gecko-dev/layout/generic/nsFlexContainerFrame.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

5224 строки
224 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: flex" */
#include "nsFlexContainerFrame.h"
#include "nsContentUtils.h"
#include "nsCSSAnonBoxes.h"
#include "nsDisplayList.h"
#include "nsIFrameInlines.h"
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/CSSOrderAwareFrameIterator.h"
#include "mozilla/Logging.h"
#include <algorithm>
#include "gfxContext.h"
#include "mozilla/LinkedList.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/UniquePtr.h"
#include "WritingModes.h"
using namespace mozilla;
using namespace mozilla::layout;
// Convenience typedefs for helper classes that we forward-declare in .h file
// (so that nsFlexContainerFrame methods can use them as parameters):
typedef nsFlexContainerFrame::FlexItem FlexItem;
typedef nsFlexContainerFrame::FlexLine FlexLine;
typedef nsFlexContainerFrame::FlexboxAxisTracker FlexboxAxisTracker;
typedef nsFlexContainerFrame::StrutInfo StrutInfo;
typedef nsFlexContainerFrame::CachedMeasuringReflowResult
CachedMeasuringReflowResult;
typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType;
static mozilla::LazyLogModule gFlexContainerLog("nsFlexContainerFrame");
// XXXdholbert Some of this helper-stuff should be separated out into a general
// "main/cross-axis utils" header, shared by grid & flexbox?
// (Particularly when grid gets support for align-*/justify-* properties.)
// Helper enums
// ============
// Represents a physical orientation for an axis.
// The directional suffix indicates the direction in which the axis *grows*.
// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT
// means a vertical bottom-to-top axis.
// NOTE: The order here is important -- these values are used as indices into
// the static array 'kAxisOrientationToSidesMap', defined below.
enum AxisOrientationType {
eAxis_LR,
eAxis_RL,
eAxis_TB,
eAxis_BT,
eNumAxisOrientationTypes // For sizing arrays that use these values as
// indices
};
// Represents one or the other extreme of an axis (e.g. for the main axis, the
// main-start vs. main-end edge.
// NOTE: The order here is important -- these values are used as indices into
// the sub-arrays in 'kAxisOrientationToSidesMap', defined below.
enum AxisEdgeType {
eAxisEdge_Start,
eAxisEdge_End,
eNumAxisEdges // For sizing arrays that use these values as indices
};
// This array maps each axis orientation to a pair of corresponding
// [start, end] physical mozilla::Side values.
static const mozilla::Side
kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = {
{eSideLeft, eSideRight}, // eAxis_LR
{eSideRight, eSideLeft}, // eAxis_RL
{eSideTop, eSideBottom}, // eAxis_TB
{eSideBottom, eSideTop} // eAxis_BT
};
// Helper structs / classes / methods
// ==================================
// Returns true iff the given nsStyleDisplay has display:-webkit-{inline-}box
// or display:-moz-{inline-}box.
static inline bool IsDisplayValueLegacyBox(const nsStyleDisplay* aStyleDisp) {
return aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitInlineBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::MozBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::MozInlineBox;
}
// Returns true if aFlexContainer is a frame for some element that has
// display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is
// expected to be an instance of nsFlexContainerFrame (enforced with an assert);
// otherwise, this function's state-bit-check here is bogus.
static bool IsLegacyBox(const nsIFrame* aFlexContainer) {
MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(),
"only flex containers may be passed to this function");
return aFlexContainer->HasAnyStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_BOX);
}
// Returns the OrderingProperty enum that we should pass to
// CSSOrderAwareFrameIterator (depending on whether it's a legacy box).
static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter(
const nsFlexContainerFrame* aFlexContainer) {
return IsLegacyBox(aFlexContainer)
? CSSOrderAwareFrameIterator::OrderingProperty::eUseBoxOrdinalGroup
: CSSOrderAwareFrameIterator::OrderingProperty::eUseOrder;
}
// Returns the "align-items" value that's equivalent to the legacy "box-align"
// value in the given style struct.
static uint8_t ConvertLegacyStyleToAlignItems(const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-align corresponds to modern "align-items"
switch (aStyleXUL->mBoxAlign) {
case StyleBoxAlign::Stretch:
return NS_STYLE_ALIGN_STRETCH;
case StyleBoxAlign::Start:
return NS_STYLE_ALIGN_FLEX_START;
case StyleBoxAlign::Center:
return NS_STYLE_ALIGN_CENTER;
case StyleBoxAlign::Baseline:
return NS_STYLE_ALIGN_BASELINE;
case StyleBoxAlign::End:
return NS_STYLE_ALIGN_FLEX_END;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
// Fall back to default value of "align-items" property:
return NS_STYLE_ALIGN_STRETCH;
}
// Returns the "justify-content" value that's equivalent to the legacy
// "box-pack" value in the given style struct.
static uint8_t ConvertLegacyStyleToJustifyContent(const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-pack corresponds to modern "justify-content"
switch (aStyleXUL->mBoxPack) {
case StyleBoxPack::Start:
return NS_STYLE_ALIGN_FLEX_START;
case StyleBoxPack::Center:
return NS_STYLE_ALIGN_CENTER;
case StyleBoxPack::End:
return NS_STYLE_ALIGN_FLEX_END;
case StyleBoxPack::Justify:
return NS_STYLE_ALIGN_SPACE_BETWEEN;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
// Fall back to default value of "justify-content" property:
return NS_STYLE_ALIGN_FLEX_START;
}
// Helper-function to find the first non-anonymous-box descendent of aFrame.
static nsIFrame* GetFirstNonAnonBoxDescendant(nsIFrame* aFrame) {
while (aFrame) {
nsAtom* pseudoTag = aFrame->Style()->GetPseudo();
// If aFrame isn't an anonymous container, then it'll do.
if (!pseudoTag || // No pseudotag.
!nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon.
nsCSSAnonBoxes::IsNonElement(pseudoTag)) { // Text, not a container.
break;
}
// Otherwise, descend to its first child and repeat.
// SPECIAL CASE: if we're dealing with an anonymous table, then it might
// be wrapping something non-anonymous in its caption or col-group lists
// (instead of its principal child list), so we have to look there.
// (Note: For anonymous tables that have a non-anon cell *and* a non-anon
// column, we'll always return the column. This is fine; we're really just
// looking for a handle to *anything* with a meaningful content node inside
// the table, for use in DOM comparisons to things outside of the table.)
if (MOZ_UNLIKELY(aFrame->IsTableWrapperFrame())) {
nsIFrame* captionDescendant = GetFirstNonAnonBoxDescendant(
aFrame->GetChildList(kCaptionList).FirstChild());
if (captionDescendant) {
return captionDescendant;
}
} else if (MOZ_UNLIKELY(aFrame->IsTableFrame())) {
nsIFrame* colgroupDescendant = GetFirstNonAnonBoxDescendant(
aFrame->GetChildList(kColGroupList).FirstChild());
if (colgroupDescendant) {
return colgroupDescendant;
}
}
// USUAL CASE: Descend to the first child in principal list.
aFrame = aFrame->PrincipalChildList().FirstChild();
}
return aFrame;
}
// Indicates whether advancing along the given axis is equivalent to
// increasing our X or Y position (as opposed to decreasing it).
static inline bool AxisGrowsInPositiveDirection(AxisOrientationType aAxis) {
return eAxis_LR == aAxis || eAxis_TB == aAxis;
}
// Given an AxisOrientationType, returns the "reverse" AxisOrientationType
// (in the same dimension, but the opposite direction)
static inline AxisOrientationType GetReverseAxis(AxisOrientationType aAxis) {
AxisOrientationType reversedAxis;
if (aAxis % 2 == 0) {
// even enum value. Add 1 to reverse.
reversedAxis = AxisOrientationType(aAxis + 1);
} else {
// odd enum value. Subtract 1 to reverse.
reversedAxis = AxisOrientationType(aAxis - 1);
}
// Check that we're still in the enum's valid range
MOZ_ASSERT(reversedAxis >= eAxis_LR && reversedAxis <= eAxis_BT);
return reversedAxis;
}
/**
* Converts a "flex-relative" coordinate in a single axis (a main- or cross-axis
* coordinate) into a coordinate in the corresponding physical (x or y) axis. If
* the flex-relative axis in question already maps *directly* to a physical
* axis (i.e. if it's LTR or TTB), then the physical coordinate has the same
* numeric value as the provided flex-relative coordinate. Otherwise, we have to
* subtract the flex-relative coordinate from the flex container's size in that
* axis, to flip the polarity. (So e.g. a main-axis position of 2px in a RTL
* 20px-wide container would correspond to a physical coordinate (x-value) of
* 18px.)
*/
static nscoord PhysicalCoordFromFlexRelativeCoord(nscoord aFlexRelativeCoord,
nscoord aContainerSize,
AxisOrientationType aAxis) {
if (AxisGrowsInPositiveDirection(aAxis)) {
return aFlexRelativeCoord;
}
return aContainerSize - aFlexRelativeCoord;
}
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
// Add two nscoord values, using CheckedInt to handle integer overflow.
// This function returns the sum of its two args -- but if we trigger integer
// overflow while adding them, then this function returns nscoord_MAX instead.
static nscoord AddChecked(nscoord aFirst, nscoord aSecond) {
CheckedInt<nscoord> checkedResult = CheckedInt<nscoord>(aFirst) + aSecond;
return checkedResult.isValid() ? checkedResult.value() : nscoord_MAX;
}
// Check if the size is auto or it is a keyword in the block axis.
// |aIsInline| should represent whether aSize is in the inline axis, from the
// perspective of the writing mode of the flex item that the size comes from.
//
// max-content and min-content should behave as property's initial value.
// Bug 567039: We treat -moz-fit-content and -moz-available as property's
// initial value for now.
static inline bool IsAutoOrEnumOnBSize(const nsStyleCoord& aSize,
bool aIsInline) {
return aSize.GetUnit() == eStyleUnit_Auto ||
(!aIsInline && aSize.GetUnit() == eStyleUnit_Enumerated);
}
// Helper-macros to let us pick one of two expressions to evaluate
// (an inline-axis expression vs. a block-axis expression), to get a
// main-axis or cross-axis component.
// For code that has e.g. a LogicalSize object, the methods
// FlexboxAxisTracker::GetMainComponent and GetCrossComponent are cleaner
// than these macros. But in cases where we simply have two separate
// expressions for ISize and BSize (which may be expensive to evaluate),
// these macros can be used to ensure that only the needed expression is
// evaluated.
#define GET_MAIN_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \
(axisTracker_).IsRowOriented() \
? (isize_) \
: (bsize_)
#define GET_CROSS_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \
(axisTracker_).IsRowOriented() \
? (bsize_) \
: (isize_)
// Flags to customize behavior of the FlexboxAxisTracker constructor:
enum AxisTrackerFlags {
eNoFlags = 0x0,
// Normally, FlexboxAxisTracker may attempt to reverse axes & iteration order
// to avoid bottom-to-top child ordering, for saner pagination. This flag
// suppresses that behavior (so that we allow bottom-to-top child ordering).
// (This may be helpful e.g. when we're only dealing with a single child.)
eAllowBottomToTopChildOrdering = 0x1
};
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(AxisTrackerFlags)
// Encapsulates our flex container's main & cross axes.
class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
public:
FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer,
const WritingMode& aWM,
AxisTrackerFlags aFlags = eNoFlags);
// Accessors:
// XXXdholbert [BEGIN DEPRECATED]
// These should not be used in layout, but they are useful for devtools API
// which reports physical axis direction.
AxisOrientationType GetMainAxis() const { return mMainAxis; }
AxisOrientationType GetCrossAxis() const { return mCrossAxis; }
// XXXdholbert [END DEPRECATED]
// Returns the flex container's writing mode.
WritingMode GetWritingMode() const { return mWM; }
// Returns true if our main axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-direction: *-reverse')
bool IsMainAxisReversed() const { return mIsMainAxisReversed; }
// Returns true if our cross axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
bool IsCrossAxisReversed() const { return mIsCrossAxisReversed; }
bool IsRowOriented() const { return mIsRowOriented; }
bool IsColumnOriented() const { return !mIsRowOriented; }
// aSize is expected to match the flex container's WritingMode.
nscoord GetMainComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM);
}
int32_t GetMainComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height;
}
// aSize is expected to match the flex container's WritingMode.
nscoord GetCrossComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM);
}
int32_t GetCrossComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width;
}
// NOTE: aMargin is expected to use the flex container's WritingMode.
nscoord GetMarginSizeInMainAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our main axis is the inline axis.
return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM);
}
nscoord GetMarginSizeInCrossAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our cross axis is the block axis.
return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM);
}
/**
* Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
* into a LogicalPoint, using the flex container's writing mode.
*
* @arg aMainCoord The main-axis coordinate -- i.e an offset from the
* main-start edge of the flex container's content box.
* @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
* cross-start edge of the flex container's content box.
* @arg aContainerMainSize The main size of flex container's content box.
* @arg aContainerCrossSize The cross size of flex container's content box.
* @return A LogicalPoint, with the flex container's writing mode, that
* represents the same position. The logical coordinates are
* relative to the flex container's content box.
*/
LogicalPoint LogicalPointFromFlexRelativePoint(
nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize,
nscoord aContainerCrossSize) const {
nscoord logicalCoordInMainAxis =
mIsMainAxisReversed ? aContainerMainSize - aMainCoord : aMainCoord;
nscoord logicalCoordInCrossAxis =
mIsCrossAxisReversed ? aContainerCrossSize - aCrossCoord : aCrossCoord;
return mIsRowOriented ? LogicalPoint(mWM, logicalCoordInMainAxis,
logicalCoordInCrossAxis)
: LogicalPoint(mWM, logicalCoordInCrossAxis,
logicalCoordInMainAxis);
}
/**
* Converts a "flex-relative" size (a main-axis & cross-axis size)
* into a LogicalSize, using the flex container's writing mode.
*
* @arg aMainSize The main-axis size.
* @arg aCrossSize The cross-axis size.
* @return A LogicalSize, with the flex container's writing mode, that
* represents the same size.
*/
LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
nscoord aCrossSize) const {
return mIsRowOriented ? LogicalSize(mWM, aMainSize, aCrossSize)
: LogicalSize(mWM, aCrossSize, aMainSize);
}
// Are my axes reversed with respect to what the author asked for?
// (We may reverse the axes in the FlexboxAxisTracker constructor and set
// this flag, to avoid reflowing our children in bottom-to-top order.)
bool AreAxesInternallyReversed() const { return mAreAxesInternallyReversed; }
private:
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
// Private because callers shouldn't need to care about physical axes
// (but we do internally, to provide one API).
bool IsMainAxisHorizontal() const {
// If we're row-oriented, and our writing mode is NOT vertical,
// or we're column-oriented and our writing mode IS vertical,
// then our main axis is horizontal. This handles all cases:
return mIsRowOriented != mWM.IsVertical();
}
// Helpers for constructor which determine the orientation of our axes, based
// on legacy box properties (-webkit-box-orient, -webkit-box-direction) or
// modern flexbox properties (flex-direction, flex-wrap) depending on whether
// the flex container is a "legacy box" (as determined by IsLegacyBox).
void InitAxesFromLegacyProps(const nsFlexContainerFrame* aFlexContainer);
void InitAxesFromModernProps(const nsFlexContainerFrame* aFlexContainer);
// XXXdholbert [BEGIN DEPRECATED]
AxisOrientationType mMainAxis;
AxisOrientationType mCrossAxis;
// XXXdholbert [END DEPRECATED]
const WritingMode mWM; // The flex container's writing mode.
bool mIsRowOriented; // Is our main axis the inline axis?
// (Are we 'flex-direction:row[-reverse]'?)
bool mIsMainAxisReversed; // Is our main axis in the opposite direction
// as mWM's corresponding axis? (e.g. RTL vs LTR)
bool mIsCrossAxisReversed; // Is our cross axis in the opposite direction
// as mWM's corresponding axis? (e.g. BTT vs TTB)
// Implementation detail -- this indicates whether we've decided to
// transparently reverse our axes & our child ordering, to avoid having
// frames flow from bottom to top in either axis (& to make pagination saner).
bool mAreAxesInternallyReversed;
};
/**
* Represents a flex item.
* Includes the various pieces of input that the Flexbox Layout Algorithm uses
* to resolve a flexible width.
*/
class nsFlexContainerFrame::FlexItem : public LinkedListElement<FlexItem> {
public:
// Normal constructor:
FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aMainBaseSize, nscoord aMainMinSize,
nscoord aMainMaxSize, nscoord aTentativeCrossSize,
nscoord aCrossMinSize, nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker);
// Simplified constructor, to be used only for generating "struts":
// (NOTE: This "strut" constructor uses the *container's* writing mode, which
// we'll use on this FlexItem instead of the child frame's real writing mode.
// This is fine - it doesn't matter what writing mode we use for a
// strut, since it won't render any content and we already know its size.)
FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM);
// Accessors
nsIFrame* Frame() const { return mFrame; }
nscoord GetFlexBaseSize() const { return mFlexBaseSize; }
nscoord GetMainMinSize() const {
MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
"Someone's using an unresolved 'auto' main min-size");
return mMainMinSize;
}
nscoord GetMainMaxSize() const { return mMainMaxSize; }
// Note: These return the main-axis position and size of our *content box*.
nscoord GetMainSize() const { return mMainSize; }
nscoord GetMainPosition() const { return mMainPosn; }
nscoord GetCrossMinSize() const { return mCrossMinSize; }
nscoord GetCrossMaxSize() const { return mCrossMaxSize; }
// Note: These return the cross-axis position and size of our *content box*.
nscoord GetCrossSize() const { return mCrossSize; }
nscoord GetCrossPosition() const { return mCrossPosn; }
nscoord ResolvedAscent(bool aUseFirstBaseline) const {
if (mAscent == ReflowOutput::ASK_FOR_BASELINE) {
// XXXdholbert We should probably be using the *container's* writing-mode
// here, instead of the item's -- though it doesn't much matter right
// now, because all of the baseline-handling code here essentially
// assumes that the container & items have the same writing-mode. This
// will matter more (& can be expanded/tested) once we officially support
// logical directions & vertical writing-modes in flexbox, in bug 1079155
// or a dependency.
// Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate,
// or just GetLogicalBaseline() if that fails.
bool found =
aUseFirstBaseline
? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &mAscent)
: nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &mAscent);
if (!found) {
mAscent = mFrame->SynthesizeBaselineBOffsetFromBorderBox(
mWM, BaselineSharingGroup::eFirst);
}
}
return mAscent;
}
// Convenience methods to compute the main & cross size of our *margin-box*.
// The caller is responsible for telling us the right axis, so that we can
// pull out the appropriate components of our margin/border/padding structs.
nscoord GetOuterMainSize(AxisOrientationType aMainAxis) const {
return mMainSize + GetMarginBorderPaddingSizeInAxis(aMainAxis);
}
nscoord GetOuterCrossSize(AxisOrientationType aCrossAxis) const {
return mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis);
}
// Returns the distance between this FlexItem's baseline and the cross-start
// edge of its margin-box. Used in baseline alignment.
// (This function needs to be told which edge we're measuring the baseline
// from, so that it can look up the appropriate components from mMargin.)
nscoord GetBaselineOffsetFromOuterCrossEdge(
AxisEdgeType aEdge, const FlexboxAxisTracker& aAxisTracker,
bool aUseFirstLineBaseline) const;
float GetShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
bool IsFrozen() const { return mIsFrozen; }
bool HadMinViolation() const {
MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items.");
return mHadMinViolation;
}
bool HadMaxViolation() const {
MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items.");
return mHadMaxViolation;
}
bool WasMinClamped() const {
MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items.");
return mHadMinViolation;
}
bool WasMaxClamped() const {
MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items.");
return mHadMaxViolation;
}
// Indicates whether this item received a preliminary "measuring" reflow
// before its actual reflow.
bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
// Indicates whether this item's computed cross-size property is 'auto'.
bool IsCrossSizeAuto() const;
// Indicates whether this item's cross-size has been stretched (from having
// "align-self: stretch" with an auto cross-size and no auto margins in the
// cross axis).
bool IsStretched() const { return mIsStretched; }
// Indicates whether we need to resolve an 'auto' value for the main-axis
// min-[width|height] property.
bool NeedsMinSizeAutoResolution() const {
return mNeedsMinSizeAutoResolution;
}
bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; }
// Indicates whether this item is a "strut" left behind by an element with
// visibility:collapse.
bool IsStrut() const { return mIsStrut; }
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
// IsInlineAxisMainAxis() returns true if this item's inline axis is parallel
// (or antiparallel) to the container's main axis. Otherwise (i.e. if this
// item's inline axis is orthogonal to the container's main axis), this
// function returns false. The next 3 methods are all other ways of asking
// the same question, and only exist for readability at callsites (depending
// on which axes those callsites are reasoning about).
bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; }
bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; }
WritingMode GetWritingMode() const { return mWM; }
uint8_t GetAlignSelf() const { return mAlignSelf; }
uint8_t GetAlignSelfFlags() const { return mAlignSelfFlags; }
// Returns the flex factor (flex-grow or flex-shrink), depending on
// 'aIsUsingFlexGrow'.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetFlexFactor(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
}
// Returns the weight that we should use in the "resolving flexible lengths"
// algorithm. If we're using the flex grow factor, we just return that;
// otherwise, we return the "scaled flex shrink factor" (scaled by our flex
// base size, so that when both large and small items are shrinking, the large
// items shrink more).
//
// I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
// factor", to more clearly distinguish it from the actual flex-grow &
// flex-shrink factors.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetWeight(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
if (aIsUsingFlexGrow) {
return mFlexGrow;
}
// We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
if (mFlexBaseSize == 0) {
// Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
// regardless of mFlexShrink, we should just return 0.
// (This is really a special-case for when mFlexShrink is infinity, to
// avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
return 0.0f;
}
return mFlexShrink * mFlexBaseSize;
}
// Returns a LogicalSize representing the flex item's logical intrinsic ratio
// (ISize:BSize), as expressed in the *flex container's* writing mode.
const LogicalSize& IntrinsicRatio() const { return mIntrinsicRatio; }
bool HasIntrinsicRatio() const { return !mIntrinsicRatio.IsAllZero(); }
// Getters for margin:
// ===================
const nsMargin& GetMargin() const { return mMargin; }
// Returns the margin component for a given mozilla::Side
nscoord GetMarginComponentForSide(mozilla::Side aSide) const {
return mMargin.Side(aSide);
}
// Returns the total space occupied by this item's margins in the given axis
nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const {
mozilla::Side startSide =
kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
return GetMarginComponentForSide(startSide) +
GetMarginComponentForSide(endSide);
}
// Getters for border/padding
// ==========================
const nsMargin& GetBorderPadding() const { return mBorderPadding; }
// Returns the border+padding component for a given mozilla::Side
nscoord GetBorderPaddingComponentForSide(mozilla::Side aSide) const {
return mBorderPadding.Side(aSide);
}
// Returns the total space occupied by this item's borders and padding in
// the given axis
nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const {
mozilla::Side startSide =
kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
return GetBorderPaddingComponentForSide(startSide) +
GetBorderPaddingComponentForSide(endSide);
}
// Getter for combined margin/border/padding
// =========================================
// Returns the total space occupied by this item's margins, borders and
// padding in the given axis
nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const {
return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis);
}
// Setters
// =======
// Helper to set the resolved value of min-[width|height]:auto for the main
// axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
void UpdateMainMinSize(nscoord aNewMinSize) {
NS_ASSERTION(aNewMinSize >= 0,
"How did we end up with a negative min-size?");
MOZ_ASSERT(mMainMaxSize >= aNewMinSize,
"Should only use this function for resolving min-size:auto, "
"and main max-size should be an upper-bound for resolved val");
MOZ_ASSERT(
mNeedsMinSizeAutoResolution &&
(mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
"Should only use this function for resolving min-size:auto, "
"so we shouldn't already have a nonzero min-size established "
"(unless it's a themed-widget-imposed minimum size)");
if (aNewMinSize > mMainMinSize) {
mMainMinSize = aNewMinSize;
// Also clamp main-size to be >= new min-size:
mMainSize = std::max(mMainSize, aNewMinSize);
}
mNeedsMinSizeAutoResolution = false;
}
// This sets our flex base size, and then sets our main size to the
// resulting "hypothetical main size" (the base size clamped to our
// main-axis [min,max] sizing constraints).
void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) {
MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE,
"flex base size shouldn't change after we're frozen "
"(unless we're just resolving an intrinsic size)");
mFlexBaseSize = aNewFlexBaseSize;
// Before we've resolved flexible lengths, we keep mMainSize set to
// the 'hypothetical main size', which is the flex base size, clamped
// to the [min,max] range:
mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
}
// Setters used while we're resolving flexible lengths
// ---------------------------------------------------
// Sets the main-size of our flex item's content-box.
void SetMainSize(nscoord aNewMainSize) {
MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
mMainSize = aNewMainSize;
}
void SetShareOfWeightSoFar(float aNewShare) {
MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f,
"shouldn't be giving this item any share of the weight "
"after it's frozen");
mShareOfWeightSoFar = aNewShare;
}
void Freeze() {
mIsFrozen = true;
// Now that we are frozen, the meaning of mHadMinViolation and
// mHadMaxViolation changes to indicate min and max clamping. Clear
// both of the member variables so that they are ready to be set
// as clamping state later, if necessary.
mHadMinViolation = false;
mHadMaxViolation = false;
}
void SetHadMinViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMinViolation = true;
}
void SetHadMaxViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMaxViolation = true;
}
void ClearViolationFlags() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be altering violation flags after we're "
"frozen");
mHadMinViolation = mHadMaxViolation = false;
}
void SetWasMinClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMinViolation member variable to track clamping
// events. This is allowable because mHadMinViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMinViolation = true;
}
void SetWasMaxClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMaxViolation member variable to track clamping
// events. This is allowable because mHadMaxViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMaxViolation = true;
}
// Setters for values that are determined after we've resolved our main size
// -------------------------------------------------------------------------
// Sets the main-axis position of our flex item's content-box.
// (This is the distance between the main-start edge of the flex container
// and the main-start edge of the flex item's content-box.)
void SetMainPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMainPosn = aPosn;
}
// Sets the cross-size of our flex item's content-box.
void SetCrossSize(nscoord aCrossSize) {
MOZ_ASSERT(!mIsStretched,
"Cross size shouldn't be modified after it's been stretched");
mCrossSize = aCrossSize;
}
// Sets the cross-axis position of our flex item's content-box.
// (This is the distance between the cross-start edge of the flex container
// and the cross-start edge of the flex item.)
void SetCrossPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mCrossPosn = aPosn;
}
// After a FlexItem has had a reflow, this method can be used to cache its
// (possibly-unresolved) ascent, in case it's needed later for
// baseline-alignment or to establish the container's baseline.
// (NOTE: This can be marked 'const' even though it's modifying mAscent,
// because mAscent is mutable. It's nice for this to be 'const', because it
// means our final reflow can iterate over const FlexItem pointers, and we
// can be sure it's not modifying those FlexItems, except via this method.)
void SetAscent(nscoord aAscent) const {
mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE
}
void SetHadMeasuringReflow() { mHadMeasuringReflow = true; }
void SetIsStretched() {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mIsStretched = true;
}
// Setter for margin components (for resolving "auto" margins)
void SetMarginComponentForSide(mozilla::Side aSide, nscoord aLength) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMargin.Side(aSide) = aLength;
}
void ResolveStretchedCrossSize(nscoord aLineCrossSize,
const FlexboxAxisTracker& aAxisTracker);
uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const;
// Once the main size has been resolved, should we bother doing layout to
// establish the cross size?
bool CanMainSizeInfluenceCrossSize(
const FlexboxAxisTracker& aAxisTracker) const;
protected:
// Helper called by the constructor, to set mNeedsMinSizeAutoResolution:
void CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker);
// Values that we already know in constructor (and are hence mostly 'const'):
nsIFrame* const mFrame; // The flex item's frame.
const float mFlexGrow;
const float mFlexShrink;
const LogicalSize mIntrinsicRatio;
const nsMargin mBorderPadding;
nsMargin mMargin; // non-const because we need to resolve auto margins
// These are non-const so that we can lazily update them with the item's
// intrinsic size (obtained via a "measuring" reflow), when necessary.
// (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
nscoord mFlexBaseSize;
nscoord mMainMinSize;
nscoord mMainMaxSize;
const nscoord mCrossMinSize;
const nscoord mCrossMaxSize;
// Values that we compute after constructor:
nscoord mMainSize;
nscoord mMainPosn;
nscoord mCrossSize;
nscoord mCrossPosn;
mutable nscoord mAscent; // Mutable b/c it's set & resolved lazily, sometimes
// via const pointer. See comment above SetAscent().
// Temporary state, while we're resolving flexible widths (for our main size)
// XXXdholbert To save space, we could use a union to make these variables
// overlay the same memory as some other member vars that aren't touched
// until after main-size has been resolved. In particular, these could share
// memory with mMainPosn through mAscent, and mIsStretched.
float mShareOfWeightSoFar;
const WritingMode mWM; // The flex item's writing mode.
bool mIsFrozen;
bool mHadMinViolation;
bool mHadMaxViolation;
// Misc:
bool mHadMeasuringReflow; // Did this item get a preliminary reflow,
// to measure its desired height?
bool mIsStretched; // See IsStretched() documentation
bool mIsStrut; // Is this item a "strut" left behind by an element
// with visibility:collapse?
const bool mIsInlineAxisMainAxis; // See IsInlineAxisMainAxis() documentation
// Does this item need to resolve a min-[width|height]:auto (in main-axis).
bool mNeedsMinSizeAutoResolution;
// Does this item have an auto margin in either main or cross axis?
bool mHasAnyAutoMargin;
uint8_t mAlignSelf; // My "align-self" computed value (with "auto"
// swapped out for parent"s "align-items" value,
// in our constructor).
uint8_t mAlignSelfFlags; // Flags for 'align-self' (safe/unsafe/legacy)
};
/**
* Represents a single flex line in a flex container.
* Manages a linked list of the FlexItems that are in the line.
*/
class nsFlexContainerFrame::FlexLine : public LinkedListElement<FlexLine> {
public:
explicit FlexLine(nscoord aMainGapSize)
: mNumItems(0),
mNumFrozenItems(0),
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
mTotalItemMBP(0),
mTotalOuterHypotheticalMainSize(0),
mLineCrossSize(0),
mFirstBaselineOffset(nscoord_MIN),
mLastBaselineOffset(nscoord_MIN),
mMainGapSize(aMainGapSize) {}
nscoord GetSumOfGaps() const {
return mNumItems > 0 ? (mNumItems - 1) * mMainGapSize : 0;
}
// Returns the sum of our FlexItems' outer hypothetical main sizes plus the
// sum of main axis {row,column}-gaps between items.
// ("outer" = margin-box, and "hypothetical" = before flexing)
nscoord GetTotalOuterHypotheticalMainSize() const {
return mTotalOuterHypotheticalMainSize;
}
// Accessors for our FlexItems & information about them:
FlexItem* GetFirstItem() {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getFirst();
}
const FlexItem* GetFirstItem() const {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getFirst();
}
FlexItem* GetLastItem() {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getLast();
}
const FlexItem* GetLastItem() const {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.getLast();
}
bool IsEmpty() const {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mItems.isEmpty();
}
uint32_t NumItems() const {
MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0),
"mNumItems bookkeeping is off");
return mNumItems;
}
// Adds the given FlexItem to our list of items (at the front or back
// depending on aShouldInsertAtFront), and adds its hypothetical
// outer & inner main sizes to our totals. Use this method instead of
// directly modifying the item list, so that our bookkeeping remains correct.
void AddItem(FlexItem* aItem, bool aShouldInsertAtFront,
nscoord aItemInnerHypotheticalMainSize,
nscoord aItemOuterHypotheticalMainSize) {
if (aShouldInsertAtFront) {
mItems.insertFront(aItem);
} else {
mItems.insertBack(aItem);
}
// Update our various bookkeeping member-vars:
mNumItems++;
if (aItem->IsFrozen()) {
mNumFrozenItems++;
}
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
nscoord itemMBP =
aItemOuterHypotheticalMainSize - aItemInnerHypotheticalMainSize;
// Note: If our flex item is (or contains) a table with
// "table-layout:fixed", it may have a value near nscoord_MAX as its
// hypothetical main size. This means we can run into absurdly large sizes
// here, even when the author didn't explicitly specify anything huge.
// We'd really rather not allow that to cause integer overflow (e.g. we
// don't want that to make mTotalOuterHypotheticalMainSize overflow to a
// negative value), because that'd make us incorrectly think that we should
// grow our flex items rather than shrink them when it comes time to
// resolve flexible items. Hence, we sum up the hypothetical sizes using a
// helper function AddChecked() to avoid overflow.
mTotalItemMBP = AddChecked(mTotalItemMBP, itemMBP);
mTotalOuterHypotheticalMainSize = AddChecked(
mTotalOuterHypotheticalMainSize, aItemOuterHypotheticalMainSize);
// If the item added was not the first item in the line, we add in any gap
// space as needed.
if (mNumItems >= 2) {
mTotalOuterHypotheticalMainSize =
AddChecked(mTotalOuterHypotheticalMainSize, mMainGapSize);
}
}
// Computes the cross-size and baseline position of this FlexLine, based on
// its FlexItems.
void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
// Returns the cross-size of this line.
nscoord GetLineCrossSize() const { return mLineCrossSize; }
// Setter for line cross-size -- needed for cases where the flex container
// imposes a cross-size on the line. (e.g. for single-line flexbox, or for
// multi-line flexbox with 'align-content: stretch')
void SetLineCrossSize(nscoord aLineCrossSize) {
mLineCrossSize = aLineCrossSize;
}
/**
* Returns the offset within this line where any baseline-aligned FlexItems
* should place their baseline. Usually, this represents a distance from the
* line's cross-start edge, but if we're internally reversing the axes (see
* AreAxesInternallyReversed()), this instead represents the distance from
* its cross-end edge.
*
* If there are no baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord GetFirstBaselineOffset() const { return mFirstBaselineOffset; }
/**
* Returns the offset within this line where any last baseline-aligned
* FlexItems should place their baseline. Opposite the case of the first
* baseline offset, this represents a distance from the line's cross-end
* edge (since last baseline-aligned items are flush to the cross-end edge).
* If we're internally reversing the axes, this instead represents the
* distance from the line's cross-start edge.
*
* If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord GetLastBaselineOffset() const { return mLastBaselineOffset; }
/**
* Returns the number of items held in this line. Used for total gap
* calculations.
*/
uint32_t GetNumItems() const { return mNumItems; }
/**
* Returns the gap size in the main axis for this line. Used for gap
* calculations.
*/
nscoord GetMainGapSize() const { return mMainGapSize; }
inline void SetMainGapSize(nscoord aNewSize) { mMainGapSize = aNewSize; }
// Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
// CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
void ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo);
void PositionItemsInMainAxis(uint8_t aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker);
void PositionItemsInCrossAxis(nscoord aLineStartPosition,
const FlexboxAxisTracker& aAxisTracker);
private:
// Helpers for ResolveFlexibleLengths():
void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo);
void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration);
AutoCleanLinkedList<FlexItem> mItems; // Linked list of this line's items.
uint32_t mNumItems; // Number of FlexItems in this line (in |mItems|).
// (Shouldn't change after GenerateFlexLines finishes
// with this line -- at least, not until we add support
// for splitting lines across continuations. Then we can
// update this count carefully.)
// Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
// Mostly used for optimization purposes, e.g. to bail out early from loops
// when we can tell they have nothing left to do.
uint32_t mNumFrozenItems;
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
// Sum of margin/border/padding for the FlexItems in this FlexLine.
nscoord mTotalItemMBP;
// Sum of FlexItems' outer hypothetical main sizes and all main-axis
// {row,columnm}-gaps between items.
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
// (i.e. their flex base sizes, clamped via their min/max-size properties,
// plus their main-axis margin/border/padding, plus the sum of the gaps.)
nscoord mTotalOuterHypotheticalMainSize;
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
nscoord mLineCrossSize;
nscoord mFirstBaselineOffset;
nscoord mLastBaselineOffset;
// Maintain size of each {row,column}-gap in the main axis
nscoord mMainGapSize;
};
// Information about a strut left behind by a FlexItem that's been collapsed
// using "visibility:collapse".
struct nsFlexContainerFrame::StrutInfo {
StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
: mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {}
uint32_t mItemIdx; // Index in the child list.
nscoord mStrutCrossSize; // The cross-size of this strut.
};
static void BuildStrutInfoFromCollapsedItems(const FlexLine* aFirstLine,
nsTArray<StrutInfo>& aStruts) {
MOZ_ASSERT(aFirstLine, "null first line pointer");
MOZ_ASSERT(aStruts.IsEmpty(),
"We should only build up StrutInfo once per reflow, so "
"aStruts should be empty when this is called");
uint32_t itemIdxInContainer = 0;
for (const FlexLine* line = aFirstLine; line; line = line->getNext()) {
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext()) {
if (NS_STYLE_VISIBILITY_COLLAPSE ==
item->Frame()->StyleVisibility()->mVisible) {
// Note the cross size of the line as the item's strut size.
aStruts.AppendElement(
StrutInfo(itemIdxInContainer, line->GetLineCrossSize()));
}
itemIdxInContainer++;
}
}
}
static uint8_t SimplifyAlignOrJustifyContentForOneItem(uint16_t aAlignmentVal,
bool aIsAlign) {
// Mask away any explicit fallback, to get the main (non-fallback) part of
// the specified value:
uint16_t specified = aAlignmentVal & NS_STYLE_ALIGN_ALL_BITS;
// XXX strip off <overflow-position> bits until we implement it (bug 1311892)
specified &= ~NS_STYLE_ALIGN_FLAG_BITS;
// FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
// which requires that we ignore any author-provided explicit fallback value.
if (specified == NS_STYLE_ALIGN_NORMAL) {
// In a flex container, *-content: "'normal' behaves as 'stretch'".
// Do that conversion early, so it benefits from our 'stretch' special-case.
// https://drafts.csswg.org/css-align-3/#distribution-flex
specified = NS_STYLE_ALIGN_STRETCH;
}
if (!aIsAlign && specified == NS_STYLE_ALIGN_STRETCH) {
// In a flex container, in "justify-content Axis: [...] 'stretch' behaves
// as 'flex-start' (ignoring the specified fallback alignment, if any)."
// https://drafts.csswg.org/css-align-3/#distribution-flex
// So, we just directly return 'flex-start', & ignore explicit fallback..
return NS_STYLE_ALIGN_FLEX_START;
}
// Now check for an explicit fallback value (and if it's present, use it).
uint16_t explicitFallback = aAlignmentVal >> NS_STYLE_ALIGN_ALL_SHIFT;
if (explicitFallback) {
// XXX strip off <overflow-position> bits until we implement it
// (bug 1311892)
explicitFallback &= ~NS_STYLE_ALIGN_FLAG_BITS;
return explicitFallback;
}
// There's no explicit fallback. Use the implied fallback values for
// space-{between,around,evenly} (since those values only make sense with
// multiple alignment subjects), and otherwise just use the specified value:
switch (specified) {
case NS_STYLE_ALIGN_SPACE_BETWEEN:
return NS_STYLE_ALIGN_START;
case NS_STYLE_ALIGN_SPACE_AROUND:
case NS_STYLE_ALIGN_SPACE_EVENLY:
return NS_STYLE_ALIGN_CENTER;
default:
return specified;
}
}
uint16_t nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
WritingMode wm = GetWritingMode();
const FlexboxAxisTracker axisTracker(
this, wm, AxisTrackerFlags::eAllowBottomToTopChildOrdering);
// If we're row-oriented and the caller is asking about our inline axis (or
// alternately, if we're column-oriented and the caller is asking about our
// block axis), then the caller is really asking about our *main* axis.
// Otherwise, the caller is asking about our cross axis.
const bool isMainAxis =
(axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline));
const nsStylePosition* containerStylePos = StylePosition();
const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
: axisTracker.IsCrossAxisReversed();
uint8_t alignment;
uint8_t alignmentFlags = 0;
if (isMainAxis) {
alignment = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mJustifyContent,
/*aIsAlign = */ false);
} else {
const uint8_t alignContent = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mAlignContent,
/*aIsAlign = */ true);
if (NS_STYLE_FLEX_WRAP_NOWRAP != containerStylePos->mFlexWrap &&
alignContent != NS_STYLE_ALIGN_STRETCH) {
// Multi-line, align-content isn't stretch --> align-content determines
// this child's alignment in the cross axis.
alignment = alignContent;
} else {
// Single-line, or multi-line but the (one) line stretches to fill
// container. Respect align-self.
alignment = aChildRI.mStylePosition->UsedAlignSelf(Style());
// Extract and strip align flag bits
alignmentFlags = alignment & NS_STYLE_ALIGN_FLAG_BITS;
alignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
if (alignment == NS_STYLE_ALIGN_NORMAL) {
// "the 'normal' keyword behaves as 'start' on replaced
// absolutely-positioned boxes, and behaves as 'stretch' on all other
// absolutely-positioned boxes."
// https://drafts.csswg.org/css-align/#align-abspos
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced)
? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_STRETCH;
}
}
}
// Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
if (alignment == NS_STYLE_ALIGN_FLEX_START) {
alignment = isAxisReversed ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START;
} else if (alignment == NS_STYLE_ALIGN_FLEX_END) {
alignment = isAxisReversed ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
} else if (alignment == NS_STYLE_ALIGN_LEFT ||
alignment == NS_STYLE_ALIGN_RIGHT) {
if (aLogicalAxis == eLogicalAxisInline) {
const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT);
alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
} else {
alignment = NS_STYLE_ALIGN_START;
}
} else if (alignment == NS_STYLE_ALIGN_BASELINE) {
alignment = NS_STYLE_ALIGN_START;
} else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) {
alignment = NS_STYLE_ALIGN_END;
}
return (alignment | alignmentFlags);
}
UniquePtr<FlexItem> nsFlexContainerFrame::GenerateFlexItemForChild(
nsPresContext* aPresContext, nsIFrame* aChildFrame,
const ReflowInput& aParentReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
// Create temporary reflow state just for sizing -- to get hypothetical
// main-size and the computed values of min / max main-size property.
// (This reflow state will _not_ be used for reflow.)
ReflowInput childRI(
aPresContext, aParentReflowInput, aChildFrame,
aParentReflowInput.ComputedSize(aChildFrame->GetWritingMode()));
// FLEX GROW & SHRINK WEIGHTS
// --------------------------
float flexGrow, flexShrink;
if (IsLegacyBox(this)) {
flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
} else {
const nsStylePosition* stylePos = aChildFrame->StylePosition();
flexGrow = stylePos->mFlexGrow;
flexShrink = stylePos->mFlexShrink;
}
WritingMode childWM = childRI.GetWritingMode();
// MAIN SIZES (flex base size, min/max size)
// -----------------------------------------
nscoord flexBaseSize = GET_MAIN_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedISize(), childRI.ComputedBSize());
nscoord mainMinSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord mainMaxSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// This is enforced by the ReflowInput where these values come from:
MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
// CROSS SIZES (tentative cross size, min/max cross size)
// ------------------------------------------------------
// Grab the cross size from the reflow state. This might be the right value,
// or we might resolve it to something else in SizeItemInCrossAxis(); hence,
// it's tentative. See comment under "Cross Size Determination" for more.
nscoord tentativeCrossSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedISize(), childRI.ComputedBSize());
nscoord crossMinSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord crossMaxSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// SPECIAL-CASE FOR WIDGET-IMPOSED SIZES
// Check if we're a themed widget, in which case we might have a minimum
// main & cross size imposed by our widget (which we can't go below), or
// (more severe) our widget might have only a single valid size.
bool isFixedSizeWidget = false;
const nsStyleDisplay* disp = aChildFrame->StyleDisplay();
if (aChildFrame->IsThemed(disp)) {
LayoutDeviceIntSize widgetMinSize;
bool canOverride = true;
aPresContext->GetTheme()->GetMinimumWidgetSize(
aPresContext, aChildFrame, disp->mAppearance, &widgetMinSize,
&canOverride);
nscoord widgetMainMinSize = aPresContext->DevPixelsToAppUnits(
aAxisTracker.GetMainComponent(widgetMinSize));
nscoord widgetCrossMinSize = aPresContext->DevPixelsToAppUnits(
aAxisTracker.GetCrossComponent(widgetMinSize));
// GetMinimumWidgetSize() returns border-box. We need content-box, so
// subtract borderPadding.
const LogicalMargin bpInChildWM = childRI.ComputedLogicalBorderPadding();
const LogicalMargin bpInFlexWM =
bpInChildWM.ConvertTo(aAxisTracker.GetWritingMode(), childWM);
widgetMainMinSize -= aAxisTracker.GetMarginSizeInMainAxis(bpInFlexWM);
widgetCrossMinSize -= aAxisTracker.GetMarginSizeInCrossAxis(bpInFlexWM);
// ... (but don't let that push these min sizes below 0).
widgetMainMinSize = std::max(0, widgetMainMinSize);
widgetCrossMinSize = std::max(0, widgetCrossMinSize);
if (!canOverride) {
// Fixed-size widget: freeze our main-size at the widget's mandated size.
// (Set min and max main-sizes to that size, too, to keep us from
// clamping to any other size later on.)
flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize;
tentativeCrossSize = crossMinSize = crossMaxSize = widgetCrossMinSize;
isFixedSizeWidget = true;
} else {
// Variable-size widget: ensure our min/max sizes are at least as large
// as the widget's mandated minimum size, so we don't flex below that.
mainMinSize = std::max(mainMinSize, widgetMainMinSize);
mainMaxSize = std::max(mainMaxSize, widgetMainMinSize);
if (tentativeCrossSize != NS_INTRINSICSIZE) {
tentativeCrossSize = std::max(tentativeCrossSize, widgetCrossMinSize);
}
crossMinSize = std::max(crossMinSize, widgetCrossMinSize);
crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize);
}
}
// Construct the flex item!
auto item = MakeUnique<FlexItem>(childRI, flexGrow, flexShrink, flexBaseSize,
mainMinSize, mainMaxSize, tentativeCrossSize,
crossMinSize, crossMaxSize, aAxisTracker);
// If we're inflexible, we can just freeze to our hypothetical main-size
// up-front. Similarly, if we're a fixed-size widget, we only have one
// valid size, so we freeze to keep ourselves from flexing.
if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) {
item->Freeze();
if (flexBaseSize < mainMinSize) {
item->SetWasMinClamped();
} else if (flexBaseSize > mainMaxSize) {
item->SetWasMaxClamped();
}
}
// Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
// require us to reflow the item to measure content height)
ResolveAutoFlexBasisAndMinSize(aPresContext, *item, childRI, aAxisTracker);
return item;
}
// Static helper-functions for ResolveAutoFlexBasisAndMinSize():
// -------------------------------------------------------------
// Indicates whether the cross-size property is set to something definite,
// for the purpose of intrinsic ratio calculations.
// The logic here should be similar to the logic for isAutoISize/isAutoBSize
// in nsFrame::ComputeSizeWithIntrinsicDimensions().
static bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
const nsStylePosition* pos = aItemReflowInput.mStylePosition;
const WritingMode containerWM = aAxisTracker.GetWritingMode();
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented means cross axis is container's inline axis.
return pos->ISize(containerWM).GetUnit() != eStyleUnit_Auto;
}
// Else, we're row-oriented, which means cross axis is container's block
// axis. We need to use IsAutoBSize() to catch e.g. %-BSize applied to
// indefinite container BSize, which counts as auto.
nscoord cbBSize = aItemReflowInput.mCBReflowInput->ComputedBSize();
return !nsLayoutUtils::IsAutoBSize(pos->BSize(containerWM), cbBSize);
}
// If aFlexItem has a definite cross size, this function returns it, for usage
// (in combination with an intrinsic ratio) for resolving the item's main size
// or main min-size.
//
// The parameter "aMinSizeFallback" indicates whether we should fall back to
// returning the cross min-size, when the cross size is indefinite. (This param
// should be set IFF the caller intends to resolve the main min-size.) If this
// param is true, then this function is guaranteed to return a definite value
// (i.e. not NS_AUTOHEIGHT, excluding cases where huge sizes are involved).
//
// XXXdholbert the min-size behavior here is based on my understanding in
// http://lists.w3.org/Archives/Public/www-style/2014Jul/0053.html
// If my understanding there ends up being wrong, we'll need to update this.
static nscoord CrossSizeToUseWithRatio(const FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
bool aMinSizeFallback,
const FlexboxAxisTracker& aAxisTracker) {
if (aFlexItem.IsStretched()) {
// Definite cross-size, imposed via 'align-self:stretch' & flex container.
return aFlexItem.GetCrossSize();
}
if (IsCrossSizeDefinite(aItemReflowInput, aAxisTracker)) {
// Definite cross size.
return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedISize(),
aItemReflowInput.ComputedBSize());
}
if (aMinSizeFallback) {
// Indefinite cross-size, and we're resolving main min-size, so we'll fall
// back to ussing the cross min-size (which should be definite).
return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedMinISize(),
aItemReflowInput.ComputedMinBSize());
}
// Indefinite cross-size.
return NS_AUTOHEIGHT;
}
// Convenience function; returns a main-size, given a cross-size and an
// intrinsic ratio. The caller is responsible for ensuring that the passed-in
// intrinsic ratio must not have 0 in its cross-axis component (or else we'll
// divide by 0).
static nscoord MainSizeFromAspectRatio(nscoord aCrossSize,
const LogicalSize& aIntrinsicRatio,
const FlexboxAxisTracker& aAxisTracker) {
MOZ_ASSERT(aAxisTracker.GetCrossComponent(aIntrinsicRatio) != 0,
"Invalid ratio; will divide by 0! Caller should've checked...");
return NSCoordMulDiv(aCrossSize,
aAxisTracker.GetMainComponent(aIntrinsicRatio),
aAxisTracker.GetCrossComponent(aIntrinsicRatio));
}
// Partially resolves "min-[width|height]:auto" and returns the resulting value.
// By "partially", I mean we don't consider the min-content size (but we do
// consider flex-basis, main max-size, and the intrinsic aspect ratio).
// The caller is responsible for computing & considering the min-content size
// in combination with the partially-resolved value that this function returns.
//
// Spec reference: http://dev.w3.org/csswg/css-flexbox/#min-size-auto
static nscoord PartiallyResolveAutoMinSize(
const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
"only call for FlexItems that need min-size auto resolution");
nscoord minMainSize = nscoord_MAX; // Intentionally huge; we'll shrink it
// from here, w/ std::min().
// We need the smallest of:
// * the used flex-basis, if the computed flex-basis was 'auto':
// XXXdholbert ('auto' might be renamed to 'main-size'; see bug 1032922)
if (eStyleUnit_Auto ==
aItemReflowInput.mStylePosition->mFlexBasis.GetUnit() &&
aFlexItem.GetFlexBaseSize() != NS_AUTOHEIGHT) {
// NOTE: We skip this if the flex base size depends on content & isn't yet
// resolved. This is OK, because the caller is responsible for computing
// the min-content height and min()'ing it with the value we return, which
// is equivalent to what would happen if we min()'d that at this point.
minMainSize = std::min(minMainSize, aFlexItem.GetFlexBaseSize());
}
// * the computed max-width (max-height), if that value is definite:
nscoord maxSize = GET_MAIN_COMPONENT_LOGICAL(
aAxisTracker, aFlexItem.GetWritingMode(),
aItemReflowInput.ComputedMaxISize(), aItemReflowInput.ComputedMaxBSize());
if (maxSize != NS_UNCONSTRAINEDSIZE) {
minMainSize = std::min(minMainSize, maxSize);
}
// * if the item has no intrinsic aspect ratio, its min-content size:
// --- SKIPPING THIS IN THIS FUNCTION --- caller's responsibility.
// * if the item has an intrinsic aspect ratio, the width (height) calculated
// from the aspect ratio and any definite size constraints in the opposite
// dimension.
if (aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) != 0) {
// We have a usable aspect ratio. (not going to divide by 0)
const bool useMinSizeIfCrossSizeIsIndefinite = true;
nscoord crossSizeToUseWithRatio = CrossSizeToUseWithRatio(
aFlexItem, aItemReflowInput, useMinSizeIfCrossSizeIsIndefinite,
aAxisTracker);
nscoord minMainSizeFromRatio = MainSizeFromAspectRatio(
crossSizeToUseWithRatio, aFlexItem.IntrinsicRatio(), aAxisTracker);
minMainSize = std::min(minMainSize, minMainSizeFromRatio);
}
return minMainSize;
}
// Resolves flex-basis:auto, using the given intrinsic ratio and the flex
// item's cross size. On success, updates the flex item with its resolved
// flex-basis and returns true. On failure (e.g. if the ratio is invalid or
// the cross-size is indefinite), returns false.
static bool ResolveAutoFlexBasisFromRatio(
FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
MOZ_ASSERT(NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize(),
"Should only be called to resolve an 'auto' flex-basis");
// If the flex item has ...
// - an intrinsic aspect ratio,
// - a [used] flex-basis of 'main-size' [auto?] [We have this, if we're
// here.]
// - a definite cross size
// then the flex base size is calculated from its inner cross size and the
// flex items intrinsic aspect ratio.
if (aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) != 0) {
// We have a usable aspect ratio. (not going to divide by 0)
const bool useMinSizeIfCrossSizeIsIndefinite = false;
nscoord crossSizeToUseWithRatio = CrossSizeToUseWithRatio(
aFlexItem, aItemReflowInput, useMinSizeIfCrossSizeIsIndefinite,
aAxisTracker);
if (crossSizeToUseWithRatio != NS_AUTOHEIGHT) {
// We have a definite cross-size
nscoord mainSizeFromRatio = MainSizeFromAspectRatio(
crossSizeToUseWithRatio, aFlexItem.IntrinsicRatio(), aAxisTracker);
aFlexItem.SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
return true;
}
}
return false;
}
// Note: If & when we handle "min-height: min-content" for flex items,
// we may want to resolve that in this function, too.
void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize(
nsPresContext* aPresContext, FlexItem& aFlexItem,
const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
// (Note: We can guarantee that the flex-basis will have already been
// resolved if the main axis is the same is the same as the item's inline
// axis. Inline-axis values should always be resolvable without reflow.)
const bool isMainSizeAuto = (!aFlexItem.IsInlineAxisMainAxis() &&
NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize());
const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
if (!isMainSizeAuto && !isMainMinSizeAuto) {
// Nothing to do; this function is only needed for flex items
// with a used flex-basis of "auto" or a min-main-size of "auto".
return;
}
// We may be about to do computations based on our item's cross-size
// (e.g. using it as a contstraint when measuring our content in the
// main axis, or using it with the intrinsic ratio to obtain a main size).
// BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size (if
// it's got 'align-self:stretch'), for a certain case where the spec says
// the stretched cross size is considered "definite". That case is if we
// have a single-line (nowrap) flex container which itself has a definite
// cross-size. Otherwise, we'll wait to do stretching, since (in other
// cases) we don't know how much the item should stretch yet.
const ReflowInput* flexContainerRI = aItemReflowInput.mParentReflowInput;
MOZ_ASSERT(flexContainerRI,
"flex item's reflow state should have ptr to container's state");
if (NS_STYLE_FLEX_WRAP_NOWRAP == flexContainerRI->mStylePosition->mFlexWrap) {
// XXXdholbert Maybe this should share logic with ComputeCrossSize()...
// Alternately, maybe tentative container cross size should be passed down.
nscoord containerCrossSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, aAxisTracker.GetWritingMode(),
flexContainerRI->ComputedISize(), flexContainerRI->ComputedBSize());
// Is container's cross size "definite"?
// - If it's column-oriented, then "yes", because its cross size is its
// inline-size which is always definite from its descendants' perspective.
// - Otherwise (if it's row-oriented), then we check the actual size
// and call it definite if it's not NS_AUTOHEIGHT.
if (aAxisTracker.IsColumnOriented() ||
containerCrossSize != NS_AUTOHEIGHT) {
// Container's cross size is "definite", so we can resolve the item's
// stretched cross size using that.
aFlexItem.ResolveStretchedCrossSize(containerCrossSize, aAxisTracker);
}
}
nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true)
bool minSizeNeedsToMeasureContent = false; // assume the best
if (isMainMinSizeAuto) {
// Resolve the min-size, except for considering the min-content size.
// (We'll consider that later, if we need to.)
resolvedMinSize =
PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker);
if (resolvedMinSize > 0 &&
aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) == 0) {
// We don't have a usable aspect ratio, so we need to consider our
// min-content size as another candidate min-size, which we'll have to
// min() with the current resolvedMinSize.
// (If resolvedMinSize were already at 0, we could skip this measurement
// because it can't go any lower. But it's not 0, so we need it.)
minSizeNeedsToMeasureContent = true;
}
}
bool flexBasisNeedsToMeasureContent = false; // assume the best
if (isMainSizeAuto) {
if (!ResolveAutoFlexBasisFromRatio(aFlexItem, aItemReflowInput,
aAxisTracker)) {
flexBasisNeedsToMeasureContent = true;
}
}
// Measure content, if needed (w/ intrinsic-width method or a reflow)
if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
if (aFlexItem.IsInlineAxisMainAxis()) {
if (minSizeNeedsToMeasureContent) {
nscoord frameMinISize =
aFlexItem.Frame()->GetMinISize(aItemReflowInput.mRenderingContext);
resolvedMinSize = std::min(resolvedMinSize, frameMinISize);
}
NS_ASSERTION(!flexBasisNeedsToMeasureContent,
"flex-basis:auto should have been resolved in the "
"reflow state, for horizontal flexbox. It shouldn't need "
"special handling here");
} else {
// If this item is flexible (in its block axis)...
// OR if we're measuring its 'auto' min-BSize, with its main-size (in its
// block axis) being something non-"auto"...
// THEN: we assume that the computed BSize that we're reflowing with now
// could be different from the one we'll use for this flex item's
// "actual" reflow later on. In that case, we need to be sure the flex
// item treats this as a block-axis resize (regardless of whether there
// are actually any ancestors being resized in that axis).
// (Note: We don't have to do this for the inline axis, because
// InitResizeFlags will always turn on mIsIResize on when it sees that
// the computed ISize is different from current ISize, and that's all we
// need.)
bool forceBResizeForMeasuringReflow =
!aFlexItem.IsFrozen() || // Is the item flexible?
!flexBasisNeedsToMeasureContent; // Are we *only* measuring it for
// 'min-block-size:auto'?
nscoord contentBSize = MeasureFlexItemContentBSize(
aPresContext, aFlexItem, forceBResizeForMeasuringReflow,
*flexContainerRI);
if (minSizeNeedsToMeasureContent) {
resolvedMinSize = std::min(resolvedMinSize, contentBSize);
}
if (flexBasisNeedsToMeasureContent) {
aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
}
}
}
if (isMainMinSizeAuto) {
aFlexItem.UpdateMainMinSize(resolvedMinSize);
}
}
/**
* A cached result for a measuring reflow. This cache prevents us from doing
* exponential reflows in cases of deeply nested flex and scroll frames.
*
* We store the cached value in the flex item's frame property table, for
* simplicity.
*
* Right now, we cache the following as a "key", from the item's ReflowInput:
* - its ComputedSize
* - its min/max block size (in case its ComputedBSize is unconstrained)
* - its AvailableBSize
* ...and we cache the following as the "value", from the item's ReflowOutput:
* - its final BSize
* - its ascent
*
* The assumption here is that a given flex item measurement from our "value"
* won't change unless one of the pieces of the "key" change, or the flex
* item's intrinsic size is marked as dirty (due to a style or DOM change).
* (The latter will cause the cached value to be discarded, in
* nsFrame::MarkIntrinsicISizesDirty.)
*
* Note that the components of "Key" (mComputed{MinB,MaxB,}Size and
* mAvailableBSize) are sufficient to catch any changes to the flex container's
* size that the item may care about for its measuring reflow. Specifically:
* - If the item cares about the container's size (e.g. if it has a percent
* height and the container's height changes, in a horizontal-WM container)
* then that'll be detectable via the item's ReflowInput's "ComputedSize()"
* differing from the value in our Key. And the same applies for the
* inline axis.
* - If the item is fragmentable (pending bug 939897) and its measured BSize
* depends on where it gets fragmented, then that sort of change can be
* detected due to the item's ReflowInput's "AvailableBSize()" differing
* from the value in our Key.
*
* One particular case to consider (& need to be sure not to break when
* changing this class): the flex item's computed BSize may change between
* measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects
* size computation (see bug 1336708). This is one reason we need to use the
* computed BSize as part of the key.
*/
class nsFlexContainerFrame::CachedMeasuringReflowResult {
struct Key {
const LogicalSize mComputedSize;
const nscoord mComputedMinBSize;
const nscoord mComputedMaxBSize;
const nscoord mAvailableBSize;
explicit Key(const ReflowInput& aRI)
: mComputedSize(aRI.ComputedSize()),
mComputedMinBSize(aRI.ComputedMinBSize()),
mComputedMaxBSize(aRI.ComputedMaxBSize()),
mAvailableBSize(aRI.AvailableBSize()) {}
bool operator==(const Key& aOther) const {
return mComputedSize == aOther.mComputedSize &&
mComputedMinBSize == aOther.mComputedMinBSize &&
mComputedMaxBSize == aOther.mComputedMaxBSize &&
mAvailableBSize == aOther.mAvailableBSize;
}
};
const Key mKey;
const nscoord mBSize;
const nscoord mAscent;
public:
CachedMeasuringReflowResult(const ReflowInput& aReflowInput,
const ReflowOutput& aDesiredSize)
: mKey(aReflowInput),
mBSize(aDesiredSize.BSize(aReflowInput.GetWritingMode())),
mAscent(aDesiredSize.BlockStartAscent()) {}
/**
* Returns true if this cached flex item measurement is valid for (i.e. can
* be expected to match the output of) a measuring reflow whose input
* parameters are given via aReflowInput.
*/
bool IsValidFor(const ReflowInput& aReflowInput) const {
return mKey == Key(aReflowInput);
}
nscoord BSize() const { return mBSize; }
nscoord Ascent() const { return mAscent; }
};
NS_DECLARE_FRAME_PROPERTY_DELETABLE(CachedFlexMeasuringReflow,
CachedMeasuringReflowResult);
void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(
nsIFrame* aItemFrame) {
aItemFrame->DeleteProperty(CachedFlexMeasuringReflow());
}
const CachedMeasuringReflowResult&
nsFlexContainerFrame::MeasureAscentAndBSizeForFlexItem(
FlexItem& aItem, nsPresContext* aPresContext,
ReflowInput& aChildReflowInput) {
if (const auto* cachedResult =
aItem.Frame()->GetProperty(CachedFlexMeasuringReflow())) {
if (cachedResult->IsValidFor(aChildReflowInput)) {
return *cachedResult;
}
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
("[perf] MeasureAscentAndBSizeForFlexItem rejected "
"cached value\n"));
} else {
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
("[perf] MeasureAscentAndBSizeForFlexItem didn't have a "
"cached value\n"));
}
ReflowOutput childDesiredSize(aChildReflowInput);
nsReflowStatus childReflowStatus;
const uint32_t flags = NS_FRAME_NO_MOVE_FRAME;
ReflowChild(aItem.Frame(), aPresContext, childDesiredSize, aChildReflowInput,
0, 0, flags, childReflowStatus);
aItem.SetHadMeasuringReflow();
// XXXdholbert Once we do pagination / splitting, we'll need to actually
// handle incomplete childReflowStatuses. But for now, we give our kids
// unconstrained available height, which means they should always complete.
MOZ_ASSERT(childReflowStatus.IsComplete(),
"We gave flex item unconstrained available height, so it "
"should be complete");
// Tell the child we're done with its initial reflow.
// (Necessary for e.g. GetBaseline() to work below w/out asserting)
FinishReflowChild(aItem.Frame(), aPresContext, childDesiredSize,
&aChildReflowInput, 0, 0, flags);
auto result =
new CachedMeasuringReflowResult(aChildReflowInput, childDesiredSize);
aItem.Frame()->SetProperty(CachedFlexMeasuringReflow(), result);
return *result;
}
/* virtual */ void nsFlexContainerFrame::MarkIntrinsicISizesDirty() {
mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN;
mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN;
nsContainerFrame::MarkIntrinsicISizesDirty();
}
nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize(
nsPresContext* aPresContext, FlexItem& aFlexItem,
bool aForceBResizeForMeasuringReflow,
const ReflowInput& aParentReflowInput) {
// Set up a reflow state for measuring the flex item's auto-height:
WritingMode wm = aFlexItem.Frame()->GetWritingMode();
LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childRIForMeasuringBSize(aPresContext, aParentReflowInput,
aFlexItem.Frame(), availSize, nullptr,
ReflowInput::CALLER_WILL_INIT);
childRIForMeasuringBSize.mFlags.mIsFlexContainerMeasuringBSize = true;
childRIForMeasuringBSize.Init(aPresContext);
if (aFlexItem.IsStretched()) {
childRIForMeasuringBSize.SetComputedISize(aFlexItem.GetCrossSize());
childRIForMeasuringBSize.SetIResize(true);
}
if (aForceBResizeForMeasuringReflow) {
childRIForMeasuringBSize.SetBResize(true);
}
const CachedMeasuringReflowResult& reflowResult =
MeasureAscentAndBSizeForFlexItem(aFlexItem, aPresContext,
childRIForMeasuringBSize);
aFlexItem.SetAscent(reflowResult.Ascent());
// Subtract border/padding in block axis, to get _just_
// the effective computed value of the BSize property.
nscoord childDesiredBSize =
reflowResult.BSize() -
childRIForMeasuringBSize.ComputedLogicalBorderPadding().BStartEnd(wm);
return std::max(0, childDesiredBSize);
}
FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aFlexBaseSize,
nscoord aMainMinSize, nscoord aMainMaxSize,
nscoord aTentativeCrossSize, nscoord aCrossMinSize,
nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aFlexItemReflowInput.mFrame),
mFlexGrow(aFlexGrow),
mFlexShrink(aFlexShrink),
// We store the intrinsic ratio in the *flex container's* WM:
mIntrinsicRatio(aAxisTracker.GetWritingMode(),
mFrame->GetIntrinsicRatio()),
mBorderPadding(aFlexItemReflowInput.ComputedPhysicalBorderPadding()),
mMargin(aFlexItemReflowInput.ComputedPhysicalMargin()),
mMainMinSize(aMainMinSize),
mMainMaxSize(aMainMaxSize),
mCrossMinSize(aCrossMinSize),
mCrossMaxSize(aCrossMaxSize),
mMainPosn(0),
mCrossSize(aTentativeCrossSize),
mCrossPosn(0),
mAscent(0),
mShareOfWeightSoFar(0.0f),
mWM(aFlexItemReflowInput.GetWritingMode()),
mIsFrozen(false),
mHadMinViolation(false),
mHadMaxViolation(false),
mHadMeasuringReflow(false),
mIsStretched(false),
mIsStrut(false),
mIsInlineAxisMainAxis(aAxisTracker.IsRowOriented() !=
aAxisTracker.GetWritingMode().IsOrthogonalTo(mWM))
// mNeedsMinSizeAutoResolution is initialized in CheckForMinSizeAuto()
// mAlignSelf, mHasAnyAutoMargin see below
{
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
MOZ_ASSERT(mIsInlineAxisMainAxis ==
nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
"public API should be consistent with internal state (about "
"whether flex item's inline axis is flex container's main axis)");
const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
if (IsLegacyBox(containerRS->mFrame)) {
// For -webkit-{inline-}box and -moz-{inline-}box, we need to:
// (1) Use prefixed "box-align" instead of "align-items" to determine the
// container's cross-axis alignment behavior.
// (2) Suppress the ability for flex items to override that with their own
// cross-axis alignment. (The legacy box model doesn't support this.)
// So, each FlexItem simply copies the container's converted "align-items"
// value and disregards their own "align-self" property.
const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
mAlignSelf = ConvertLegacyStyleToAlignItems(containerStyleXUL);
} else {
mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
containerRS->mFrame->Style());
if (MOZ_LIKELY(mAlignSelf == NS_STYLE_ALIGN_NORMAL)) {
mAlignSelf = NS_STYLE_ALIGN_STRETCH;
}
// Store and strip off the <overflow-position> bits
mAlignSelfFlags = mAlignSelf & NS_STYLE_ALIGN_FLAG_BITS;
mAlignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;
}
SetFlexBaseSizeAndMainSize(aFlexBaseSize);
CheckForMinSizeAuto(aFlexItemReflowInput, aAxisTracker);
const nsStyleSides& styleMargin = aFlexItemReflowInput.mStyleMargin->mMargin;
mHasAnyAutoMargin =
styleMargin.HasInlineAxisAuto(mWM) || styleMargin.HasBlockAxisAuto(mWM);
// Assert that any "auto" margin components are set to 0.
// (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
{
NS_FOR_CSS_SIDES(side) {
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
"Someone else tried to resolve our auto margin");
}
}
}
#endif // DEBUG
// Map align-self 'baseline' value to 'start' when baseline alignment
// is not possible because the FlexItem's block axis is orthogonal to
// the cross axis of the container. If that's the case, we just directly
// convert our align-self value here, so that we don't have to handle this
// with special cases elsewhere.
// We are treating this case as one where it is appropriate to use the
// fallback values defined at https://www.w3.org/TR/css-align/#baseline-values
if (!IsBlockAxisCrossAxis()) {
if (mAlignSelf == NS_STYLE_ALIGN_BASELINE) {
mAlignSelf = NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignSelf == NS_STYLE_ALIGN_LAST_BASELINE) {
mAlignSelf = NS_STYLE_ALIGN_FLEX_END;
}
}
}
// Simplified constructor for creating a special "strut" FlexItem, for a child
// with visibility:collapse. The strut has 0 main-size, and it only exists to
// impose a minimum cross size on whichever FlexLine it ends up in.
FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
WritingMode aContainerWM)
: mFrame(aChildFrame),
mFlexGrow(0.0f),
mFlexShrink(0.0f),
mIntrinsicRatio(aContainerWM),
// mBorderPadding uses default constructor,
// mMargin uses default constructor,
mFlexBaseSize(0),
mMainMinSize(0),
mMainMaxSize(0),
mCrossMinSize(0),
mCrossMaxSize(0),
mMainSize(0),
mMainPosn(0),
mCrossSize(aCrossSize),
mCrossPosn(0),
mAscent(0),
mShareOfWeightSoFar(0.0f),
// Struts don't do layout, so its WM doesn't matter at this point. So, we
// just share container's WM for simplicity:
mWM(aContainerWM),
mIsFrozen(true),
mHadMinViolation(false),
mHadMaxViolation(false),
mHadMeasuringReflow(false),
mIsStretched(false),
mIsStrut(true), // (this is the constructor for making struts, after all)
mIsInlineAxisMainAxis(
true), // (doesn't matter b/c we're not doing layout)
mNeedsMinSizeAutoResolution(false),
mHasAnyAutoMargin(false),
mAlignSelf(NS_STYLE_ALIGN_FLEX_START) {
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(
NS_STYLE_VISIBILITY_COLLAPSE == mFrame->StyleVisibility()->mVisible,
"Should only make struts for children with 'visibility:collapse'");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
}
void FlexItem::CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
const nsStylePosition* pos = aFlexItemReflowInput.mStylePosition;
const nsStyleDisplay* disp = aFlexItemReflowInput.mStyleDisplay;
// We'll need special behavior for "min-[width|height]:auto" (whichever is in
// the flex container's main axis) iff:
// (a) its computed value is "auto"
// (b) the "overflow" sub-property in the same axis (the main axis) has a
// computed value of "visible"
const nsStyleCoord& mainMinSize =
aAxisTracker.IsRowOriented()
? pos->MinISize(aAxisTracker.GetWritingMode())
: pos->MinBSize(aAxisTracker.GetWritingMode());
// NOTE: Technically we should be checking the 'overflow' subproperty in the
// main axis. But since we only care whether it's 'visible', we can check
// either subproperty -- because they must be BOTH 'visible' or BOTH
// non-'visible' due to the way the subproperties interact.
mNeedsMinSizeAutoResolution =
IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) &&
disp->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE;
}
nscoord FlexItem::GetBaselineOffsetFromOuterCrossEdge(
AxisEdgeType aEdge, const FlexboxAxisTracker& aAxisTracker,
bool aUseFirstLineBaseline) const {
// NOTE:
// * We only use baselines for aligning in the flex container's cross axis.
// * Baselines are a measurement in the item's block axis.
// ...so we only expect to get here if the item's block axis is parallel (or
// antiparallel) to the container's cross axis. (Otherwise, the FlexItem
// constructor should've resolved mAlignSelf with a fallback value, which
// would prevent this function from being called.)
MOZ_ASSERT(IsBlockAxisCrossAxis(),
"Only expecting to be doing baseline computations when the "
"cross axis is the block axis");
AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis();
mozilla::Side sideToMeasureFrom =
kAxisOrientationToSidesMap[crossAxis][aEdge];
// XXXdholbert The "top"/"bottom" physical-axis dependencies below need to be
// logicalized -- see bug 1384266.
nscoord marginTopToBaseline =
ResolvedAscent(aUseFirstLineBaseline) + mMargin.top;
if (sideToMeasureFrom == eSideTop) {
// Measuring from top (normal case): the distance from the margin-box top
// edge to the baseline is just ascent + margin-top.
return marginTopToBaseline;
}
MOZ_ASSERT(sideToMeasureFrom == eSideBottom,
"We already checked that we're dealing with a vertical axis, and "
"we're not using the top side, so that only leaves the bottom...");
// Measuring from bottom: The distance from the margin-box bottom edge to the
// baseline is just the margin-box cross size (i.e. outer cross size), minus
// the already-computed distance from margin-top to baseline.
return GetOuterCrossSize(crossAxis) - marginTopToBaseline;
}
bool FlexItem::IsCrossSizeAuto() const {
const nsStylePosition* stylePos = mFrame->StylePosition();
// Check whichever component is in the flex container's cross axis.
// (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in
// terms of our own WritingMode, mWM.)
return eStyleUnit_Auto == (IsInlineAxisCrossAxis()
? stylePos->ISize(mWM).GetUnit()
: stylePos->BSize(mWM).GetUnit());
}
uint32_t FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const {
uint32_t numAutoMargins = 0;
const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[aAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
numAutoMargins++;
}
}
// Mostly for clarity:
MOZ_ASSERT(numAutoMargins <= 2,
"We're just looking at one item along one dimension, so we "
"should only have examined 2 margins");
return numAutoMargins;
}
bool FlexItem::CanMainSizeInfluenceCrossSize(
const FlexboxAxisTracker& aAxisTracker) const {
if (mIsStretched) {
// We've already had our cross-size stretched for "align-self:stretch").
// The container is imposing its cross size on us.
return false;
}
if (mIsStrut) {
// Struts (for visibility:collapse items) have a predetermined size;
// no need to measure anything.
return false;
}
if (HasIntrinsicRatio()) {
// For flex items that have an intrinsic ratio (and maintain it, i.e. are
// not stretched, which we already checked above): changes to main-size
// *do* influence the cross size.
return true;
}
if (IsInlineAxisCrossAxis()) {
// If we get here, this function is really asking: "can changes to this
// item's block size have an influence on its inline size"? For blocks and
// tables, the answer is "no".
if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) {
// XXXdholbert (Maybe use an IsFrameOfType query or something more
// general to test this across all frame types? For now, I'm just
// optimizing for block and table, since those are common containers that
// can contain arbitrarily-large subtrees (and that reliably have ISize
// being unaffected by BSize, per CSS2). So optimizing away needless
// relayout is possible & especially valuable for these containers.)
return false;
}
// Other opt-outs can go here, as they're identified as being useful
// (particularly for containers where an extra reflow is expensive). But in
// general, we have to assume that a flexed BSize *could* influence the
// ISize. Some examples where this can definitely happen:
// * Intrinsically-sized multicol with fixed-ISize columns, which adds
// columns (i.e. grows in inline axis) depending on its block size.
// * Intrinsically-sized multi-line column-oriented flex container, which
// adds flex lines (i.e. grows in inline axis) depending on its block size.
}
// Default assumption, if we haven't proven otherwise: the resolved main size
// *can* change the cross size.
return true;
}
// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
class MOZ_STACK_CLASS PositionTracker {
public:
// Accessor for the current value of the position that we're tracking.
inline nscoord GetPosition() const { return mPosition; }
inline AxisOrientationType GetAxis() const { return mAxis; }
// Advances our position across the start edge of the given margin, in the
// axis we're tracking.
void EnterMargin(const nsMargin& aMargin) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];
mPosition += aMargin.Side(side);
}
// Advances our position across the end edge of the given margin, in the axis
// we're tracking.
void ExitMargin(const nsMargin& aMargin) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End];
mPosition += aMargin.Side(side);
}
// Advances our current position from the start side of a child frame's
// border-box to the frame's upper or left edge (depending on our axis).
// (Note that this is a no-op if our axis grows in the same direction as
// the corresponding logical axis.)
void EnterChildFrame(nscoord aChildFrameSize) {
if (mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Advances our current position from a frame's upper or left border-box edge
// (whichever is in the axis we're tracking) to the 'end' side of the frame
// in the axis that we're tracking. (Note that this is a no-op if our axis
// is reversed with respect to the corresponding logical axis.)
void ExitChildFrame(nscoord aChildFrameSize) {
if (!mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
protected:
// Protected constructor, to be sure we're only instantiated via a subclass.
PositionTracker(AxisOrientationType aAxis, bool aIsAxisReversed)
: mPosition(0), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
PositionTracker(const PositionTracker&) = delete;
PositionTracker& operator=(const PositionTracker&) = delete;
// Member data:
nscoord mPosition; // The position we're tracking
// XXXdholbert [BEGIN DEPRECATED]
const AxisOrientationType mAxis; // The axis along which we're moving.
// XXXdholbert [END DEPRECATED]
const bool mIsAxisReversed; // Is the axis along which we're moving reversed
// (e.g. LTR vs RTL) with respect to the
// corresponding axis on the flex container's WM?
};
// Tracks our position in the main axis, when we're laying out flex items.
// The "0" position represents the main-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
public:
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
const FlexLine* aLine, uint8_t aJustifyContent,
nscoord aContentBoxMainSize);
~MainAxisPositionTracker() {
MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
"miscounted the number of packing spaces");
MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
"miscounted the number of auto margins");
}
// Advances past the gap space (if any) between two flex items
void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
// Advances past the packing space (if any) between two flex items
void TraversePackingSpace();
// If aItem has any 'auto' margins in the main axis, this method updates the
// corresponding values in its margin.
void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
private:
nscoord mPackingSpaceRemaining;
uint32_t mNumAutoMarginsInMainAxis;
uint32_t mNumPackingSpacesRemaining;
// XXX this should be uint16_t when we add explicit fallback handling
uint8_t mJustifyContent;
};
// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line).
// The "0" position represents the cross-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
public:
CrossAxisPositionTracker(FlexLine* aFirstLine,
const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize,
bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aCrossGapSize);
// Advances past the gap (if any) between two flex lines
void TraverseGap() { mPosition += mCrossGapSize; }
// Advances past the packing space (if any) between two flex lines
void TraversePackingSpace();
// Advances past the given FlexLine
void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); }
inline void SetCrossGapSize(nscoord aNewSize) { mCrossGapSize = aNewSize; }
private:
// Redeclare the frame-related methods from PositionTracker as private with
// = delete, to be sure (at compile time) that no client code can invoke
// them. (Unlike the other PositionTracker derived classes, this class here
// deals with FlexLines, not with individual FlexItems or frames.)
void EnterMargin(const nsMargin& aMargin) = delete;
void ExitMargin(const nsMargin& aMargin) = delete;
void EnterChildFrame(nscoord aChildFrameSize) = delete;
void ExitChildFrame(nscoord aChildFrameSize) = delete;
nscoord mPackingSpaceRemaining;
uint32_t mNumPackingSpacesRemaining;
// XXX this should be uint16_t when we add explicit fallback handling
uint8_t mAlignContent;
nscoord mCrossGapSize = 0;
};
// Utility class for managing our position along the cross axis, *within* a
// single flex line.
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker
: public PositionTracker {
public:
explicit SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker);
void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem);
void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker);
// Resets our position to the cross-start edge of this line.
inline void ResetPosition() { mPosition = 0; }
};
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
nsContainerFrame* NS_NewFlexContainerFrame(nsIPresShell* aPresShell,
ComputedStyle* aStyle) {
return new (aPresShell) nsFlexContainerFrame(aStyle);
}
//----------------------------------------------------------------------
// nsFlexContainerFrame Method Implementations
// ===========================================
/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame() {}
/* virtual */
void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
const nsStyleDisplay* styleDisp = Style()->StyleDisplay();
// Figure out if we should set a frame state bit to indicate that this frame
// represents a legacy -webkit-{inline-}box or -moz-{inline-}box container.
// First, the trivial case: just check "display" directly.
bool isLegacyBox = IsDisplayValueLegacyBox(styleDisp);
// If this frame is for a scrollable element, then it will actually have
// "display:block", and its *parent frame* will have the real
// flex-flavored display value. So in that case, check the parent frame to
// find out if we're legacy.
if (!isLegacyBox && styleDisp->mDisplay == mozilla::StyleDisplay::Block) {
ComputedStyle* parentComputedStyle = GetParent()->Style();
NS_ASSERTION(
parentComputedStyle &&
(mComputedStyle->GetPseudo() == nsCSSAnonBoxes::buttonContent() ||
mComputedStyle->GetPseudo() == nsCSSAnonBoxes::scrolledContent()),
"The only way a nsFlexContainerFrame can have 'display:block' "
"should be if it's the inner part of a scrollable or button "
"element");
isLegacyBox = IsDisplayValueLegacyBox(parentComputedStyle->StyleDisplay());
}
if (isLegacyBox) {
AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_BOX);
}
}
#ifdef DEBUG_FRAME_DUMP
nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult);
}
#endif
nscoord nsFlexContainerFrame::GetLogicalBaseline(
mozilla::WritingMode aWM) const {
NS_ASSERTION(mBaselineFromLastReflow != NS_INTRINSIC_WIDTH_UNKNOWN,
"baseline has not been set");
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// Return a baseline synthesized from our margin-box.
return nsContainerFrame::GetLogicalBaseline(aWM);
}
return mBaselineFromLastReflow;
}
// Helper for BuildDisplayList, to implement this special-case for flex items
// from the spec:
// Flex items paint exactly the same as block-level elements in the
// normal flow, except that 'z-index' values other than 'auto' create
// a stacking context even if 'position' is 'static'.
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting
static uint32_t GetDisplayFlagsForFlexItem(nsIFrame* aFrame) {
MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items");
const nsStylePosition* pos = aFrame->StylePosition();
if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
}
return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
}
void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
DisplayBorderBackgroundOutline(aBuilder, aLists);
// Our children are all block-level, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds());
typedef CSSOrderAwareFrameIterator::OrderState OrderState;
OrderState orderState =
HasAnyStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
? OrderState::eKnownOrdered
: OrderState::eKnownUnordered;
CSSOrderAwareFrameIterator iter(this, kPrincipalList,
CSSOrderAwareFrameIterator::eIncludeAll,
orderState, OrderingPropertyForIter(this));
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
BuildDisplayListForChild(aBuilder, childFrame, childLists,
GetDisplayFlagsForFlexItem(childFrame));
}
}
void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow,
ComputedFlexLineInfo* aLineInfo) {
// After we've established the type of flexing we're doing (growing vs.
// shrinking), and before we try to flex any items, we freeze items that
// obviously *can't* flex.
//
// Quoting the spec:
// # Freeze, setting its target main size to its hypothetical main size...
// # - any item that has a flex factor of zero
// # - if using the flex grow factor: any item that has a flex base size
// # greater than its hypothetical main size
// # - if using the flex shrink factor: any item that has a flex base size
// # smaller than its hypothetical main size
// http://dev.w3.org/csswg/css-flexbox/#resolve-flexible-lengths-flex-factors
//
// (NOTE: At this point, item->GetMainSize() *is* the item's hypothetical
// main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
// item hasn't had a chance to flex away from that yet.)
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst(); numUnfrozenItemsToBeSeen > 0;
item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
bool shouldFreeze = (0.0f == item->GetFlexFactor(aIsUsingFlexGrow));
if (!shouldFreeze) {
if (aIsUsingFlexGrow) {
if (item->GetFlexBaseSize() > item->GetMainSize()) {
shouldFreeze = true;
}
} else { // using flex-shrink
if (item->GetFlexBaseSize() < item->GetMainSize()) {
shouldFreeze = true;
}
}
}
if (shouldFreeze) {
// Freeze item! (at its hypothetical main size)
item->Freeze();
if (item->GetFlexBaseSize() < item->GetMainSize()) {
item->SetWasMinClamped();
} else if (item->GetFlexBaseSize() > item->GetMainSize()) {
item->SetWasMaxClamped();
}
mNumFrozenItems++;
}
}
}
}
// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration) {
enum FreezeType {
eFreezeEverything,
eFreezeMinViolations,
eFreezeMaxViolations
};
FreezeType freezeType;
if (aTotalViolation == 0) {
freezeType = eFreezeEverything;
} else if (aTotalViolation > 0) {
freezeType = eFreezeMinViolations;
} else { // aTotalViolation < 0
freezeType = eFreezeMaxViolations;
}
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst(); numUnfrozenItemsToBeSeen > 0;
item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
MOZ_ASSERT(!item->HadMinViolation() || !item->HadMaxViolation(),
"Can have either min or max violation, but not both");
bool hadMinViolation = item->HadMinViolation();
bool hadMaxViolation = item->HadMaxViolation();
if (eFreezeEverything == freezeType ||
(eFreezeMinViolations == freezeType && hadMinViolation) ||
(eFreezeMaxViolations == freezeType && hadMaxViolation)) {
MOZ_ASSERT(item->GetMainSize() >= item->GetMainMinSize(),
"Freezing item at a size below its minimum");
MOZ_ASSERT(item->GetMainSize() <= item->GetMainMaxSize(),
"Freezing item at a size above its maximum");
item->Freeze();
if (hadMinViolation) {
item->SetWasMinClamped();
} else if (hadMaxViolation) {
item->SetWasMaxClamped();
}
mNumFrozenItems++;
} else if (MOZ_UNLIKELY(aIsFinalIteration)) {
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ERROR(
"Final iteration still has unfrozen items, this shouldn't"
" happen unless there was nscoord under/overflow.");
item->Freeze();
mNumFrozenItems++;
} // else, we'll reset this item's main size to its flex base size on the
// next iteration of this algorithm.
if (!item->IsFrozen()) {
// Clear this item's violation(s), now that we've dealt with them
item->ClearViolationFlags();
}
}
}
}
void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo) {
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, ("ResolveFlexibleLengths\n"));
// Before we start resolving sizes: if we have an aLineInfo structure to fill
// out, we inform it of each item's base size, and we initialize the "delta"
// for each item to 0. (And if the flex algorithm wants to grow or shrink the
// item, we'll update this delta further down.)
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem* item = mItems.getFirst(); item;
item = item->getNext(), ++itemIndex) {
aLineInfo->mItems[itemIndex].mMainBaseSize = item->GetFlexBaseSize();
aLineInfo->mItems[itemIndex].mMainDeltaSize = 0;
}
}
// Determine whether we're going to be growing or shrinking items.
const bool isUsingFlexGrow =
(mTotalOuterHypotheticalMainSize < aFlexContainerMainSize);
if (aLineInfo) {
aLineInfo->mGrowthState =
isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing
: mozilla::dom::FlexLineGrowthState::Shrinking;
}
// Do an "early freeze" for flex items that obviously can't flex in the
// direction we've chosen:
FreezeItemsEarly(isUsingFlexGrow, aLineInfo);
if ((mNumFrozenItems == mNumItems) && !aLineInfo) {
// All our items are frozen, so we have no flexible lengths to resolve,
// and we aren't being asked to generate computed line info.
return;
}
MOZ_ASSERT(!IsEmpty() || aLineInfo,
"empty lines should take the early-return above");
// Subtract space occupied by our items' margins/borders/padding/gaps, so
// we can just be dealing with the space available for our flex items' content
// boxes.
nscoord spaceAvailableForFlexItemsContentBoxes =
aFlexContainerMainSize - (mTotalItemMBP + GetSumOfGaps());
nscoord origAvailableFreeSpace;
bool isOrigAvailFreeSpaceInitialized = false;
// NOTE: I claim that this chunk of the algorithm (the looping part) needs to
// run the loop at MOST mNumItems times. This claim should hold up
// because we'll freeze at least one item on each loop iteration, and once
// we've run out of items to freeze, there's nothing left to do. However,
// in most cases, we'll break out of this loop long before we hit that many
// iterations.
for (uint32_t iterationCounter = 0; iterationCounter < mNumItems;
iterationCounter++) {
// Set every not-yet-frozen item's used main size to its
// flex base size, and subtract all the used main sizes from our
// total amount of space to determine the 'available free space'
// (positive or negative) to be distributed among our flexible items.
nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
if (!item->IsFrozen()) {
item->SetMainSize(item->GetFlexBaseSize());
}
availableFreeSpace -= item->GetMainSize();
}
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" available free space = %d\n", availableFreeSpace));
// The sign of our free space should agree with the type of flexing
// (grow/shrink) that we're doing (except if we've had integer overflow;
// then, all bets are off). Any disagreement should've made us use the
// other type of flexing, or should've been resolved in FreezeItemsEarly.
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ASSERTION((isUsingFlexGrow && availableFreeSpace >= 0) ||
(!isUsingFlexGrow && availableFreeSpace <= 0),
"availableFreeSpace's sign should match isUsingFlexGrow");
// If we have any free space available, give each flexible item a portion
// of availableFreeSpace.
if (availableFreeSpace != 0) {
// The first time we do this, we initialize origAvailableFreeSpace.
if (!isOrigAvailFreeSpaceInitialized) {
origAvailableFreeSpace = availableFreeSpace;
isOrigAvailFreeSpaceInitialized = true;
}
// STRATEGY: On each item, we compute & store its "share" of the total
// weight that we've seen so far:
// curWeight / weightSum
//
// Then, when we go to actually distribute the space (in the next loop),
// we can simply walk backwards through the elements and give each item
// its "share" multiplied by the remaining available space.
//
// SPECIAL CASE: If the sum of the weights is larger than the
// maximum representable float (overflowing to infinity), then we can't
// sensibly divide out proportional shares anymore. In that case, we
// simply treat the flex item(s) with the largest weights as if
// their weights were infinite (dwarfing all the others), and we
// distribute all of the available space among them.
float weightSum = 0.0f;
float flexFactorSum = 0.0f;
float largestWeight = 0.0f;
uint32_t numItemsWithLargestWeight = 0;
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst(); numUnfrozenItemsToBeSeen > 0;
item = item->getNext()) {
MOZ_ASSERT(item,
"numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
float curWeight = item->GetWeight(isUsingFlexGrow);
float curFlexFactor = item->GetFlexFactor(isUsingFlexGrow);
MOZ_ASSERT(curWeight >= 0.0f, "weights are non-negative");
MOZ_ASSERT(curFlexFactor >= 0.0f, "flex factors are non-negative");
weightSum += curWeight;
flexFactorSum += curFlexFactor;
if (IsFinite(weightSum)) {
if (curWeight == 0.0f) {
item->SetShareOfWeightSoFar(0.0f);
} else {
item->SetShareOfWeightSoFar(curWeight / weightSum);
}
} // else, the sum of weights overflows to infinity, in which
// case we don't bother with "SetShareOfWeightSoFar" since
// we know we won't use it. (instead, we'll just give every
// item with the largest weight an equal share of space.)
// Update our largest-weight tracking vars
if (curWeight > largestWeight) {
largestWeight = curWeight;
numItemsWithLargestWeight = 1;
} else if (curWeight == largestWeight) {
numItemsWithLargestWeight++;
}
}
}
if (weightSum != 0.0f) {
MOZ_ASSERT(flexFactorSum != 0.0f,
"flex factor sum can't be 0, if a weighted sum "
"of its components (weightSum) is nonzero");
if (flexFactorSum < 1.0f) {
// Our unfrozen flex items don't want all of the original free space!
// (Their flex factors add up to something less than 1.)
// Hence, make sure we don't distribute any more than the portion of
// our original free space that these items actually want.
nscoord totalDesiredPortionOfOrigFreeSpace =
NSToCoordRound(origAvailableFreeSpace * flexFactorSum);
// Clamp availableFreeSpace to be no larger than that ^^.
// (using min or max, depending on sign).
// This should not change the sign of availableFreeSpace (except
// possibly by setting it to 0), as enforced by this assertion:
NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == 0 ||
((totalDesiredPortionOfOrigFreeSpace > 0) ==
(availableFreeSpace > 0)),
"When we reduce available free space for flex "
"factors < 1, we shouldn't change the sign of the "
"free space...");
if (availableFreeSpace > 0) {
availableFreeSpace = std::min(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
} else {
availableFreeSpace = std::max(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
}
}
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" Distributing available space:"));
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
// NOTE: It's important that we traverse our items in *reverse* order
// here, for correct width distribution according to the items'
// "ShareOfWeightSoFar" progressively-calculated values.
for (FlexItem* item = mItems.getLast(); numUnfrozenItemsToBeSeen > 0;
item = item->getPrevious()) {
MOZ_ASSERT(item,
"numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
// To avoid rounding issues, we compute the change in size for this
// item, and then subtract it from the remaining available space.
nscoord sizeDelta = 0;
if (IsFinite(weightSum)) {
float myShareOfRemainingSpace = item->GetShareOfWeightSoFar();
MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f &&
myShareOfRemainingSpace <= 1.0f,
"my share should be nonnegative fractional amount");
if (myShareOfRemainingSpace == 1.0f) {
// (We special-case 1.0f to avoid float error from converting
// availableFreeSpace from integer*1.0f --> float --> integer)
sizeDelta = availableFreeSpace;
} else if (myShareOfRemainingSpace > 0.0f) {
sizeDelta = NSToCoordRound(availableFreeSpace *
myShareOfRemainingSpace);
}
} else if (item->GetWeight(isUsingFlexGrow) == largestWeight) {
// Total flexibility is infinite, so we're just distributing
// the available space equally among the items that are tied for
// having the largest weight (and this is one of those items).
sizeDelta = NSToCoordRound(availableFreeSpace /
float(numItemsWithLargestWeight));
numItemsWithLargestWeight--;
}
availableFreeSpace -= sizeDelta;
item->SetMainSize(item->GetMainSize() + sizeDelta);
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" child %p receives %d, for a total of %d\n", item,
sizeDelta, item->GetMainSize()));
}
}
// If we have an aLineInfo structure to fill out, capture any
// size changes that may have occurred in the previous loop.
// We don't do this inside the previous loop, because we don't
// want to burden layout when aLineInfo is null.
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem* item = mItems.getFirst(); item;
item = item->getNext(), ++itemIndex) {
if (!item->IsFrozen()) {
// Calculate a deltaSize that represents how much the flex sizing
// algorithm "wants" to stretch or shrink this item during this
// pass through the algorithm. Later passes through the algorithm
// may overwrite this, until this item is frozen. Note that this
// value may not reflect how much the size of the item is
// actually changed, since the size of the item will be clamped
// to min and max values later in this pass. That's intentional,
// since we want to report the value that the sizing algorithm
// tried to stretch or shrink the item.
nscoord deltaSize = item->GetMainSize() -
aLineInfo->mItems[itemIndex].mMainBaseSize;
aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize;
}
}
}
}
}
// Fix min/max violations:
nscoord totalViolation = 0; // keeps track of adjustments for min/max
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (" Checking for violations:"));
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems;
for (FlexItem* item = mItems.getFirst(); numUnfrozenItemsToBeSeen > 0;
item = item->getNext()) {
MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen");
if (!item->IsFrozen()) {
numUnfrozenItemsToBeSeen--;
if (item->GetMainSize() < item->GetMainMinSize()) {
// min violation
totalViolation += item->GetMainMinSize() - item->GetMainSize();
item->SetMainSize(item->GetMainMinSize());
item->SetHadMinViolation();
} else if (item->GetMainSize() > item->GetMainMaxSize()) {
// max violation
totalViolation += item->GetMainMaxSize() - item->GetMainSize();
item->SetMainSize(item->GetMainMaxSize());
item->SetHadMaxViolation();
}
}
}
FreezeOrRestoreEachFlexibleSize(totalViolation,
iterationCounter + 1 == mNumItems);
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
(" Total violation: %d\n", totalViolation));
if (mNumFrozenItems == mNumItems) {
break;
}
MOZ_ASSERT(totalViolation != 0,
"Zero violation should've made us freeze all items & break");
}
#ifdef DEBUG
// Post-condition: all items should've been frozen.
// Make sure the counts match:
MOZ_ASSERT(mNumFrozenItems == mNumItems, "All items should be frozen");
// For good measure, check each item directly, in case our counts are busted:
for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
MOZ_ASSERT(item->IsFrozen(), "All items should be frozen");
}
#endif // DEBUG
}
MainAxisPositionTracker::MainAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine,
uint8_t aJustifyContent, nscoord aContentBoxMainSize)
: PositionTracker(aAxisTracker.GetMainAxis(),
aAxisTracker.IsMainAxisReversed()),
mPackingSpaceRemaining(
aContentBoxMainSize), // we chip away at this below
mNumAutoMarginsInMainAxis(0),
mNumPackingSpacesRemaining(0),
mJustifyContent(aJustifyContent) {
// Extract the flag portion of mJustifyContent and strip off the flag bits
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
// NOTE: This must happen before any assignment to mJustifyContent to
// avoid overwriting the flag bits.
uint8_t justifyContentFlags = mJustifyContent & NS_STYLE_JUSTIFY_FLAG_BITS;
mJustifyContent &= ~NS_STYLE_JUSTIFY_FLAG_BITS;
// 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
// in the main axis
// https://drafts.csswg.org/css-align-3/#propdef-justify-content
if (mJustifyContent == NS_STYLE_JUSTIFY_NORMAL ||
mJustifyContent == NS_STYLE_JUSTIFY_STRETCH) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
}
// mPackingSpaceRemaining is initialized to the container's main size. Now
// we'll subtract out the main sizes of our flex items, so that it ends up
// with the *actual* amount of packing space.
for (const FlexItem* item = aLine->GetFirstItem(); item;
item = item->getNext()) {
mPackingSpaceRemaining -= item->GetOuterMainSize(mAxis);
mNumAutoMarginsInMainAxis += item->GetNumAutoMarginsInAxis(mAxis);
}
// Subtract space required for row/col gap from the remaining packing space
mPackingSpaceRemaining -= aLine->GetSumOfGaps();
if (mPackingSpaceRemaining <= 0) {
// No available packing space to use for resolving auto margins.
mNumAutoMarginsInMainAxis = 0;
// If packing space is negative and <overflow-position> is set to 'safe'
// all justify options fall back to 'start'
if (justifyContentFlags & NS_STYLE_JUSTIFY_SAFE) {
mJustifyContent = NS_STYLE_JUSTIFY_START;
}
}
Bug 1433339: Apply single-item fallback behavior for 'space-between' more directly, in flexbox code. r=mats MozReview-Commit-ID: BRx4xGaJS6y --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001.xhtml extra : rebase_source : 61fbefa6758677dd90872b02deb636a3d6c6887b
2018-02-18 03:59:01 +03:00
// If packing space is negative or we only have one item, 'space-between'
// falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back
// to 'center'. In those cases, it's simplest to just pretend we have a
// different 'justify-content' value and share code.
if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) {
if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY) {
mJustifyContent = NS_STYLE_JUSTIFY_CENTER;
}
}
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
// If our main axis is (internally) reversed, swap the justify-content
// "flex-start" and "flex-end" behaviors:
// NOTE: This must happen ...
// - *after* value-simplification for values that are dependent on our
// flex-axis reversedness; e.g. for "space-between" which specifically
// behaves like "flex-start" in some cases (per spec), and hence depends on
// the reversedness of flex axes.
// - *before* value simplification for values that don't care about
// flex-relative axis direction; e.g. for "start" which purely depends on
// writing-mode and isn't affected by reversedness of flex axes.
if (aAxisTracker.AreAxesInternallyReversed()) {
if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_START) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_END;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_END) {
mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START;
}
}
// Map 'left'/'right' to 'start'/'end'
if (mJustifyContent == NS_STYLE_JUSTIFY_LEFT ||
mJustifyContent == NS_STYLE_JUSTIFY_RIGHT) {
if (aAxisTracker.IsColumnOriented()) {
// Container's alignment axis is not parallel to the inline axis,
// so we map both 'left' and 'right' to 'start'.
mJustifyContent = NS_STYLE_JUSTIFY_START;
} else {
// Row-oriented, so we map 'left' and 'right' to 'start' or 'end',
// depending on left-to-right writing mode.
const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR();
const bool isJustifyLeft = (mJustifyContent == NS_STYLE_JUSTIFY_LEFT);
mJustifyContent = (isJustifyLeft == isLTR) ? NS_STYLE_JUSTIFY_START
: NS_STYLE_JUSTIFY_END;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mJustifyContent == NS_STYLE_JUSTIFY_START) {
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
mJustifyContent = aAxisTracker.IsMainAxisReversed()
? NS_STYLE_JUSTIFY_FLEX_END
: NS_STYLE_JUSTIFY_FLEX_START;
} else if (mJustifyContent == NS_STYLE_JUSTIFY_END) {
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
mJustifyContent = aAxisTracker.IsMainAxisReversed()
? NS_STYLE_JUSTIFY_FLEX_START
: NS_STYLE_JUSTIFY_FLEX_END;
}
// Figure out how much space we'll set aside for auto margins or
// packing spaces, and advance past any leading packing-space.
if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 &&
!aLine->IsEmpty()) {
switch (mJustifyContent) {
case NS_STYLE_JUSTIFY_FLEX_START:
// All packing space should go at the end --> nothing to do here.
break;
case NS_STYLE_JUSTIFY_FLEX_END:
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
break;
case NS_STYLE_JUSTIFY_CENTER:
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
break;
case NS_STYLE_JUSTIFY_SPACE_BETWEEN:
case NS_STYLE_JUSTIFY_SPACE_AROUND:
case NS_STYLE_JUSTIFY_SPACE_EVENLY:
nsFlexContainerFrame::CalculatePackingSpace(
aLine->NumItems(), mJustifyContent, &mPosition,
&mNumPackingSpacesRemaining, &mPackingSpaceRemaining);
break;
default:
MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
}
}
MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0,
"extra space should either go to packing space or to "
"auto margins, but not to both");
}
void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) {
if (mNumAutoMarginsInMainAxis) {
const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curAutoMarginSize =
mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"resolve them");
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
mNumAutoMarginsInMainAxis--;
mPackingSpaceRemaining -= curAutoMarginSize;
}
}
}
}
void MainAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND ||
mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
CrossAxisPositionTracker::CrossAxisPositionTracker(
FlexLine* aFirstLine, const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize)
: PositionTracker(aAxisTracker.GetCrossAxis(),
aAxisTracker.IsCrossAxisReversed()),
mPackingSpaceRemaining(0),
mNumPackingSpacesRemaining(0),
mAlignContent(aReflowInput.mStylePosition->mAlignContent),
mCrossGapSize(aCrossGapSize) {
MOZ_ASSERT(aFirstLine, "null first line pointer");
// Extract and strip the flag bits from alignContent
uint8_t alignContentFlags = mAlignContent & NS_STYLE_ALIGN_FLAG_BITS;
mAlignContent &= ~NS_STYLE_ALIGN_FLAG_BITS;
// 'normal' behaves as 'stretch'
if (mAlignContent == NS_STYLE_ALIGN_NORMAL) {
mAlignContent = NS_STYLE_ALIGN_STRETCH;
}
const bool isSingleLine =
NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
MOZ_ASSERT(!aFirstLine->getNext(),
"If we're styled as single-line, we should only have 1 line");
// "If the flex container is single-line and has a definite cross size, the
// cross size of the flex line is the flex container's inner cross size."
//
// SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
// NOTE: This means (by definition) that there's no packing space, which
// means we don't need to be concerned with "align-conent" at all and we
// can return early. This is handy, because this is the usual case (for
// single-line flexbox).
if (aIsCrossSizeDefinite) {
aFirstLine->SetLineCrossSize(aContentBoxCrossSize);
return;
}
// "If the flex container is single-line, then clamp the line's
// cross-size to be within the container's computed min and max cross-size
// properties."
aFirstLine->SetLineCrossSize(NS_CSS_MINMAX(
aFirstLine->GetLineCrossSize(), aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize()));
}
// NOTE: The rest of this function should essentially match
// MainAxisPositionTracker's constructor, though with FlexLines instead of
// FlexItems, and with the additional value "stretch" (and of course with
// cross sizes instead of main sizes.)
// Figure out how much packing space we have (container's cross size minus
// all the lines' cross sizes). Also, share this loop to count how many
// lines we have. (We need that count in some cases below.)
mPackingSpaceRemaining = aContentBoxCrossSize;
uint32_t numLines = 0;
for (FlexLine* line = aFirstLine; line; line = line->getNext()) {
mPackingSpaceRemaining -= line->GetLineCrossSize();
numLines++;
}
// Subtract space required for row/col gap from the remaining packing space
MOZ_ASSERT(numLines >= 1,
"GenerateFlexLines should've produced at least 1 line");
mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
// If <overflow-position> is 'safe' and packing space is negative
// all align options fall back to 'start'
if ((alignContentFlags & NS_STYLE_ALIGN_SAFE) && mPackingSpaceRemaining < 0) {
mAlignContent = NS_STYLE_ALIGN_START;
}
// If packing space is negative, 'space-between' and 'stretch' behave like
// 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
// In those cases, it's simplest to just pretend we have a different
Bug 1433339: Apply single-item fallback behavior for 'space-between' more directly, in flexbox code. r=mats MozReview-Commit-ID: BRx4xGaJS6y --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001.xhtml extra : rebase_source : 61fbefa6758677dd90872b02deb636a3d6c6887b
2018-02-18 03:59:01 +03:00
// 'align-content' value and share code. (If we only have one line, all of
// the 'space-*' keywords fall back as well, but 'stretch' doesn't because
// even a single line can still stretch.)
if (mPackingSpaceRemaining < 0 && mAlignContent == NS_STYLE_ALIGN_STRETCH) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
} else if (mPackingSpaceRemaining < 0 || numLines == 1) {
if (mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND ||
mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY) {
mAlignContent = NS_STYLE_ALIGN_CENTER;
}
}
// If our cross axis is (internally) reversed, swap the align-content
// "flex-start" and "flex-end" behaviors:
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
// NOTE: It matters precisely when we do this; see comment alongside
// MainAxisPositionTracker's AreAxesInternallyReversed check.
if (aAxisTracker.AreAxesInternallyReversed()) {
if (mAlignContent == NS_STYLE_ALIGN_FLEX_START) {
mAlignContent = NS_STYLE_ALIGN_FLEX_END;
} else if (mAlignContent == NS_STYLE_ALIGN_FLEX_END) {
mAlignContent = NS_STYLE_ALIGN_FLEX_START;
}
}
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mAlignContent == NS_STYLE_ALIGN_START) {
mAlignContent = aAxisTracker.IsCrossAxisReversed()
? NS_STYLE_ALIGN_FLEX_END
: NS_STYLE_ALIGN_FLEX_START;
} else if (mAlignContent == NS_STYLE_ALIGN_END) {
mAlignContent = aAxisTracker.IsCrossAxisReversed()
? NS_STYLE_ALIGN_FLEX_START
: NS_STYLE_ALIGN_FLEX_END;
}
// Figure out how much space we'll set aside for packing spaces, and advance
// past any leading packing-space.
if (mPackingSpaceRemaining != 0) {
switch (mAlignContent) {
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE:
NS_WARNING(
"NYI: "
"align-items/align-self:left/right/self-start/self-end/baseline/"
"last baseline");
Bug 1235306 - Fix -Wimplicit-fallthrough warnings in layout/. r=dholbert layout/base/nsCSSRendering.cpp:3913:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsCSSRendering.cpp:3943:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsCSSRendering.cpp:4066:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsCSSRendering.cpp:4096:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsCSSRenderingBorders.cpp:646:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsLayoutUtils.cpp:4639:9 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsLayoutUtils.cpp:4659:9 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsLayoutUtils.cpp:5004:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/nsLayoutUtils.cpp:5200:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/TouchManager.cpp:192:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/base/TouchManager.cpp:196:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFlexContainerFrame.cpp:2497:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFlexContainerFrame.cpp:2687:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFlexContainerFrame.cpp:2973:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFrame.cpp:4277:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFrame.cpp:4310:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFrame.cpp:4313:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFrame.cpp:6703:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsFrame.cpp:6751:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsGridContainerFrame.cpp:2649:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsGridContainerFrame.cpp:935:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsHTMLReflowState.cpp:1141:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsHTMLReflowState.cpp:1145:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsHTMLReflowState.cpp:1148:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsLineLayout.cpp:2942:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsLineLayout.cpp:2958:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsLineLayout.cpp:3134:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/generic/nsLineLayout.cpp:3150:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/printing/nsPrintPreviewListener.cpp:199:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/CSSLexer.cpp:129:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/Declaration.cpp:1069:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/Declaration.cpp:366:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/Declaration.cpp:442:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/Declaration.cpp:981:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsComputedDOMStyle.cpp:3597:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsComputedDOMStyle.cpp:3616:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsComputedDOMStyle.cpp:539:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsComputedDOMStyle.cpp:540:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsComputedDOMStyle.cpp:542:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10628:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10630:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10671:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10673:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10769:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10770:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10774:43 [-Wimplicit-fallthrough] fallthrough annotation does not directly precede switch label layout/style/nsCSSParser.cpp:10775:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10776:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:10780:43 [-Wimplicit-fallthrough] fallthrough annotation does not directly precede switch label layout/style/nsCSSParser.cpp:2542:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:2715:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:4124:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:4313:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9513:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9697:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9699:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9743:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9745:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9826:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9827:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9832:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9833:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsCSSParser.cpp:9980:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsRuleNode.cpp:160:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsRuleNode.cpp:187:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsRuleNode.cpp:722:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/nsRuleNode.cpp:753:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/StyleAnimationValue.cpp:139:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/StyleAnimationValue.cpp:1687:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/style/StyleAnimationValue.cpp:1869:7 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/FixedTableLayoutStrategy.cpp:264:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/FixedTableLayoutStrategy.cpp:267:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsCellMap.cpp:1043:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsCellMap.cpp:930:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsCellMap.cpp:953:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsCellMap.cpp:997:3 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:6943:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:6953:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:6959:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:6966:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:6974:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:7151:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:7161:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:7170:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:7177:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableFrame.cpp:7186:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/nsTableRowFrame.cpp:663:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/SpanningCellSorter.cpp:112:9 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/SpanningCellSorter.cpp:142:9 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/tables/SpanningCellSorter.cpp:157:9 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsResizerFrame.cpp:86:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsResizerFrame.cpp:87:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsResizerFrame.cpp:88:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsResizerFrame.cpp:90:13 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsSliderFrame.cpp:551:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsSliderFrame.cpp:560:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels layout/xul/nsXULPopupManager.cpp:2268:5 [-Wimplicit-fallthrough] unannotated fall-through between switch labels
2015-11-23 08:33:47 +03:00
MOZ_FALLTHROUGH;
case NS_STYLE_ALIGN_FLEX_START:
// All packing space should go at the end --> nothing to do here.
break;
case NS_STYLE_ALIGN_FLEX_END:
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
break;
case NS_STYLE_ALIGN_CENTER:
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
break;
case NS_STYLE_ALIGN_SPACE_BETWEEN:
case NS_STYLE_ALIGN_SPACE_AROUND:
case NS_STYLE_ALIGN_SPACE_EVENLY:
nsFlexContainerFrame::CalculatePackingSpace(
numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining,
&mPackingSpaceRemaining);
break;
case NS_STYLE_ALIGN_STRETCH: {
// Split space equally between the lines:
MOZ_ASSERT(mPackingSpaceRemaining > 0,
"negative packing space should make us use 'flex-start' "
"instead of 'stretch' (and we shouldn't bother with this "
"code if we have 0 packing space)");
uint32_t numLinesLeft = numLines;
for (FlexLine* line = aFirstLine; line; line = line->getNext()) {
// Our share is the amount of space remaining, divided by the number
// of lines remainig.
MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
nscoord newSize = line->GetLineCrossSize() + shareOfExtraSpace;
line->SetLineCrossSize(newSize);
mPackingSpaceRemaining -= shareOfExtraSpace;
numLinesLeft--;
}
MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
}
}
}
void CrossAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN ||
mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND ||
mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker)
: PositionTracker(aAxisTracker.GetCrossAxis(),
aAxisTracker.IsCrossAxisReversed()) {}
void FlexLine::ComputeCrossSizeAndBaseline(
const FlexboxAxisTracker& aAxisTracker) {
nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
nscoord largestOuterCrossSize = 0;
for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
nscoord curOuterCrossSize =
item->GetOuterCrossSize(aAxisTracker.GetCrossAxis());
if ((item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE ||
item->GetAlignSelf() == NS_STYLE_ALIGN_LAST_BASELINE) &&
item->GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) {
const bool useFirst = (item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE);
// FIXME: Once we support "writing-mode", we'll have to do baseline
// alignment in vertical flex containers here (w/ horizontal cross-axes).
// Find distance from our item's cross-start and cross-end margin-box
// edges to its baseline.
//
// Here's a diagram of a flex-item that we might be doing this on.
// "mmm" is the margin-box, "bbb" is the border-box. The bottom of
// the text "BASE" is the baseline.
//
// ---(cross-start)---
// ___ ___ ___
// mmmmmmmmmmmm | |margin-start |
// m m | _|_ ___ |
// m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline
// m b b m | |ascent |
// m b BASE b m | _|_ _|_
// m b b m | |
// m bbbbbbbb m | |crossEndToBaseline
// m m | |
// mmmmmmmmmmmm _|_ _|_
//
// ---(cross-end)---
//
// We already have the curOuterCrossSize, margin-start, and the ascent.
// * We can get crossStartToBaseline by adding margin-start + ascent.
// * If we subtract that from the curOuterCrossSize, we get
// crossEndToBaseline.
nscoord crossStartToBaseline = item->GetBaselineOffsetFromOuterCrossEdge(
eAxisEdge_Start, aAxisTracker, useFirst);
nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
// Now, update our "largest" values for these (across all the flex items
// in this flex line), so we can use them in computing the line's cross
// size below:
if (useFirst) {
crossStartToFurthestFirstBaseline =
std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
crossEndToFurthestFirstBaseline =
std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
} else {
crossStartToFurthestLastBaseline =
std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
crossEndToFurthestLastBaseline =
std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
}
} else {
largestOuterCrossSize =
std::max(largestOuterCrossSize, curOuterCrossSize);
}
}
// The line's baseline offset is the distance from the line's edge (start or
// end, depending on whether we've flipped the axes) to the furthest
// item-baseline. The item(s) with that baseline will be exactly aligned with
// the line's edge.
mFirstBaselineOffset = aAxisTracker.AreAxesInternallyReversed()
? crossEndToFurthestFirstBaseline
: crossStartToFurthestFirstBaseline;
mLastBaselineOffset = aAxisTracker.AreAxesInternallyReversed()
? crossStartToFurthestLastBaseline
: crossEndToFurthestLastBaseline;
// The line's cross-size is the larger of:
// (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all baseline-aligned items with no cross-axis auto margins...
// and
// (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all last baseline-aligned items with no cross-axis auto margins...
// and
// (c) largest cross-size of all other children.
mLineCrossSize = std::max(
std::max(
crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
largestOuterCrossSize);
}
void FlexItem::ResolveStretchedCrossSize(
nscoord aLineCrossSize, const FlexboxAxisTracker& aAxisTracker) {
AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis();
// We stretch IFF we are align-self:stretch, have no auto margins in
// cross axis, and have cross-axis size property == "auto". If any of those
// conditions don't hold up, we won't stretch.
if (mAlignSelf != NS_STYLE_ALIGN_STRETCH ||
GetNumAutoMarginsInAxis(crossAxis) != 0 || !IsCrossSizeAuto()) {
return;
}
// If we've already been stretched, we can bail out early, too.
// No need to redo the calculation.
if (mIsStretched) {
return;
}
// Reserve space for margins & border & padding, and then use whatever
// remains as our item's cross-size (clamped to its min/max range).
nscoord stretchedSize =
aLineCrossSize - GetMarginBorderPaddingSizeInAxis(crossAxis);
stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
// Update the cross-size & make a note that it's stretched, so we know to
// override the reflow state's computed cross-size in our final reflow.
SetCrossSize(stretchedSize);
mIsStretched = true;
}
void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis(
const FlexLine& aLine, FlexItem& aItem) {
// Subtract the space that our item is already occupying, to see how much
// space (if any) is available for its auto margins.
nscoord spaceForAutoMargins =
aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis);
if (spaceForAutoMargins <= 0) {
return; // No available space --> nothing to do
}
uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis);
if (numAutoMargins == 0) {
return; // No auto margins --> nothing to do.
}
// OK, we have at least one auto margin and we have some available space.
// Give each auto margin a share of the space.
const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (uint32_t i = 0; i < eNumAxisEdges; i++) {
mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i];
if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"update them");
// NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
// If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
numAutoMargins--;
spaceForAutoMargins -= curAutoMarginSize;
}
}
}
void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace(
const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker) {
// We don't do align-self alignment on items that have auto margins
// in the cross axis.
if (aItem.GetNumAutoMarginsInAxis(mAxis)) {
return;
}
uint8_t alignSelf = aItem.GetAlignSelf();
// NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
// auto-sized items (which we've already done).
if (alignSelf == NS_STYLE_ALIGN_STRETCH) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
}
// If our cross axis is (internally) reversed, swap the align-self
// "flex-start" and "flex-end" behaviors:
if (aAxisTracker.AreAxesInternallyReversed()) {
if (alignSelf == NS_STYLE_ALIGN_FLEX_START) {
alignSelf = NS_STYLE_ALIGN_FLEX_END;
} else if (alignSelf == NS_STYLE_ALIGN_FLEX_END) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
}
}
Bug 1472843 - Implement justify-content:left/right/start/end, align-content:start/end, align-self:self-start/self-end for flexbox. r=dholbert This commit also removes some cases & warnings about unsupported values that have now been removed from the css alignment spec. Specifically: "justify-content:[last] baseline" and "align-self/align-content: left/right". --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-wmvert-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-002.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-align-self-vert-rtl-005.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-005.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-006.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-wmvert-001.xhtml extra : amend_source : 93cd04450f573fcfa11f3400ffd0ecb4cb3e6d90
2018-08-03 17:56:32 +03:00
// Map 'self-start'/'self-end' to 'start'/'end'
if (alignSelf == NS_STYLE_ALIGN_SELF_START ||
alignSelf == NS_STYLE_ALIGN_SELF_END) {
const LogicalAxis logCrossAxis =
aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
const WritingMode cWM = aAxisTracker.GetWritingMode();
const bool sameStart =
cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode());
alignSelf = sameStart == (alignSelf == NS_STYLE_ALIGN_SELF_START)
? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (alignSelf == NS_STYLE_ALIGN_START) {
alignSelf = aAxisTracker.IsCrossAxisReversed() ? NS_STYLE_ALIGN_FLEX_END
: NS_STYLE_ALIGN_FLEX_START;
} else if (alignSelf == NS_STYLE_ALIGN_END) {
alignSelf = aAxisTracker.IsCrossAxisReversed() ? NS_STYLE_ALIGN_FLEX_START
: NS_STYLE_ALIGN_FLEX_END;
}
// 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we
// have cross axis overflow
// XXX we should really be falling back to 'start' as of bug 1472843
if (aLine.GetLineCrossSize() < aItem.GetOuterCrossSize(mAxis) &&
(aItem.GetAlignSelfFlags() & NS_STYLE_ALIGN_SAFE)) {
alignSelf = NS_STYLE_ALIGN_FLEX_START;
}
switch (alignSelf) {
case NS_STYLE_ALIGN_FLEX_START:
// No space to skip over -- we're done.
break;
case NS_STYLE_ALIGN_FLEX_END:
mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis);
break;
case NS_STYLE_ALIGN_CENTER:
// Note: If cross-size is odd, the "after" space will get the extra unit.
mPosition +=
(aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis)) / 2;
break;
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE: {
const bool useFirst = (alignSelf == NS_STYLE_ALIGN_BASELINE);
// Normally, baseline-aligned items are collectively aligned with the
// line's cross-start edge; however, if our cross axis is (internally)
// reversed, we instead align them with the cross-end edge.
// A similar logic holds for last baseline-aligned items, but in reverse.
AxisEdgeType baselineAlignEdge =
aAxisTracker.AreAxesInternallyReversed() == useFirst
? eAxisEdge_End
: eAxisEdge_Start;
nscoord itemBaselineOffset = aItem.GetBaselineOffsetFromOuterCrossEdge(
baselineAlignEdge, aAxisTracker, useFirst);
nscoord lineBaselineOffset = useFirst ? aLine.GetFirstBaselineOffset()
: aLine.GetLastBaselineOffset();
NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
"failed at finding largest baseline offset");
// How much do we need to adjust our position (from the line edge),
// to get the item's baseline to hit the line's baseline offset:
nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset;
if (aAxisTracker.AreAxesInternallyReversed() == useFirst) {
// Advance to align item w/ line's flex-end edge (as in FLEX_END case):
mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis);
// ...and step *back* by the baseline adjustment:
mPosition -= baselineDiff;
} else {
// mPosition is already at line's flex-start edge.
// From there, we step *forward* by the baseline adjustment:
mPosition += baselineDiff;
}
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
break;
}
}
// Utility function to convert an InlineDir to an AxisOrientationType
static inline AxisOrientationType InlineDirToAxisOrientation(
WritingMode::InlineDir aInlineDir) {
switch (aInlineDir) {
case WritingMode::eInlineLTR:
return eAxis_LR;
case WritingMode::eInlineRTL:
return eAxis_RL;
case WritingMode::eInlineTTB:
return eAxis_TB;
case WritingMode::eInlineBTT:
return eAxis_BT;
}
MOZ_ASSERT_UNREACHABLE("Unhandled InlineDir");
return eAxis_LR; // in case of unforseen error, assume English LTR text flow.
}
// Utility function to convert a BlockDir to an AxisOrientationType
static inline AxisOrientationType BlockDirToAxisOrientation(
WritingMode::BlockDir aBlockDir) {
switch (aBlockDir) {
case WritingMode::eBlockLR:
return eAxis_LR;
case WritingMode::eBlockRL:
return eAxis_RL;
case WritingMode::eBlockTB:
return eAxis_TB;
// NOTE: WritingMode::eBlockBT (bottom-to-top) does not exist.
}
MOZ_ASSERT_UNREACHABLE("Unhandled BlockDir");
return eAxis_TB; // in case of unforseen error, assume English TTB block-flow
}
FlexboxAxisTracker::FlexboxAxisTracker(
const nsFlexContainerFrame* aFlexContainer, const WritingMode& aWM,
AxisTrackerFlags aFlags)
: mMainAxis(eAxis_LR),
mWM(aWM),
mIsRowOriented(true),
mIsMainAxisReversed(false),
mAreAxesInternallyReversed(false) {
if (IsLegacyBox(aFlexContainer)) {
InitAxesFromLegacyProps(aFlexContainer);
} else {
InitAxesFromModernProps(aFlexContainer);
}
// Master switch to enable/disable bug 983427's code for reversing our axes
// and reversing some logic, to avoid reflowing children in bottom-to-top
// order. (This switch can be removed eventually, but for now, it allows
// this special-case code path to be compared against the normal code path.)
static bool sPreventBottomToTopChildOrdering = true;
// Note: if the eAllowBottomToTopChildOrdering flag is set, that overrides
// the static boolean and makes us skip this special case.
if (!(aFlags & AxisTrackerFlags::eAllowBottomToTopChildOrdering) &&
sPreventBottomToTopChildOrdering) {
// If either axis is bottom-to-top, we flip both axes (and set a flag
// so that we can flip some logic to make the reversal transparent).
if (eAxis_BT == mMainAxis || eAxis_BT == mCrossAxis) {
mMainAxis = GetReverseAxis(mMainAxis);
mCrossAxis = GetReverseAxis(mCrossAxis);
mAreAxesInternallyReversed = true;
mIsMainAxisReversed = !mIsMainAxisReversed;
mIsCrossAxisReversed = !mIsCrossAxisReversed;
}
}
}
void FlexboxAxisTracker::InitAxesFromLegacyProps(
const nsFlexContainerFrame* aFlexContainer) {
const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
const bool boxOrientIsVertical =
(styleXUL->mBoxOrient == StyleBoxOrient::Vertical);
const bool wmIsVertical = mWM.IsVertical();
// If box-orient agrees with our writing-mode, then we're "row-oriented"
// (i.e. the flexbox main axis is the same as our writing mode's inline
// direction). Otherwise, we're column-oriented (i.e. the flexbox's main
// axis is perpendicular to the writing-mode's inline direction).
mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
// XXXdholbert BEGIN CODE TO SET DEPRECATED MEMBER-VARS
if (boxOrientIsVertical) {
mMainAxis = eAxis_TB;
mCrossAxis = eAxis_LR;
} else {
mMainAxis = eAxis_LR;
mCrossAxis = eAxis_TB;
}
// "direction: rtl" reverses the writing-mode's inline axis.
// So, we need to reverse the corresponding flex axis to match.
// (Note this we don't toggle "mIsMainAxisReversed" for this condition,
// because the main axis will still match mWM's inline direction.)
if (!mWM.IsBidiLTR()) {
AxisOrientationType& axisToFlip = mIsRowOriented ? mMainAxis : mCrossAxis;
axisToFlip = GetReverseAxis(axisToFlip);
}
// XXXdholbert END CODE TO SET DEPRECATED MEMBER-VARS
// Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
// main axis (so it runs in the reverse direction of the inline axis):
if (styleXUL->mBoxDirection == StyleBoxDirection::Reverse) {
mMainAxis = GetReverseAxis(mMainAxis);
mIsMainAxisReversed = true;
} else {
mIsMainAxisReversed = false;
}
// Legacy flexbox does not support reversing the cross axis -- it has no
// equivalent of modern flexbox's "flex-wrap: wrap-reverse".
mIsCrossAxisReversed = false;
}
void FlexboxAxisTracker::InitAxesFromModernProps(
const nsFlexContainerFrame* aFlexContainer) {
const nsStylePosition* stylePos = aFlexContainer->StylePosition();
uint32_t flexDirection = stylePos->mFlexDirection;
// Inline dimension ("start-to-end"):
// (NOTE: I'm intentionally not calling these "inlineAxis"/"blockAxis", since
// those terms have explicit definition in the writing-modes spec, which are
// the opposite of how I'd be using them here.)
AxisOrientationType inlineDimension =
InlineDirToAxisOrientation(mWM.GetInlineDir());
AxisOrientationType blockDimension =
BlockDirToAxisOrientation(mWM.GetBlockDir());
// Determine main axis:
switch (flexDirection) {
case NS_STYLE_FLEX_DIRECTION_ROW:
mMainAxis = inlineDimension;
mIsRowOriented = true;
mIsMainAxisReversed = false;
break;
case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE:
mMainAxis = GetReverseAxis(inlineDimension);
mIsRowOriented = true;
mIsMainAxisReversed = true;
break;
case NS_STYLE_FLEX_DIRECTION_COLUMN:
mMainAxis = blockDimension;
mIsRowOriented = false;
mIsMainAxisReversed = false;
break;
case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE:
mMainAxis = GetReverseAxis(blockDimension);
mIsRowOriented = false;
mIsMainAxisReversed = true;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unexpected flex-direction value");
}
// Determine cross axis:
// (This is set up so that a bogus |flexDirection| value will
// give us blockDimension.
if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN ||
flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) {
mCrossAxis = inlineDimension;
} else {
mCrossAxis = blockDimension;
}
// "flex-wrap: wrap-reverse" reverses our cross axis.
if (stylePos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) {
mCrossAxis = GetReverseAxis(mCrossAxis);
mIsCrossAxisReversed = true;
} else {
mIsCrossAxisReversed = false;
}
}
// Allocates a new FlexLine, adds it to the given LinkedList (at the front or
// back depending on aShouldInsertAtFront), and returns a pointer to it.
static FlexLine* AddNewFlexLineToList(LinkedList<FlexLine>& aLines,
bool aShouldInsertAtFront,
nscoord aMainGapSize) {
FlexLine* newLine = new FlexLine(aMainGapSize);
if (aShouldInsertAtFront) {
aLines.insertFront(newLine);
} else {
aLines.insertBack(newLine);
}
return newLine;
}
bool nsFlexContainerFrame::ShouldUseMozBoxCollapseBehavior(
const nsStyleDisplay* aThisStyleDisp) {
MOZ_ASSERT(StyleDisplay() == aThisStyleDisp, "wrong StyleDisplay passed in");
// Quick filter to screen out *actual* (not-coopted-for-emulation)
// flex containers, using state bit:
if (!IsLegacyBox(this)) {
return false;
}
// Check our own display value:
if (aThisStyleDisp->mDisplay == mozilla::StyleDisplay::MozBox ||
aThisStyleDisp->mDisplay == mozilla::StyleDisplay::MozInlineBox) {
return true;
}
// Check our parent's display value, if we're an anonymous box (with a
// potentially-untrustworthy display value):
auto pseudoType = Style()->GetPseudo();
if (pseudoType == nsCSSAnonBoxes::scrolledContent() ||
pseudoType == nsCSSAnonBoxes::buttonContent()) {
const nsStyleDisplay* disp = GetParent()->StyleDisplay();
if (disp->mDisplay == mozilla::StyleDisplay::MozBox ||
disp->mDisplay == mozilla::StyleDisplay::MozInlineBox) {
return true;
}
}
return false;
}
void nsFlexContainerFrame::GenerateFlexLines(
nsPresContext* aPresContext, const ReflowInput& aReflowInput,
nscoord aContentBoxMainSize, nscoord aAvailableBSizeForContent,
const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders, /* out */
LinkedList<FlexLine>& aLines /* out */) {
MOZ_ASSERT(aLines.isEmpty(), "Expecting outparam to start out empty");
const bool isSingleLine =
NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap;
// If we're transparently reversing axes, then we'll need to link up our
// FlexItems and FlexLines in the reverse order, so that the rest of flex
// layout (with flipped axes) will still produce the correct result.
// Here, we declare a convenience bool that we'll pass when adding a new
// FlexLine or FlexItem, to make us insert it at the beginning of its list
// (so the list ends up reversed).
const bool shouldInsertAtFront = aAxisTracker.AreAxesInternallyReversed();
// We have at least one FlexLine. Even an empty flex container has a single
// (empty) flex line.
FlexLine* curLine =
AddNewFlexLineToList(aLines, shouldInsertAtFront, aMainGapSize);
nscoord wrapThreshold;
if (isSingleLine) {
// Not wrapping. Set threshold to sentinel value that tells us not to wrap.
wrapThreshold = NS_UNCONSTRAINEDSIZE;
} else {
// Wrapping! Set wrap threshold to flex container's content-box main-size.
wrapThreshold = aContentBoxMainSize;
// If the flex container doesn't have a definite content-box main-size
// (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
// least wrap when we hit its max main-size.
if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
const nscoord flexContainerMaxMainSize = GET_MAIN_COMPONENT_LOGICAL(
aAxisTracker, aAxisTracker.GetWritingMode(),
aReflowInput.ComputedMaxISize(), aReflowInput.ComputedMaxBSize());
wrapThreshold = flexContainerMaxMainSize;
}
// Also: if we're column-oriented and paginating in the block dimension,
// we may need to wrap to a new flex line sooner (before we grow past the
// available BSize, potentially running off the end of the page).
if (aAxisTracker.IsColumnOriented() &&
aAvailableBSizeForContent != NS_UNCONSTRAINEDSIZE) {
wrapThreshold = std::min(wrapThreshold, aAvailableBSizeForContent);
}
}
// Tracks the index of the next strut, in aStruts (and when this hits
// aStruts.Length(), that means there are no more struts):
uint32_t nextStrutIdx = 0;
// Overall index of the current flex item in the flex container. (This gets
// checked against entries in aStruts.)
uint32_t itemIdxInContainer = 0;
CSSOrderAwareFrameIterator iter(
this, kPrincipalList, CSSOrderAwareFrameIterator::eIncludeAll,
CSSOrderAwareFrameIterator::eUnknownOrder, OrderingPropertyForIter(this));
if (iter.ItemsAreAlreadyInOrder()) {
AddStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
} else {
RemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
}
const bool useMozBoxCollapseBehavior =
ShouldUseMozBoxCollapseBehavior(aReflowInput.mStyleDisplay);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
// Don't create flex items / lines for placeholder frames:
if (childFrame->IsPlaceholderFrame()) {
aPlaceholders.AppendElement(childFrame);
continue;
}
// Honor "page-break-before", if we're multi-line and this line isn't empty:
if (!isSingleLine && !curLine->IsEmpty() &&
childFrame->StyleDisplay()->BreakBefore()) {
curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront, aMainGapSize);
}
UniquePtr<FlexItem> item;
if (useMozBoxCollapseBehavior &&
(NS_STYLE_VISIBILITY_COLLAPSE ==
childFrame->StyleVisibility()->mVisible)) {
// Legacy visibility:collapse behavior: make a 0-sized strut. (No need to
// bother with aStruts and remembering cross size.)
item = MakeUnique<FlexItem>(childFrame, 0, aReflowInput.GetWritingMode());
} else if (nextStrutIdx < aStruts.Length() &&
aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
// Use the simplified "strut" FlexItem constructor:
item = MakeUnique<FlexItem>(childFrame,
aStruts[nextStrutIdx].mStrutCrossSize,
aReflowInput.GetWritingMode());
nextStrutIdx++;
} else {
item = GenerateFlexItemForChild(aPresContext, childFrame, aReflowInput,
aAxisTracker);
}
nscoord itemInnerHypotheticalMainSize = item->GetMainSize();
nscoord itemOuterHypotheticalMainSize =
item->GetOuterMainSize(aAxisTracker.GetMainAxis());
// Check if we need to wrap |item| to a new line
// (i.e. check if its outer hypothetical main size pushes our line over
// the threshold)
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
if (wrapThreshold !=
NS_UNCONSTRAINEDSIZE && // Don't wrap if unconstrained.
!curLine->IsEmpty()) { // Don't wrap if this will be line's first item.
// If the line will be longer than wrapThreshold after adding this item,
// then wrap to a new line before inserting this item.
// NOTE: We have to account for the fact that
// itemOuterHypotheticalMainSize might be huge, if our item is (or
// contains) a table with "table-layout:fixed". So we use AddChecked()
// rather than (possibly-overflowing) normal addition, to be sure we don't
// make the wrong judgement about whether the item fits on this line.
nscoord newOuterSize =
AddChecked(curLine->GetTotalOuterHypotheticalMainSize(),
itemOuterHypotheticalMainSize);
// Account for gap between this line's previous item and this item
newOuterSize = AddChecked(newOuterSize, aMainGapSize);
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
if (newOuterSize == nscoord_MAX || newOuterSize > wrapThreshold) {
curLine =
AddNewFlexLineToList(aLines, shouldInsertAtFront, aMainGapSize);
Bug 1461446: Make flex layout explicitly handle integer overflow when summing up flex item hypothetical sizes. r=mats This patch accomodates for the unfortunate fact that elements with "table-layout:fixed" have a max-content size of nscoord_MAX (infinity, effectively), which turns out to be an easy source of integer overflow during flex layout. Before this patch, a flex container with "table-layout:fixed" in several flex items could end up triggering integer-overflow & making the wrong judgement on its arithmetic to determine... - whether a given flex item will fit on an existing flex line. - whether we've got positive free space and need to grow our items, or have negative free space and need to shrink our items. This patch makes two changes to fix this issue. (1) This patch makes us use CheckedInt when summing up flex item hypothetical sizes, which prevents integer overflow from flipping the sign of our line's total length. (2) This patch makes us *directly* track the space reserved for flex item margin/border/padding within a flex line. Previously, we tracked this implicitly as the difference between two other quantities that we stored; but with the other changes in this patch, those two other quantities can *both* trigger overflow and get clamped, which would make us lose track of how much space to reserve for margin/border/padding. So now we simply track that space-to-reserve directly. MozReview-Commit-ID: 9izhOnlS4F1 --HG-- extra : rebase_source : 185f2409dcb2f9c5bd0a2466a8e2233d7db3250a
2018-05-26 05:46:29 +03:00
}
}
// Add item to current flex line (and update the line's bookkeeping about
// how large its items collectively are).
curLine->AddItem(item.release(), shouldInsertAtFront,
itemInnerHypotheticalMainSize,
itemOuterHypotheticalMainSize);
// Honor "page-break-after", if we're multi-line and have more children:
if (!isSingleLine && childFrame->GetNextSibling() &&
childFrame->StyleDisplay()->BreakAfter()) {
curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront, aMainGapSize);
}
itemIdxInContainer++;
}
}
// Retrieves the content-box main-size of our flex container from the
// reflow state (specifically, the main-size of *this continuation* of the
// flex container).
nscoord nsFlexContainerFrame::GetMainSizeFromReflowInput(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker) {
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
return aReflowInput.ComputedISize();
}
// Note: This may be unconstrained, if our block size is "auto":
return GetEffectiveComputedBSize(aReflowInput);
}
// Returns the largest outer hypothetical main-size of any line in |aLines|.
// (i.e. the hypothetical main-size of the largest line)
static nscoord GetLargestLineMainSize(const FlexLine* aFirstLine) {
nscoord largestLineOuterSize = 0;
for (const FlexLine* line = aFirstLine; line; line = line->getNext()) {
largestLineOuterSize = std::max(largestLineOuterSize,
line->GetTotalOuterHypotheticalMainSize());
}
return largestLineOuterSize;
}
/* Resolves the content-box main-size of a flex container frame,
* primarily based on:
* - the "tentative" main size, taken from the reflow state ("tentative"
* because it may be unconstrained or may run off the page).
* - the available BSize (needed if the main axis is the block axis).
* - the sizes of our lines of flex items.
*
* Guaranteed to return a definite length, i.e. not NS_UNCONSTRAINEDSIZE,
* aside from cases with huge lengths which happen to compute to that value.
*
* (Note: This function should be structurally similar to 'ComputeCrossSize()',
* except that here, the caller has already grabbed the tentative size from the
* reflow state.)
*/
static nscoord ResolveFlexContainerMainSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
nscoord aTentativeMainSize, nscoord aAvailableBSizeForContent,
const FlexLine* aFirstLine, nsReflowStatus& aStatus) {
MOZ_ASSERT(aFirstLine, "null first line pointer");
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
return aTentativeMainSize;
}
if (aTentativeMainSize != NS_INTRINSICSIZE) {
// Column-oriented case, with fixed BSize:
if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE ||
aTentativeMainSize < aAvailableBSizeForContent) {
// Not in a fragmenting context, OR no need to fragment because we have
// more available BSize than we need. Either way, we don't need to clamp.
// (Note that the reflow state has already done the appropriate
// min/max-BSize clamping.)
return aTentativeMainSize;
}
// Fragmenting *and* our fixed BSize is larger than available BSize:
// Mark incomplete so we get a next-in-flow, and take up all of the
// available BSize (or the amount of BSize required by our children, if
// that's larger; but of course not more than our own computed BSize).
// XXXdholbert For now, we don't support pushing children to our next
// continuation or splitting children, so "amount of BSize required by
// our children" is just the main-size (BSize) of our longest flex line.
aStatus.SetIncomplete();
nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine);
if (largestLineOuterSize <= aAvailableBSizeForContent) {
return aAvailableBSizeForContent;
}
return std::min(aTentativeMainSize, largestLineOuterSize);
}
// Column-oriented case, with size-containment:
// Behave as if we had no content and just use our MinBSize.
if (aReflowInput.mStyleDisplay->IsContainSize()) {
return aReflowInput.ComputedMinBSize();
}
// Column-oriented case, with auto BSize:
// Resolve auto BSize to the largest FlexLine length, clamped to our
// computed min/max main-size properties.
// XXXdholbert Handle constrained-aAvailableBSizeForContent case here.
nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine);
return NS_CSS_MINMAX(largestLineOuterSize, aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
nscoord nsFlexContainerFrame::ComputeCrossSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
nscoord aSumLineCrossSizes, nscoord aAvailableBSizeForContent,
bool* aIsDefinite, nsReflowStatus& aStatus) {
MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented --> our cross axis is the inline axis, so our cross size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
*aIsDefinite = true;
return aReflowInput.ComputedISize();
}
nscoord effectiveComputedBSize = GetEffectiveComputedBSize(aReflowInput);
if (effectiveComputedBSize != NS_INTRINSICSIZE) {
// Row-oriented case (cross axis is block-axis), with fixed BSize:
*aIsDefinite = true;
if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE ||
effectiveComputedBSize < aAvailableBSizeForContent) {
// Not in a fragmenting context, OR no need to fragment because we have
// more available BSize than we need. Either way, just use our fixed
// BSize. (Note that the reflow state has already done the appropriate
// min/max-BSize clamping.)
return effectiveComputedBSize;
}
// Fragmenting *and* our fixed BSize is too tall for available BSize:
// Mark incomplete so we get a next-in-flow, and take up all of the
// available BSize (or the amount of BSize required by our children, if
// that's larger; but of course not more than our own computed BSize).
// XXXdholbert For now, we don't support pushing children to our next
// continuation or splitting children, so "amount of BSize required by
// our children" is just the sum of our FlexLines' BSizes (cross sizes).
aStatus.SetIncomplete();
if (aSumLineCrossSizes <= aAvailableBSizeForContent) {
return aAvailableBSizeForContent;
}
return std::min(effectiveComputedBSize, aSumLineCrossSizes);
}
// Row-oriented case, with size-containment:
// Behave as if we had no content and just use our MinBSize.
if (aReflowInput.mStyleDisplay->IsContainSize()) {
*aIsDefinite = true;
return aReflowInput.ComputedMinBSize();
}
// Row-oriented case (cross axis is block axis), with auto BSize:
// Shrink-wrap our line(s), subject to our min-size / max-size
// constraints in that (block) axis.
// XXXdholbert Handle constrained-aAvailableBSizeForContent case here.
*aIsDefinite = false;
return NS_CSS_MINMAX(aSumLineCrossSizes, aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
void FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker) {
MainAxisPositionTracker mainAxisPosnTracker(
aAxisTracker, this, aJustifyContent, aContentBoxMainSize);
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
nscoord itemMainBorderBoxSize =
item->GetMainSize() +
item->GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis());
// Resolve any main-axis 'auto' margins on aChild to an actual value.
mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(*item);
// Advance our position tracker to child's upper-left content-box corner,
// and use that as its position in the main axis.
mainAxisPosnTracker.EnterMargin(item->GetMargin());
mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
item->SetMainPosition(mainAxisPosnTracker.GetPosition());
mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
mainAxisPosnTracker.ExitMargin(item->GetMargin());
mainAxisPosnTracker.TraversePackingSpace();
if (item->getNext()) {
mainAxisPosnTracker.TraverseGap(mMainGapSize);
}
}
}
/**
* Given the flex container's "flex-relative ascent" (i.e. distance from the
* flex container's content-box cross-start edge to its baseline), returns
* its actual physical ascent value (the distance from the *border-box* top
* edge to its baseline).
*/
static nscoord ComputePhysicalAscentFromFlexRelativeAscent(
nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize,
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker) {
return aReflowInput.ComputedPhysicalBorderPadding().top +
PhysicalCoordFromFlexRelativeCoord(aFlexRelativeAscent,
aContentBoxCrossSize,
aAxisTracker.GetCrossAxis());
}
void nsFlexContainerFrame::SizeItemInCrossAxis(
nsPresContext* aPresContext, const FlexboxAxisTracker& aAxisTracker,
ReflowInput& aChildReflowInput, FlexItem& aItem) {
// If cross axis is the item's inline axis, just use ISize from reflow state,
// and don't bother with a full reflow.
if (aItem.IsInlineAxisCrossAxis()) {
aItem.SetCrossSize(aChildReflowInput.ComputedISize());
return;
}
MOZ_ASSERT(!aItem.HadMeasuringReflow(),
"We shouldn't need more than one measuring reflow");
if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_STRETCH) {
// This item's got "align-self: stretch", so we probably imposed a
// stretched computed cross-size on it during its previous
// reflow. We're not imposing that BSize for *this* "measuring" reflow, so
// we need to tell it to treat this reflow as a resize in its block axis
// (regardless of whether any of its ancestors are actually being resized).
// (Note: we know that the cross axis is the item's *block* axis -- if it
// weren't, then we would've taken the early-return above.)
aChildReflowInput.SetBResize(true);
}
// Potentially reflow the item, and get the sizing info.
const CachedMeasuringReflowResult& reflowResult =
MeasureAscentAndBSizeForFlexItem(aItem, aPresContext, aChildReflowInput);
// Save the sizing info that we learned from this reflow
// -----------------------------------------------------
// Tentatively store the child's desired content-box cross-size.
// Note that childDesiredSize is the border-box size, so we have to
// subtract border & padding to get the content-box size.
nscoord crossAxisBorderPadding =
aItem.GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis());
if (reflowResult.BSize() < crossAxisBorderPadding) {
// Child's requested size isn't large enough for its border/padding!
// This is OK for the trivial nsFrame::Reflow() impl, but other frame
// classes should know better. So, if we get here, the child had better be
// an instance of nsFrame (i.e. it should return null from GetType()).
// XXXdholbert Once we've fixed bug 765861, we should upgrade this to an
// assertion that trivially passes if bug 765861's flag has been flipped.
NS_WARNING_ASSERTION(
aItem.Frame()->Type() == LayoutFrameType::None,
"Child should at least request space for border/padding");
aItem.SetCrossSize(0);
} else {
// (normal case)
aItem.SetCrossSize(reflowResult.BSize() - crossAxisBorderPadding);
}
aItem.SetAscent(reflowResult.Ascent());
}
void FlexLine::PositionItemsInCrossAxis(
nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) {
SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) {
// First, stretch the item's cross size (if appropriate), and resolve any
// auto margins in this axis.
item->ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker);
lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, *item);
// Compute the cross-axis position of this item
nscoord itemCrossBorderBoxSize =
item->GetCrossSize() +
item->GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis());
lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, *item, aAxisTracker);
lineCrossAxisPosnTracker.EnterMargin(item->GetMargin());
lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
item->SetCrossPosition(aLineStartPosition +
lineCrossAxisPosnTracker.GetPosition());
// Back out to cross-axis edge of the line.
lineCrossAxisPosnTracker.ResetPosition();
}
}
void nsFlexContainerFrame::DidReflow(nsPresContext* aPresContext,
const ReflowInput* aReflowInput) {
// Remove the cached values if we got an interrupt because the values will be
// the wrong ones for following reflows.
//
// TODO(emilio): Can we do this only for the kids that are interrupted? We
// probably want to figure out what the right thing to do here is regarding
// interrupts, see bug 1495532.
if (aPresContext->HasPendingInterrupt()) {
for (nsIFrame* frame : mFrames) {
frame->DeleteProperty(CachedFlexMeasuringReflow());
}
}
nsContainerFrame::DidReflow(aPresContext, aReflowInput);
}
void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
("Reflow() for nsFlexContainerFrame %p\n", this));
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
return;
}
// We (and our children) can only depend on our ancestor's bsize if we have
// a percent-bsize, or if we're positioned and we have "block-start" and
// "block-end" set and have block-size:auto. (There are actually other cases,
// too -- e.g. if our parent is itself a block-dir flex container and we're
// flexible -- but we'll let our ancestors handle those sorts of cases.)
WritingMode wm = aReflowInput.GetWritingMode();
const nsStylePosition* stylePos = StylePosition();
const nsStyleCoord& bsize = stylePos->BSize(wm);
if (bsize.HasPercent() ||
(StyleDisplay()->IsAbsolutelyPositionedStyle() && bsize.IsAutoOrEnum() &&
eStyleUnit_Auto != stylePos->mOffset.GetBStartUnit(wm) &&
eStyleUnit_Auto != stylePos->mOffset.GetBEndUnit(wm))) {
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
RenumberList();
const FlexboxAxisTracker axisTracker(this, aReflowInput.GetWritingMode());
// Check to see if we need to create a computed info structure, to
// be filled out for use by devtools.
if (HasAnyStateBits(NS_STATE_FLEX_GENERATE_COMPUTED_VALUES)) {
// This state bit will never be cleared. That's acceptable because
// it's only set in a Chrome API invoked by devtools, and won't
// impact normal browsing.
// Re-use the ComputedFlexContainerInfo, if it exists.
ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo());
if (info) {
// We can reuse, as long as we clear out old data.
info->mLines.Clear();
} else {
info = new ComputedFlexContainerInfo();
SetProperty(FlexContainerInfo(), info);
}
}
// If we're being fragmented into a constrained BSize, then subtract off
// borderpadding BStart from that constrained BSize, to get the available
// BSize for our content box. (No need to subtract the borderpadding BStart
// if we're already skipping it via GetLogicalSkipSides, though.)
nscoord availableBSizeForContent = aReflowInput.AvailableBSize();
if (availableBSizeForContent != NS_UNCONSTRAINEDSIZE &&
!(GetLogicalSkipSides(&aReflowInput).BStart())) {
availableBSizeForContent -=
aReflowInput.ComputedLogicalBorderPadding().BStart(wm);
// (Don't let that push availableBSizeForContent below zero, though):
availableBSizeForContent = std::max(availableBSizeForContent, 0);
}
nscoord contentBoxMainSize =
GetMainSizeFromReflowInput(aReflowInput, axisTracker);
// Calculate gap size for main and cross axis
nscoord mainGapSize;
nscoord crossGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
contentBoxMainSize);
crossGapSize = nsLayoutUtils::ResolveGapToLength(
stylePos->mRowGap, GetEffectiveComputedBSize(aReflowInput));
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
contentBoxMainSize);
NS_WARNING_ASSERTION(aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result "
"from huge sizes (not intrinsic sizing w/ orthogonal "
"flows)");
crossGapSize = nsLayoutUtils::ResolveGapToLength(
stylePos->mColumnGap, aReflowInput.ComputedISize());
}
AutoTArray<StrutInfo, 1> struts;
DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus,
contentBoxMainSize, availableBSizeForContent, struts,
axisTracker, mainGapSize, crossGapSize);
if (!struts.IsEmpty()) {
// We're restarting flex layout, with new knowledge of collapsed items.
aStatus.Reset();
DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus,
contentBoxMainSize, availableBSizeForContent, struts,
axisTracker, mainGapSize, crossGapSize);
}
}
// Class to let us temporarily provide an override value for the the main-size
// CSS property ('width' or 'height') on a flex item, for use in
// nsFrame::ComputeSizeWithIntrinsicDimensions.
// (We could use this overridden size more broadly, too, but it's probably
// better to avoid property-table accesses. So, where possible, we communicate
// the resolved main-size to the child via modifying its reflow state directly,
// instead of using this class.)
class MOZ_RAII AutoFlexItemMainSizeOverride final {
public:
explicit AutoFlexItemMainSizeOverride(
FlexItem& aItem MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: mItemFrame(aItem.Frame()) {
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
MOZ_ASSERT(!mItemFrame->HasProperty(nsIFrame::FlexItemMainSizeOverride()),
"FlexItemMainSizeOverride prop shouldn't be set already; "
"it should only be set temporarily (& not recursively)");
NS_ASSERTION(aItem.HasIntrinsicRatio(),
"This should only be needed for items with an aspect ratio");
mItemFrame->SetProperty(nsIFrame::FlexItemMainSizeOverride(),
aItem.GetMainSize());
}
~AutoFlexItemMainSizeOverride() {
mItemFrame->RemoveProperty(nsIFrame::FlexItemMainSizeOverride());
}
private:
nsIFrame* mItemFrame;
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
};
void nsFlexContainerFrame::CalculatePackingSpace(
uint32_t aNumThingsToPack, uint8_t aAlignVal, nscoord* aFirstSubjectOffset,
uint32_t* aNumPackingSpacesRemaining, nscoord* aPackingSpaceRemaining) {
MOZ_ASSERT(NS_STYLE_ALIGN_SPACE_BETWEEN == NS_STYLE_JUSTIFY_SPACE_BETWEEN &&
NS_STYLE_ALIGN_SPACE_AROUND == NS_STYLE_JUSTIFY_SPACE_AROUND &&
NS_STYLE_ALIGN_SPACE_EVENLY == NS_STYLE_JUSTIFY_SPACE_EVENLY,
"CalculatePackingSpace assumes that NS_STYLE_ALIGN_SPACE and "
"NS_STYLE_JUSTIFY_SPACE constants are interchangeable");
MOZ_ASSERT(aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN ||
aAlignVal == NS_STYLE_ALIGN_SPACE_AROUND ||
aAlignVal == NS_STYLE_ALIGN_SPACE_EVENLY,
"Unexpected alignment value");
MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
"Should not be called with negative packing space");
Bug 1433339: Apply single-item fallback behavior for 'space-between' more directly, in flexbox code. r=mats MozReview-Commit-ID: BRx4xGaJS6y --HG-- rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-align-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-align-content-vertrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-horiz-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-horizrev-001.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001-ref.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001-ref.xhtml rename : layout/reftests/w3c-css/submitted/flexbox/flexbox-justify-content-vert-001a.xhtml => layout/reftests/flexbox/flexbox-justify-content-vertrev-001.xhtml extra : rebase_source : 61fbefa6758677dd90872b02deb636a3d6c6887b
2018-02-18 03:59:01 +03:00
// Note: In the aNumThingsToPack==1 case, the fallback behavior for
// 'space-between' depends on precise information about the axes that we
// don't have here. So, for that case, we just depend on the caller to
// explicitly convert 'space-{between,around,evenly}' keywords to the
// appropriate fallback alignment and skip this function.
MOZ_ASSERT(aNumThingsToPack > 1,
"Should not be called unless there's more than 1 thing to pack");
// Packing spaces between items:
*aNumPackingSpacesRemaining = aNumThingsToPack - 1;
if (aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN) {
// No need to reserve space at beginning/end, so we're done.
return;
}
// We need to add 1 or 2 packing spaces, split between beginning/end, for
// space-around / space-evenly:
size_t numPackingSpacesForEdges =
aAlignVal == NS_STYLE_JUSTIFY_SPACE_AROUND ? 1 : 2;
// How big will each "full" packing space be:
nscoord packingSpaceSize =
*aPackingSpaceRemaining /
(*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
// How much packing-space are we allocating to the edges:
nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
// Use half of that edge packing space right now:
*aFirstSubjectOffset += totalEdgePackingSpace / 2;
// ...but we need to subtract all of it right away, so that we won't
// hand out any of it to intermediate packing spaces.
*aPackingSpaceRemaining -= totalEdgePackingSpace;
}
nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo(
nsIFrame* aFrame) {
// Prepare a lambda function that we may need to call multiple times.
auto GetFlexContainerFrame = [](nsIFrame* aFrame) {
// Return the aFrame's content insertion frame, iff it is
// a flex container frame.
nsFlexContainerFrame* flexFrame = nullptr;
if (aFrame) {
nsIFrame* contentFrame = aFrame->GetContentInsertionFrame();
if (contentFrame && (contentFrame->IsFlexContainerFrame())) {
flexFrame = static_cast<nsFlexContainerFrame*>(contentFrame);
}
}
return flexFrame;
};
nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame);
if (flexFrame) {
// Generate the FlexContainerInfo data, if it's not already there.
bool reflowNeeded = !flexFrame->HasProperty(FlexContainerInfo());
if (reflowNeeded) {
// Trigger a reflow that generates additional flex property data.
// Hold onto aFrame while we do this, in case reflow destroys it.
AutoWeakFrame weakFrameRef(aFrame);
nsIPresShell* shell = flexFrame->PresContext()->PresShell();
flexFrame->AddStateBits(NS_STATE_FLEX_GENERATE_COMPUTED_VALUES);
shell->FrameNeedsReflow(flexFrame, nsIPresShell::eResize,
NS_FRAME_IS_DIRTY);
shell->FlushPendingNotifications(FlushType::Layout);
// Since the reflow may have side effects, get the flex frame
// again. But if the weakFrameRef is no longer valid, then we
// must bail out.
if (!weakFrameRef.IsAlive()) {
return nullptr;
}
flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame());
MOZ_ASSERT(!flexFrame || flexFrame->HasProperty(FlexContainerInfo()),
"The state bit should've made our forced-reflow "
"generate a FlexContainerInfo object");
}
}
return flexFrame;
}
/* static */
bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) {
MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
const WritingMode flexItemWM = aFrame->GetWritingMode();
const nsIFrame* flexContainer = aFrame->GetParent();
if (IsLegacyBox(flexContainer)) {
// For legacy boxes, the main axis is determined by "box-orient", and we can
// just directly check if that's vertical, and compare that to whether the
// item's WM is also vertical:
bool boxOrientIsVertical =
(flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical);
return flexItemWM.IsVertical() == boxOrientIsVertical;
}
// For modern CSS flexbox, we get our return value by asking two questions
// and comparing their answers.
// Question 1: does aFrame have the same inline axis as its flex container?
bool itemInlineAxisIsParallelToParent =
!flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
// Question 2: is aFrame's flex container row-oriented? (This tells us
// whether the flex container's main axis is its inline axis.)
auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
bool flexContainerIsRowOriented =
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW ||
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW_REVERSE;
// aFrame's inline axis is its flex container's main axis IFF the above
// questions have the same answer.
return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
}
/* static */
bool nsFlexContainerFrame::IsUsedFlexBasisContent(
const nsStyleCoord* aFlexBasis, const nsStyleCoord* aMainSize) {
// We have a used flex-basis of 'content' if flex-basis explicitly has that
// value, OR if flex-basis is 'auto' (deferring to the main-size property)
// and the main-size property is also 'auto'.
// See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
return (aFlexBasis->GetUnit() == eStyleUnit_Enumerated &&
aFlexBasis->GetIntValue() == NS_STYLE_FLEX_BASIS_CONTENT) ||
(aFlexBasis->GetUnit() == eStyleUnit_Auto &&
aMainSize->GetUnit() == eStyleUnit_Auto);
}
static mozilla::dom::FlexPhysicalDirection ConvertAxisOrientationTypeToAPIEnum(
AxisOrientationType aAxisOrientation) {
switch (aAxisOrientation) {
case eAxis_LR:
return mozilla::dom::FlexPhysicalDirection::Horizontal_lr;
case eAxis_RL:
return mozilla::dom::FlexPhysicalDirection::Horizontal_rl;
case eAxis_TB:
return mozilla::dom::FlexPhysicalDirection::Vertical_tb;
default:
return mozilla::dom::FlexPhysicalDirection::Vertical_bt;
}
}
void nsFlexContainerFrame::DoFlexLayout(
nsPresContext* aPresContext, ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput, nsReflowStatus& aStatus,
nscoord aContentBoxMainSize, nscoord aAvailableBSizeForContent,
nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize, nscoord aCrossGapSize) {
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
AutoCleanLinkedList<FlexLine> lines;
nsTArray<nsIFrame*> placeholderKids;
GenerateFlexLines(aPresContext, aReflowInput, aContentBoxMainSize,
aAvailableBSizeForContent, aStruts, aAxisTracker,
aMainGapSize, placeholderKids, lines);
if ((lines.getFirst()->IsEmpty() && !lines.getFirst()->getNext()) ||
aReflowInput.mStyleDisplay->IsContainLayout()) {
// If have no flex items, or if we are layout contained and
// want to behave as if we have none, our parent
// should synthesize a baseline if needed.
AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
}
// Construct our computed info if we've been asked to do so. This is
// necessary to do now so we can capture some computed values for
// FlexItems during layout that would not otherwise be saved (like
// size adjustments). We'll later fix up the line properties,
// because the correct values aren't available yet.
ComputedFlexContainerInfo* containerInfo = nullptr;
if (HasAnyStateBits(NS_STATE_FLEX_GENERATE_COMPUTED_VALUES)) {
containerInfo = GetProperty(FlexContainerInfo());
MOZ_ASSERT(containerInfo, "::Reflow() should have created container info.");
if (!aStruts.IsEmpty()) {
// We restarted DoFlexLayout, and may have stale mLines to clear:
containerInfo->mLines.Clear();
} else {
MOZ_ASSERT(containerInfo->mLines.IsEmpty(), "Shouldn't have lines yet.");
}
// Set the axis physical directions.
AxisOrientationType mainAxis = aAxisTracker.GetMainAxis();
AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis();
if (aAxisTracker.AreAxesInternallyReversed()) {
mainAxis = GetReverseAxis(mainAxis);
crossAxis = GetReverseAxis(crossAxis);
}
containerInfo->mMainAxisDirection =
ConvertAxisOrientationTypeToAPIEnum(mainAxis);
containerInfo->mCrossAxisDirection =
ConvertAxisOrientationTypeToAPIEnum(crossAxis);
for (const FlexLine* line = lines.getFirst(); line;
line = line->getNext()) {
ComputedFlexLineInfo* lineInfo = containerInfo->mLines.AppendElement();
// Most of the remaining lineInfo properties will be filled out at the
// end of this function (some will be provided by other functions),
// when we have real values. But we still add all the items here, so
// we can capture computed data for each item as we proceed.
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext()) {
nsIFrame* frame = item->Frame();
// The frame may be for an element, or it may be for an
// anonymous flex item, e.g. wrapping one or more text nodes.
// DevTools wants the content node for the actual child in
// the DOM tree, so we descend through anonymous boxes.
nsIFrame* targetFrame = GetFirstNonAnonBoxDescendant(frame);
nsIContent* content = targetFrame->GetContent();
// Skip over content that is only whitespace, which might
// have been broken off from a text node which is our real
// target.
while (content && content->TextIsOnlyWhitespace()) {
// If content is only whitespace, try the frame sibling.
targetFrame = targetFrame->GetNextSibling();
if (targetFrame) {
content = targetFrame->GetContent();
} else {
content = nullptr;
}
}
ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement();
itemInfo->mNode = content;
// itemInfo->mMainBaseSize and mMainDeltaSize will be filled out
// in ResolveFlexibleLengths(). Other measurements will be captured
// at the end of this function.
}
}
}
aContentBoxMainSize = ResolveFlexContainerMainSize(
aReflowInput, aAxisTracker, aContentBoxMainSize,
aAvailableBSizeForContent, lines.getFirst(), aStatus);
uint32_t lineIndex = 0;
for (FlexLine* line = lines.getFirst(); line;
line = line->getNext(), ++lineIndex) {
ComputedFlexLineInfo* lineInfo =
containerInfo ? &containerInfo->mLines[lineIndex] : nullptr;
line->ResolveFlexibleLengths(aContentBoxMainSize, lineInfo);
}
// If needed, capture the final clamp state from all the items.
if (containerInfo) {
uint32_t lineIndex = 0;
for (const FlexLine* line = lines.getFirst(); line;
line = line->getNext(), ++lineIndex) {
ComputedFlexLineInfo* lineInfo = &containerInfo->mLines[lineIndex];
uint32_t itemIndex = 0;
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext(), ++itemIndex) {
ComputedFlexItemInfo* itemInfo = &lineInfo->mItems[itemIndex];
itemInfo->mClampState =
item->WasMinClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_min
: (item->WasMaxClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_max
: mozilla::dom::FlexItemClampState::Unclamped);
}
}
}
// Cross Size Determination - Flexbox spec section 9.4
// ===================================================
// Calculate the hypothetical cross size of each item:
// 'sumLineCrossSizes' includes the size of all gaps between lines
nscoord sumLineCrossSizes = 0;
for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
for (FlexItem* item = line->GetFirstItem(); item; item = item->getNext()) {
// The item may already have the correct cross-size; only recalculate
// if the item's main size resolution (flexing) could have influenced it:
if (item->CanMainSizeInfluenceCrossSize(aAxisTracker)) {
Maybe<AutoFlexItemMainSizeOverride> sizeOverride;
if (item->HasIntrinsicRatio()) {
// For flex items with an aspect ratio, we have to impose an override
// for the main-size property *before* we even instantiate the reflow
// state, in order for aspect ratio calculations to produce the right
// cross size in the reflow state. (For other flex items, it's OK
// (and cheaper) to impose our main size *after* the reflow state has
// been constructed, since the main size shouldn't influence anything
// about cross-size measurement until we actually reflow the child.)
sizeOverride.emplace(*item);
}
WritingMode wm = item->Frame()->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(aPresContext, aReflowInput, item->Frame(),
availSize);
if (!sizeOverride) {
// Directly override the computed main-size, by tweaking reflow state:
if (item->IsInlineAxisMainAxis()) {
childReflowInput.SetComputedISize(item->GetMainSize());
} else {
childReflowInput.SetComputedBSize(item->GetMainSize());
}
}
SizeItemInCrossAxis(aPresContext, aAxisTracker, childReflowInput,
*item);
}
}
// Now that we've finished with this line's items, size the line itself:
line->ComputeCrossSizeAndBaseline(aAxisTracker);
sumLineCrossSizes += line->GetLineCrossSize();
// Add the cross axis gap space if this is not the last line
if (line->getNext()) {
sumLineCrossSizes += aCrossGapSize;
}
}
bool isCrossSizeDefinite;
const nscoord contentBoxCrossSize = ComputeCrossSize(
aReflowInput, aAxisTracker, sumLineCrossSizes, aAvailableBSizeForContent,
&isCrossSizeDefinite, aStatus);
// Set up state for cross-axis alignment, at a high level (outside the
// scope of a particular flex line)
CrossAxisPositionTracker crossAxisPosnTracker(
lines.getFirst(), aReflowInput, contentBoxCrossSize, isCrossSizeDefinite,
aAxisTracker, aCrossGapSize);
// Now that we know the cross size of each line (including
// "align-content:stretch" adjustments, from the CrossAxisPositionTracker
// constructor), we can create struts for any flex items with
// "visibility: collapse" (and restart flex layout).
if (aStruts.IsEmpty() && // (Don't make struts if we already did)
!ShouldUseMozBoxCollapseBehavior(aReflowInput.mStyleDisplay)) {
BuildStrutInfoFromCollapsedItems(lines.getFirst(), aStruts);
if (!aStruts.IsEmpty()) {
// Restart flex layout, using our struts.
return;
}
}
// If the container should derive its baseline from the first FlexLine,
// do that here (while crossAxisPosnTracker is conveniently pointing
// at the cross-start edge of that line, which the line's baseline offset is
// measured from):
nscoord flexContainerAscent;
if (!aAxisTracker.AreAxesInternallyReversed()) {
nscoord firstLineBaselineOffset =
lines.getFirst()->GetFirstBaselineOffset();
if (firstLineBaselineOffset == nscoord_MIN) {
// No baseline-aligned items in line. Use sentinel value to prompt us to
// get baseline from the first FlexItem after we've reflowed it.
flexContainerAscent = nscoord_MIN;
} else {
flexContainerAscent = ComputePhysicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.GetPosition() + firstLineBaselineOffset,
contentBoxCrossSize, aReflowInput, aAxisTracker);
}
}
const auto justifyContent =
IsLegacyBox(aReflowInput.mFrame)
? ConvertLegacyStyleToJustifyContent(StyleXUL())
: aReflowInput.mStylePosition->mJustifyContent;
// Recalculate the gap sizes if necessary now that the container size has
// been determined.
if (aReflowInput.ComputedBSize() == NS_INTRINSICSIZE &&
aReflowInput.mStylePosition->mRowGap.HasPercent()) {
bool rowIsCross = aAxisTracker.IsRowOriented();
nscoord newBlockGapSize = nsLayoutUtils::ResolveGapToLength(
aReflowInput.mStylePosition->mRowGap,
rowIsCross ? contentBoxCrossSize : aContentBoxMainSize);
if (rowIsCross) {
crossAxisPosnTracker.SetCrossGapSize(newBlockGapSize);
} else {
for (FlexLine* line = lines.getFirst(); line;
line = line->getNext(), ++lineIndex) {
line->SetMainGapSize(newBlockGapSize);
}
}
}
lineIndex = 0;
for (FlexLine* line = lines.getFirst(); line;
line = line->getNext(), ++lineIndex) {
// Main-Axis Alignment - Flexbox spec section 9.5
// ==============================================
line->PositionItemsInMainAxis(justifyContent, aContentBoxMainSize,
aAxisTracker);
// See if we need to extract some computed info for this line.
if (MOZ_UNLIKELY(containerInfo)) {
ComputedFlexLineInfo& lineInfo = containerInfo->mLines[lineIndex];
lineInfo.mCrossStart = crossAxisPosnTracker.GetPosition();
}
// Cross-Axis Alignment - Flexbox spec section 9.6
// ===============================================
line->PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(),
aAxisTracker);
crossAxisPosnTracker.TraverseLine(*line);
crossAxisPosnTracker.TraversePackingSpace();
if (line->getNext()) {
crossAxisPosnTracker.TraverseGap();
}
}
// If the container should derive its baseline from the last FlexLine,
// do that here (while crossAxisPosnTracker is conveniently pointing
// at the cross-end edge of that line, which the line's baseline offset is
// measured from):
if (aAxisTracker.AreAxesInternallyReversed()) {
nscoord lastLineBaselineOffset = lines.getLast()->GetFirstBaselineOffset();
if (lastLineBaselineOffset == nscoord_MIN) {
// No baseline-aligned items in line. Use sentinel value to prompt us to
// get baseline from the last FlexItem after we've reflowed it.
flexContainerAscent = nscoord_MIN;
} else {
flexContainerAscent = ComputePhysicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.GetPosition() - lastLineBaselineOffset,
contentBoxCrossSize, aReflowInput, aAxisTracker);
}
}
// Before giving each child a final reflow, calculate the origin of the
// flex container's content box (with respect to its border-box), so that
// we can compute our flex item's final positions.
WritingMode flexWM = aReflowInput.GetWritingMode();
LogicalMargin containerBP = aReflowInput.ComputedLogicalBorderPadding();
// Unconditionally skip block-end border & padding for now, regardless of
// writing-mode/GetLogicalSkipSides. We add it lower down, after we've
// established baseline and decided whether bottom border-padding fits (if
// we're fragmented).
const nscoord blockEndContainerBP = containerBP.BEnd(flexWM);
const LogicalSides skipSides =
GetLogicalSkipSides(&aReflowInput) | LogicalSides(eLogicalSideBitsBEnd);
containerBP.ApplySkipSides(skipSides);
const LogicalPoint containerContentBoxOrigin(
flexWM, containerBP.IStart(flexWM), containerBP.BStart(flexWM));
// Determine flex container's border-box size (used in positioning children):
LogicalSize logSize = aAxisTracker.LogicalSizeFromFlexRelativeSizes(
aContentBoxMainSize, contentBoxCrossSize);
logSize += aReflowInput.ComputedLogicalBorderPadding().Size(flexWM);
nsSize containerSize = logSize.GetPhysicalSize(flexWM);
// If the flex container has no baseline-aligned items, it will use this item
// (the first item, discounting any under-the-hood reversing that we've done)
// to determine its baseline:
const FlexItem* const firstItem = aAxisTracker.AreAxesInternallyReversed()
? lines.getLast()->GetLastItem()
: lines.getFirst()->GetFirstItem();
// FINAL REFLOW: Give each child frame another chance to reflow, now that
// we know its final size and position.
for (const FlexLine* line = lines.getFirst(); line; line = line->getNext()) {
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext()) {
LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
item->GetMainPosition(), item->GetCrossPosition(),
aContentBoxMainSize, contentBoxCrossSize);
// Adjust framePos to be relative to the container's border-box
// (i.e. its frame rect), instead of the container's content-box:
framePos += containerContentBoxOrigin;
// (Intentionally snapshotting this before ApplyRelativePositioning, to
// maybe use for setting the flex container's baseline.)
const nscoord itemNormalBPos = framePos.B(flexWM);
// Check if we actually need to reflow the item -- if we already reflowed
// it with the right size, we can just reposition it as-needed.
bool itemNeedsReflow = true; // (Start out assuming the worst.)
if (item->HadMeasuringReflow()) {
LogicalSize finalFlexItemCBSize =
aAxisTracker.LogicalSizeFromFlexRelativeSizes(item->GetMainSize(),
item->GetCrossSize());
// We've already reflowed the child once. Was the size we gave it in
// that reflow the same as its final (post-flexing/stretching) size?
if (finalFlexItemCBSize ==
LogicalSize(flexWM,
item->Frame()->GetContentRectRelativeToSelf().Size())) {
// Even if our size hasn't changed, some of our descendants might
// care that our bsize is now considered "definite" (whereas it
// wasn't in our previous "measuring" reflow), if they have a
// relative bsize.
if (!(item->Frame()->GetStateBits() &
NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Item has the correct size (and its children don't care that
// it's now "definite"). Let's just make sure it's at the right
// position.
itemNeedsReflow = false;
MoveFlexItemToFinalPosition(aReflowInput, *item, framePos,
containerSize);
}
}
if (itemNeedsReflow) {
MOZ_LOG(gFlexContainerLog, LogLevel::Debug,
("[perf] Flex item needed both a measuring reflow and "
"a final reflow\n"));
}
}
if (itemNeedsReflow) {
ReflowFlexItem(aPresContext, aAxisTracker, aReflowInput, *item,
framePos, containerSize);
}
// If the item has auto margins, and we were tracking the UsedMargin
// property, set the property to the computed margin values.
if (item->HasAnyAutoMargin()) {
nsMargin* propValue =
item->Frame()->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = item->GetMargin();
}
}
// If this is our first item and we haven't established a baseline for
// the container yet (i.e. if we don't have 'align-self: baseline' on any
// children), then use this child's first baseline as the container's
// baseline.
if (item == firstItem && flexContainerAscent == nscoord_MIN) {
flexContainerAscent = itemNormalBPos + item->ResolvedAscent(true);
}
}
}
if (!placeholderKids.IsEmpty()) {
ReflowPlaceholders(aPresContext, aReflowInput, placeholderKids,
containerContentBoxOrigin, containerSize);
}
// Compute flex container's desired size (in its own writing-mode),
// starting w/ content-box size & growing from there:
LogicalSize desiredSizeInFlexWM =
aAxisTracker.LogicalSizeFromFlexRelativeSizes(aContentBoxMainSize,
contentBoxCrossSize);
// Add border/padding (w/ skipSides already applied):
desiredSizeInFlexWM.ISize(flexWM) += containerBP.IStartEnd(flexWM);
desiredSizeInFlexWM.BSize(flexWM) += containerBP.BStartEnd(flexWM);
if (flexContainerAscent == nscoord_MIN) {
// Still don't have our baseline set -- this happens if we have no
// children (or if our children are huge enough that they have nscoord_MIN
// as their baseline... in which case, we'll use the wrong baseline, but no
// big deal)
NS_WARNING_ASSERTION(
lines.getFirst()->IsEmpty(),
"Have flex items but didn't get an ascent - that's odd (or there are "
"just gigantic sizes involved)");
// Per spec, synthesize baseline from the flex container's content box
// (i.e. use block-end side of content-box)
// XXXdholbert This only makes sense if parent's writing mode is
// horizontal (& even then, really we should be using the BSize in terms
// of the parent's writing mode, not ours). Clean up in bug 1155322.
flexContainerAscent = desiredSizeInFlexWM.BSize(flexWM);
}
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// This will force our parent to call GetLogicalBaseline, which will
// synthesize a margin-box baseline.
aDesiredSize.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
} else {
// XXXdholbert flexContainerAscent needs to be in terms of
// our parent's writing-mode here. See bug 1155322.
aDesiredSize.SetBlockStartAscent(flexContainerAscent);
}
// Now: If we're complete, add bottom border/padding to desired height (which
// we skipped via skipSides) -- unless that pushes us over available height,
// in which case we become incomplete (unless we already weren't asking for
// any height, in which case we stay complete to avoid looping forever).
// NOTE: If we're auto-height, we allow our bottom border/padding to push us
// over the available height without requesting a continuation, for
// consistency with the behavior of "display:block" elements.
if (aStatus.IsComplete()) {
nscoord desiredBSizeWithBEndBP =
desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
if (aReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE ||
desiredSizeInFlexWM.BSize(flexWM) == 0 ||
desiredBSizeWithBEndBP <= aReflowInput.AvailableBSize() ||
aReflowInput.ComputedBSize() == NS_INTRINSICSIZE) {
// Update desired height to include block-end border/padding
desiredSizeInFlexWM.BSize(flexWM) = desiredBSizeWithBEndBP;
} else {
// We couldn't fit bottom border/padding, so we'll need a continuation.
aStatus.SetIncomplete();
}
}
// Calculate the container baselines so that our parent can baseline-align us.
mBaselineFromLastReflow = flexContainerAscent;
mLastBaselineFromLastReflow = lines.getLast()->GetLastBaselineOffset();
if (mLastBaselineFromLastReflow == nscoord_MIN) {
// XXX we fall back to a mirrored first baseline here for now, but this
// should probably use the last baseline of the last item or something.
mLastBaselineFromLastReflow =
desiredSizeInFlexWM.BSize(flexWM) - flexContainerAscent;
}
// Convert flex container's final desired size to parent's WM, for outparam.
aDesiredSize.SetSize(flexWM, desiredSizeInFlexWM);
// Overflow area = union(my overflow area, kids' overflow areas)
aDesiredSize.SetOverflowAreasToDesiredBounds();
for (nsIFrame* childFrame : mFrames) {
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, childFrame);
}
FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, aReflowInput,
aStatus);
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize)
// Finally update our line and item measurements in our containerInfo.
if (MOZ_UNLIKELY(containerInfo)) {
lineIndex = 0;
for (const FlexLine* line = lines.getFirst(); line;
line = line->getNext(), ++lineIndex) {
ComputedFlexLineInfo& lineInfo = containerInfo->mLines[lineIndex];
lineInfo.mCrossSize = line->GetLineCrossSize();
lineInfo.mFirstBaselineOffset = line->GetFirstBaselineOffset();
lineInfo.mLastBaselineOffset = line->GetLastBaselineOffset();
uint32_t itemIndex = 0;
for (const FlexItem* item = line->GetFirstItem(); item;
item = item->getNext(), ++itemIndex) {
ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex];
itemInfo.mFrameRect = item->Frame()->GetRect();
itemInfo.mMainMinSize = item->GetMainMinSize();
itemInfo.mMainMaxSize = item->GetMainMaxSize();
itemInfo.mCrossMinSize = item->GetCrossMinSize();
itemInfo.mCrossMaxSize = item->GetCrossMaxSize();
}
}
}
}
void nsFlexContainerFrame::MoveFlexItemToFinalPosition(
const ReflowInput& aReflowInput, const FlexItem& aItem,
LogicalPoint& aFramePos, const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
// If item is relpos, look up its offsets (cached from prev reflow)
LogicalMargin logicalOffsets(outerWM);
if (NS_STYLE_POSITION_RELATIVE == aItem.Frame()->StyleDisplay()->mPosition) {
nsMargin* cachedOffsets =
aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
MOZ_ASSERT(cachedOffsets,
"relpos previously-reflowed frame should've cached its offsets");
logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
}
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, logicalOffsets,
&aFramePos, aContainerSize);
aItem.Frame()->SetPosition(outerWM, aFramePos, aContainerSize);
PositionFrameView(aItem.Frame());
PositionChildViews(aItem.Frame());
}
void nsFlexContainerFrame::ReflowFlexItem(
nsPresContext* aPresContext, const FlexboxAxisTracker& aAxisTracker,
const ReflowInput& aReflowInput, const FlexItem& aItem,
LogicalPoint& aFramePos, const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
WritingMode wm = aItem.Frame()->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(aPresContext, aReflowInput, aItem.Frame(),
availSize);
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
// Keep track of whether we've overriden the child's computed ISize
// and/or BSize, so we can set its resize flags accordingly.
bool didOverrideComputedISize = false;
bool didOverrideComputedBSize = false;
// Override computed main-size
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
if (aItem.IsInlineAxisMainAxis()) {
childReflowInput.SetComputedISize(aItem.GetMainSize());
didOverrideComputedISize = true;
} else {
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
childReflowInput.SetComputedBSize(aItem.GetMainSize());
didOverrideComputedBSize = true;
}
// Override reflow state's computed cross-size if either:
// - the item was stretched (in which case we're imposing a cross size)
// ...or...
// - the item it has an aspect ratio (in which case the cross-size that's
// currently in the reflow state is based on arithmetic involving a stale
// main-size value that we just stomped on above). (Note that we could handle
// this case using an AutoFlexItemMainSizeOverride, as we do elsewhere; but
// given that we *already know* the correct cross size to use here, it's
// cheaper to just directly set it instead of setting a frame property.)
if (aItem.IsStretched() || aItem.HasIntrinsicRatio()) {
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
if (aItem.IsInlineAxisCrossAxis()) {
childReflowInput.SetComputedISize(aItem.GetCrossSize());
didOverrideComputedISize = true;
} else {
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
childReflowInput.SetComputedBSize(aItem.GetCrossSize());
didOverrideComputedBSize = true;
}
}
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) {
// This item is stretched (in the cross axis), and that axis is its block
// axis. That stretching effectively gives it a relative BSize.
// XXXdholbert This flag only makes a difference if we use the flex items'
// frame-state when deciding whether to reflow them -- and we don't, as of
// the changes in bug 851607. So this has no effect right now, but it might
// make a difference if we optimize to use dirty bits in the
// future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are
// intended to catch any regressions here, if we end up relying on this bit
// & neglecting to set it.)
aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
// If we're overriding the computed width or height, *and* we had an
// earlier "measuring" reflow, then this upcoming reflow needs to be
// treated as a resize.
if (aItem.HadMeasuringReflow()) {
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
if (didOverrideComputedISize) {
// (This is somewhat redundant, since ReflowInput::InitResizeFlags()
// already calls SetIResize() whenever our computed ISize has changed
// since the previous reflow. Still, it's nice for symmetry, and it might
// be necessary for some edge cases.)
childReflowInput.SetIResize(true);
}
Bug 1174003 part 5: [css-flexbox] Remove is-{main,cross}-axis-horizontal checks from ReflowFlexItem. r=mats This patch mostly[1] doesn't affect behavior. It just changes some ReflowInput width/height-setting logic to use ISize/BSize setters instead of width/height setters. To help with this, I'm also adding some more getters to answer the question "is this flex item's {inline,block} axis the same as the flex container's {main,cross} axis", for convenience/readability at callsites. (All of these getters are simply giving a different view of the same underlying single bit of information.) [1] One way this patch *kind of* affects behavior: it generalizes the conditions under which we set the NS_FRAME_CONTAINS_RELATIVE_BSIZE flag on a flex item. But that doesn't actually have any user-visible effects right now, because that flag's only purpose is to determine whether we should reflow, and currently we always reflow all flex items. If/when that changes, though (i.e. when we start reflowing flex items more selectively), this patch is adding a reftest that may test this generalized behavior. (The reftest actually trivially passes right now, due to unrelated bug 1441348.) MozReview-Commit-ID: 4NEKLBAjowh --HG-- rename : layout/reftests/flexbox/flexbox-resizeviewport-1-helper.html => layout/reftests/flexbox/flexbox-resizeviewport-2-helper.html rename : layout/reftests/flexbox/flexbox-resizeviewport-1-ref.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2-ref.xhtml rename : layout/reftests/flexbox/flexbox-resizeviewport-1.xhtml => layout/reftests/flexbox/flexbox-resizeviewport-2.xhtml extra : rebase_source : c6535e1cdcb1757a16cd02e0d485638827344c23
2018-02-28 02:40:18 +03:00
if (didOverrideComputedBSize) {
childReflowInput.SetBResize(true);
}
}
// NOTE: Be very careful about doing anything else with childReflowInput
// after this point, because some of its methods (e.g. SetComputedWidth)
// internally call InitResizeFlags and stomp on mVResize & mHResize.
ReflowOutput childDesiredSize(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(aItem.Frame(), aPresContext, childDesiredSize, childReflowInput,
outerWM, aFramePos, aContainerSize, 0, childReflowStatus);
// XXXdholbert Once we do pagination / splitting, we'll need to actually
// handle incomplete childReflowStatuses. But for now, we give our kids
// unconstrained available height, which means they should always
// complete.
MOZ_ASSERT(childReflowStatus.IsComplete(),
"We gave flex item unconstrained available height, so it "
"should be complete");
LogicalMargin offsets =
childReflowInput.ComputedLogicalOffsets().ConvertTo(outerWM, wm);
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, offsets,
&aFramePos, aContainerSize);
FinishReflowChild(aItem.Frame(), aPresContext, childDesiredSize,
&childReflowInput, outerWM, aFramePos, aContainerSize, 0);
aItem.SetAscent(childDesiredSize.BlockStartAscent());
}
void nsFlexContainerFrame::ReflowPlaceholders(
nsPresContext* aPresContext, const ReflowInput& aReflowInput,
nsTArray<nsIFrame*>& aPlaceholders, const LogicalPoint& aContentBoxOrigin,
const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
// As noted in this method's documentation, we'll reflow every entry in
// |aPlaceholders| at the container's content-box origin.
for (nsIFrame* placeholder : aPlaceholders) {
MOZ_ASSERT(placeholder->IsPlaceholderFrame(),
"placeholders array should only contain placeholder frames");
WritingMode wm = placeholder->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
ReflowInput childReflowInput(aPresContext, aReflowInput, placeholder,
availSize);
ReflowOutput childDesiredSize(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(placeholder, aPresContext, childDesiredSize, childReflowInput,
outerWM, aContentBoxOrigin, aContainerSize, 0,
childReflowStatus);
FinishReflowChild(placeholder, aPresContext, childDesiredSize,
&childReflowInput, outerWM, aContentBoxOrigin,
aContainerSize, 0);
// Mark the placeholder frame to indicate that it's not actually at the
// element's static position, because we need to apply CSS Alignment after
// we determine the OOF's size:
placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
}
nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
IntrinsicISizeType aType) {
nscoord containerISize = 0;
RenumberList();
const nsStylePosition* stylePos = StylePosition();
const FlexboxAxisTracker axisTracker(this, GetWritingMode());
nscoord mainGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
NS_UNCONSTRAINEDSIZE);
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
NS_UNCONSTRAINEDSIZE);
}
const bool useMozBoxCollapseBehavior =
ShouldUseMozBoxCollapseBehavior(StyleDisplay());
// The loop below sets aside space for a gap before each item besides the
// first. This bool helps us handle that special-case.
bool onFirstChild = true;
for (nsIFrame* childFrame : mFrames) {
// If we're using legacy "visibility:collapse" behavior, then we don't
// care about the sizes of any collapsed children.
if (!useMozBoxCollapseBehavior ||
(NS_STYLE_VISIBILITY_COLLAPSE !=
childFrame->StyleVisibility()->mVisible)) {
nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, childFrame, aType);
// * For a row-oriented single-line flex container, the intrinsic
// {min/pref}-isize is the sum of its items' {min/pref}-isizes and
// (n-1) column gaps.
// * For a column-oriented flex container, the intrinsic min isize
// is the max of its items' min isizes.
// * For a row-oriented multi-line flex container, the intrinsic
// pref isize is former (sum), and its min isize is the latter (max).
bool isSingleLine = (NS_STYLE_FLEX_WRAP_NOWRAP == stylePos->mFlexWrap);
if (axisTracker.IsRowOriented() &&
(isSingleLine || aType == nsLayoutUtils::PREF_ISIZE)) {
containerISize += childISize;
if (!onFirstChild) {
containerISize += mainGapSize;
}
onFirstChild = false;
} else { // (col-oriented, or MIN_ISIZE for multi-line row flex
// container)
containerISize = std::max(containerISize, childISize);
}
}
}
return containerISize;
}
/* virtual */ nscoord nsFlexContainerFrame::GetMinISize(
gfxContext* aRenderingContext) {
DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
mCachedMinISize =
StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRenderingContext, nsLayoutUtils::MIN_ISIZE);
}
return mCachedMinISize;
}
/* virtual */ nscoord nsFlexContainerFrame::GetPrefISize(
gfxContext* aRenderingContext) {
DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
mCachedPrefISize =
StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRenderingContext, nsLayoutUtils::PREF_ISIZE);
}
return mCachedPrefISize;
}