aLen)
{
if (((mAvailableSpace - mSize) < aLen)) {
size_t availableSpace = mAvailableSpace + std::max(mAvailableSpace, aLen);
uint8_t* data = new uint8_t[availableSpace];
memcpy(data, mData, mSize);
mData = data;
mAvailableSpace = availableSpace;
}
uint8_t* data = mData + mSize;
mSize += aLen;
return data;
}
nsresult
UnixSocketBuffer::Write(const void* aValue, size_t aLen)
{
uint8_t* data = Append(aLen);
if (!data) {
return NS_ERROR_OUT_OF_MEMORY;
}
memcpy(data, aValue, aLen);
return NS_OK;
}
void
UnixSocketBuffer::CleanupLeadingSpace()
{
if (GetLeadingSpace()) {
if (GetSize() <= GetLeadingSpace()) {
memcpy(mData, GetData(), GetSize());
} else {
memmove(mData, GetData(), GetSize());
}
mOffset = 0;
}
}
//
// UnixSocketIOBuffer
//
UnixSocketIOBuffer::UnixSocketIOBuffer()
{
MOZ_COUNT_CTOR_INHERITED(UnixSocketIOBuffer, UnixSocketBuffer);
}
UnixSocketIOBuffer::~UnixSocketIOBuffer()
{
MOZ_COUNT_DTOR_INHERITED(UnixSocketIOBuffer, UnixSocketBuffer);
}
//
// UnixSocketRawData
//
UnixSocketRawData::UnixSocketRawData(const void* aData, size_t aSize)
{
MOZ_ASSERT(aData || !aSize);
MOZ_COUNT_CTOR_INHERITED(UnixSocketRawData, UnixSocketIOBuffer);
ResetBuffer(static_cast<uint8_t*>(memcpy(new uint8_t[aSize], aData, aSize)),
0, aSize, aSize);
}
UnixSocketRawData::UnixSocketRawData(UniquePtr<uint8_t[]> aData, size_t aSize)
{
MOZ_ASSERT(aData || !aSize);
MOZ_COUNT_CTOR_INHERITED(UnixSocketRawData, UnixSocketIOBuffer);
ResetBuffer(aData.release(), 0, aSize, aSize);
}
UnixSocketRawData::UnixSocketRawData(size_t aSize)
{
MOZ_COUNT_CTOR_INHERITED(UnixSocketRawData, UnixSocketIOBuffer);
ResetBuffer(new uint8_t[aSize], 0, 0, aSize);
}
UnixSocketRawData::~UnixSocketRawData()
{
MOZ_COUNT_DTOR_INHERITED(UnixSocketRawData, UnixSocketIOBuffer);
UniquePtr<uint8_t[]> data(GetBuffer());
ResetBuffer(nullptr, 0, 0, 0);
}
ssize_t
UnixSocketRawData::Receive(int aFd)
{
if (!GetTrailingSpace()) {
if (!GetLeadingSpace()) {
return -1; /* buffer is full */
}
/* free up space at the end of data buffer */
CleanupLeadingSpace();
}
ssize_t res =
TEMP_FAILURE_RETRY(read(aFd, GetTrailingBytes(), GetTrailingSpace()));
if (res < 0) {
/* I/O error */
return -1;
} else if (!res) {
/* EOF or peer shutdown sending */
return 0;
}
Append(res); /* mark read data as 'valid' */
return res;
}
ssize_t
UnixSocketRawData::Send(int aFd)
{
if (!GetSize()) {
return 0;
}
ssize_t res = TEMP_FAILURE_RETRY(write(aFd, GetData(), GetSize()));
if (res < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return 0; /* socket is blocked; try again later */
}
return -1;
} else if (!res) {
/* nothing written */
return 0;
}
Consume(res);
return res;
}
//
// SocketBase
//
SocketConnectionStatus
SocketBase::GetConnectionStatus() const
{
return mConnectionStatus;
}
int
SocketBase::GetSuggestedConnectDelayMs() const
{
return mConnectDelayMs;
}
void
SocketBase::NotifySuccess()
{
mConnectionStatus = SOCKET_CONNECTED;
mConnectTimestamp = PR_IntervalNow();
OnConnectSuccess();
}
void
SocketBase::NotifyError()
{
mConnectionStatus = SOCKET_DISCONNECTED;
mConnectDelayMs = CalculateConnectDelayMs();
mConnectTimestamp = 0;
OnConnectError();
}
void
SocketBase::NotifyDisconnect()
{
mConnectionStatus = SOCKET_DISCONNECTED;
mConnectDelayMs = CalculateConnectDelayMs();
mConnectTimestamp = 0;
OnDisconnect();
}
uint32_t
SocketBase::CalculateConnectDelayMs() const
{
uint32_t connectDelayMs = mConnectDelayMs;
if (mConnectTimestamp && (PR_IntervalNow()-mConnectTimestamp) > connectDelayMs) {
// reset delay if connection has been opened for a while, or...
connectDelayMs = 0;
} else if (!connectDelayMs) {
// ...start with a delay of ~1 sec, or...
connectDelayMs = 1<<10;
} else if (connectDelayMs < (1<<16)) {
// ...otherwise increase delay by a factor of 2
connectDelayMs <<= 1;
}
return connectDelayMs;
}
SocketBase::SocketBase()
: mConnectionStatus(SOCKET_DISCONNECTED)
, mConnectTimestamp(0)
, mConnectDelayMs(0)
{
MOZ_COUNT_CTOR(SocketBase);
}
SocketBase::~SocketBase()
{
MOZ_ASSERT(mConnectionStatus == SOCKET_DISCONNECTED);
MOZ_COUNT_DTOR(SocketBase);
}
void
SocketBase::SetConnectionStatus(SocketConnectionStatus aConnectionStatus)
{
mConnectionStatus = aConnectionStatus;
}
//
// SocketIOBase
//
SocketIOBase::SocketIOBase(MessageLoop* aConsumerLoop)
: mConsumerLoop(aConsumerLoop)
{
MOZ_ASSERT(mConsumerLoop);
MOZ_COUNT_CTOR(SocketIOBase);
}
SocketIOBase::~SocketIOBase()
{
MOZ_COUNT_DTOR(SocketIOBase);
}
MessageLoop*
SocketIOBase::GetConsumerThread() const
{
return mConsumerLoop;
}
bool
SocketIOBase::IsConsumerThread() const
{
return GetConsumerThread() == MessageLoop::current();
}
//
// SocketEventTask
//
SocketEventTask::SocketEventTask(SocketIOBase* aIO, SocketEvent aEvent)
: SocketTask<SocketIOBase>(aIO)
, mEvent(aEvent)
{
MOZ_COUNT_CTOR(SocketEventTask);
}
SocketEventTask::~SocketEventTask()
{
MOZ_COUNT_DTOR(SocketEventTask);
}
NS_IMETHODIMP
SocketEventTask::Run()
{
SocketIOBase* io = SocketTask<SocketIOBase>::GetIO();
MOZ_ASSERT(io->IsConsumerThread());
if (NS_WARN_IF(io->IsShutdownOnConsumerThread())) {
// Since we've already explicitly closed and the close
// happened before this, this isn't really an error.
return NS_OK;
}
SocketBase* socketBase = io->GetSocketBase();
MOZ_ASSERT(socketBase);
if (mEvent == CONNECT_SUCCESS) {
socketBase->NotifySuccess();
} else if (mEvent == CONNECT_ERROR) {
socketBase->NotifyError();
} else if (mEvent == DISCONNECT) {
socketBase->NotifyDisconnect();
}
return NS_OK;
}
//
// SocketRequestClosingTask
//
SocketRequestClosingTask::SocketRequestClosingTask(SocketIOBase* aIO)
: SocketTask<SocketIOBase>(aIO)
{
MOZ_COUNT_CTOR(SocketRequestClosingTask);
}
SocketRequestClosingTask::~SocketRequestClosingTask()
{
MOZ_COUNT_DTOR(SocketRequestClosingTask);
}
NS_IMETHODIMP
SocketRequestClosingTask::Run()
{
SocketIOBase* io = SocketTask<SocketIOBase>::GetIO();
MOZ_ASSERT(io->IsConsumerThread());
if (NS_WARN_IF(io->IsShutdownOnConsumerThread())) {
// Since we've already explicitly closed and the close
// happened before this, this isn't really an error.
return NS_OK;
}
SocketBase* socketBase = io->GetSocketBase();
MOZ_ASSERT(socketBase);
socketBase->Close();
return NS_OK;
}
//
// SocketDeleteInstanceTask
//
SocketDeleteInstanceTask::SocketDeleteInstanceTask(SocketIOBase* aIO)
: mIO(aIO)
{
MOZ_COUNT_CTOR(SocketDeleteInstanceTask);
}
SocketDeleteInstanceTask::~SocketDeleteInstanceTask()
{
MOZ_COUNT_DTOR(SocketDeleteInstanceTask);
}
NS_IMETHODIMP
SocketDeleteInstanceTask::Run()
{
mIO.reset(); // delete instance
return NS_OK;
}
//
// SocketIOShutdownTask
//
SocketIOShutdownTask::SocketIOShutdownTask(SocketIOBase* aIO)
: SocketIOTask<SocketIOBase>(aIO)
{
MOZ_COUNT_CTOR(SocketIOShutdownTask);
}
SocketIOShutdownTask::~SocketIOShutdownTask()
{
MOZ_COUNT_DTOR(SocketIOShutdownTask);
}
NS_IMETHODIMP
SocketIOShutdownTask::Run()
{
SocketIOBase* io = SocketIOTask<SocketIOBase>::GetIO();
MOZ_ASSERT(!io->IsConsumerThread());
MOZ_ASSERT(!io->IsShutdownOnIOThread());
// At this point, there should be no new events on the I/O thread
// after this one with the possible exception of an accept task,
// which ShutdownOnIOThread will cancel for us. We are now fully
// shut down, so we can send a message to the consumer thread to
// delete |io| safely knowing that it's not reference any longer.
io->ShutdownOnIOThread();
io->GetConsumerThread()->PostTask(
MakeAndAddRef<SocketDeleteInstanceTask>(io));
return NS_OK;
}
}
}