gecko-dev/layout/base/nsCSSRendering.cpp

5133 строки
192 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:ts=2:et:sw=2:
2012-05-21 15:12:37 +04:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* utility functions for drawing borders and backgrounds */
#include <ctime>
#include "mozilla/DebugOnly.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MathAlgorithms.h"
1998-04-14 00:24:54 +04:00
#include "nsStyleConsts.h"
#include "nsPresContext.h"
1998-04-14 00:24:54 +04:00
#include "nsIFrame.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsIPresShell.h"
#include "nsFrameManager.h"
#include "nsStyleContext.h"
#include "nsGkAtoms.h"
#include "nsCSSAnonBoxes.h"
#include "nsIContent.h"
#include "nsIDocumentInlines.h"
#include "nsIScrollableFrame.h"
#include "imgIRequest.h"
#include "imgIContainer.h"
#include "ImageOps.h"
#include "nsCSSRendering.h"
#include "nsCSSColorUtils.h"
#include "nsITheme.h"
#include "nsThemeConstants.h"
#include "nsLayoutUtils.h"
#include "nsBlockFrame.h"
#include "gfxContext.h"
#include "nsRenderingContext.h"
#include "nsStyleStructInlines.h"
#include "nsCSSFrameConstructor.h"
#include "nsCSSProps.h"
#include "nsContentUtils.h"
#include "nsSVGEffects.h"
#include "nsSVGIntegrationUtils.h"
#include "gfxDrawable.h"
#include "GeckoProfiler.h"
#include "nsCSSRenderingBorders.h"
#include "mozilla/css/ImageLoader.h"
#include "ImageContainer.h"
#include "mozilla/Telemetry.h"
#include "gfxUtils.h"
#include "gfxColor.h"
#include "gfxGradientCache.h"
#include "GraphicsFilter.h"
#include <algorithm>
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::gfx;
using mozilla::image::ImageOps;
using mozilla::CSSSizeOrRatio;
static int gFrameTreeLockCount = 0;
// To avoid storing this data on nsInlineFrame (bloat) and to avoid
// recalculating this for each frame in a continuation (perf), hold
// a cache of various coordinate information that we need in order
// to paint inline backgrounds.
struct InlineBackgroundData
{
InlineBackgroundData()
: mFrame(nullptr), mBlockFrame(nullptr)
{
}
~InlineBackgroundData()
{
}
void Reset()
{
mBoundingBox.SetRect(0,0,0,0);
mContinuationPoint = mLineContinuationPoint = mUnbrokenWidth = 0;
mFrame = mBlockFrame = nullptr;
mLeftBorderData.Reset();
}
/**
* Return a continuous rect for (an inline) aFrame relative to the
* continuation that draws the left-most part of the background.
* This is used when painting backgrounds.
*/
nsRect GetContinuousRect(nsIFrame* aFrame)
{
MOZ_ASSERT(aFrame->GetType() == nsGkAtoms::inlineFrame);
SetFrame(aFrame);
nscoord x;
if (mBidiEnabled) {
x = mLineContinuationPoint;
// Scan continuations on the same line as aFrame and accumulate the widths
// of frames that are to the left (if this is an LTR block) or right
// (if it's RTL) of the current one.
bool isRtlBlock = (mBlockFrame->StyleVisibility()->mDirection ==
NS_STYLE_DIRECTION_RTL);
nscoord curOffset = aFrame->GetOffsetTo(mBlockFrame).x;
// If the continuation is fluid we know inlineFrame is not on the same line.
// If it's not fluid, we need to test further to be sure.
nsIFrame* inlineFrame = aFrame->GetPrevContinuation();
while (inlineFrame && !inlineFrame->GetNextInFlow() &&
AreOnSameLine(aFrame, inlineFrame)) {
nscoord frameXOffset = inlineFrame->GetOffsetTo(mBlockFrame).x;
if(isRtlBlock == (frameXOffset >= curOffset)) {
x += inlineFrame->GetSize().width;
}
inlineFrame = inlineFrame->GetPrevContinuation();
}
inlineFrame = aFrame->GetNextContinuation();
while (inlineFrame && !inlineFrame->GetPrevInFlow() &&
AreOnSameLine(aFrame, inlineFrame)) {
nscoord frameXOffset = inlineFrame->GetOffsetTo(mBlockFrame).x;
if(isRtlBlock == (frameXOffset >= curOffset)) {
x += inlineFrame->GetSize().width;
}
inlineFrame = inlineFrame->GetNextContinuation();
}
if (isRtlBlock) {
// aFrame itself is also to the right of its left edge, so add its width.
x += aFrame->GetSize().width;
// x is now the distance from the left edge of aFrame to the right edge
// of the unbroken content. Change it to indicate the distance from the
// left edge of the unbroken content to the left edge of aFrame.
x = mUnbrokenWidth - x;
}
} else {
x = mContinuationPoint;
}
// Assume background-origin: border and return a rect with offsets
// relative to (0,0). If we have a different background-origin,
// then our rect should be deflated appropriately by our caller.
return nsRect(-x, 0, mUnbrokenWidth, mFrame->GetSize().height);
}
/**
* Return a continuous rect for (an inline) aFrame relative to the
* continuation that should draw the left-border. This is used when painting
* borders and clipping backgrounds. This may NOT be the same continuous rect
* as for drawing backgrounds; the continuation with the left-border might be
* somewhere in the middle of that rect (e.g. BIDI), in those cases we need
* the reverse background order starting at the left-border continuation.
*/
nsRect GetBorderContinuousRect(nsIFrame* aFrame, nsRect aBorderArea)
{
// Calling GetContinuousRect(aFrame) here may lead to Reset/Init which
// resets our mLeftBorderData so we save it ...
LeftBorderData saved(mLeftBorderData);
nsRect joinedBorderArea = GetContinuousRect(aFrame);
if (!saved.mIsValid || saved.mFrame != mLeftBorderData.mFrame) {
if (aFrame == mLeftBorderData.mFrame) {
mLeftBorderData.SetX(joinedBorderArea.x);
} else if (mLeftBorderData.mFrame) {
mLeftBorderData.SetX(GetContinuousRect(mLeftBorderData.mFrame).x);
}
} else {
// ... and restore it when possible.
mLeftBorderData.mX = saved.mX;
}
if (joinedBorderArea.x > mLeftBorderData.mX) {
joinedBorderArea.x =
-(mUnbrokenWidth + joinedBorderArea.x - aBorderArea.width);
} else {
joinedBorderArea.x -= mLeftBorderData.mX;
}
return joinedBorderArea;
}
nsRect GetBoundingRect(nsIFrame* aFrame)
{
SetFrame(aFrame);
// Move the offsets relative to (0,0) which puts the bounding box into
// our coordinate system rather than our parent's. We do this by
// moving it the back distance from us to the bounding box.
// This also assumes background-origin: border, so our caller will
// need to deflate us if needed.
nsRect boundingBox(mBoundingBox);
2003-07-05 19:04:34 +04:00
nsPoint point = mFrame->GetPosition();
boundingBox.MoveBy(-point.x, -point.y);
return boundingBox;
}
protected:
struct LeftBorderData {
nsIFrame* mFrame; // the continuation that may have a left-border
nscoord mX; // cached GetContinuousRect(mFrame).x
bool mIsValid; // true if mX is valid
void Reset() { mFrame = nullptr; mIsValid = false; }
void SetX(nscoord aX) { mX = aX; mIsValid = true; }
};
nsIFrame* mFrame;
nsBlockFrame* mBlockFrame;
nsRect mBoundingBox;
nscoord mContinuationPoint;
nscoord mUnbrokenWidth;
nscoord mLineContinuationPoint;
LeftBorderData mLeftBorderData;
bool mBidiEnabled;
void SetFrame(nsIFrame* aFrame)
{
NS_PRECONDITION(aFrame, "Need a frame");
NS_ASSERTION(gFrameTreeLockCount > 0,
"Can't call this when frame tree is not locked");
if (aFrame == mFrame) {
return;
}
nsIFrame *prevContinuation = GetPrevContinuation(aFrame);
if (!prevContinuation || mFrame != prevContinuation) {
// Ok, we've got the wrong frame. We have to start from scratch.
Reset();
Init(aFrame);
return;
}
// Get our last frame's size and add its width to our continuation
// point before we cache the new frame.
2003-07-05 19:04:34 +04:00
mContinuationPoint += mFrame->GetSize().width;
// If this a new line, update mLineContinuationPoint.
if (mBidiEnabled &&
(aFrame->GetPrevInFlow() || !AreOnSameLine(mFrame, aFrame))) {
mLineContinuationPoint = mContinuationPoint;
}
mFrame = aFrame;
}
nsIFrame* GetPrevContinuation(nsIFrame* aFrame)
{
nsIFrame* prevCont = aFrame->GetPrevContinuation();
if (!prevCont &&
(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
nsIFrame* block = static_cast<nsIFrame*>
(aFrame->Properties().Get(nsIFrame::IBSplitPrevSibling()));
if (block) {
// The {ib} properties are only stored on first continuations
NS_ASSERTION(!block->GetPrevContinuation(),
"Incorrect value for IBSplitPrevSibling");
prevCont = static_cast<nsIFrame*>
(block->Properties().Get(nsIFrame::IBSplitPrevSibling()));
NS_ASSERTION(prevCont, "How did that happen?");
}
}
return prevCont;
}
nsIFrame* GetNextContinuation(nsIFrame* aFrame)
{
nsIFrame* nextCont = aFrame->GetNextContinuation();
if (!nextCont &&
(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
// The {ib} properties are only stored on first continuations
aFrame = aFrame->FirstContinuation();
nsIFrame* block = static_cast<nsIFrame*>
(aFrame->Properties().Get(nsIFrame::IBSplitSibling()));
if (block) {
nextCont = static_cast<nsIFrame*>
(block->Properties().Get(nsIFrame::IBSplitSibling()));
NS_ASSERTION(nextCont, "How did that happen?");
}
}
return nextCont;
}
void Init(nsIFrame* aFrame)
{
mLeftBorderData.Reset();
mBidiEnabled = aFrame->PresContext()->BidiEnabled();
if (mBidiEnabled) {
// Find the containing block frame
nsIFrame* frame = aFrame;
do {
frame = frame->GetParent();
mBlockFrame = do_QueryFrame(frame);
}
while (frame && frame->IsFrameOfType(nsIFrame::eLineParticipant));
NS_ASSERTION(mBlockFrame, "Cannot find containing block.");
}
// Start with the previous flow frame as our continuation point
// is the total of the widths of the previous frames.
nsIFrame* inlineFrame = GetPrevContinuation(aFrame);
while (inlineFrame) {
if (!mLeftBorderData.mFrame &&
!inlineFrame->GetSkipSides().Left()) {
mLeftBorderData.mFrame = inlineFrame;
}
2003-07-05 19:04:34 +04:00
nsRect rect = inlineFrame->GetRect();
mContinuationPoint += rect.width;
if (mBidiEnabled && !AreOnSameLine(aFrame, inlineFrame)) {
mLineContinuationPoint += rect.width;
}
mUnbrokenWidth += rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = GetPrevContinuation(inlineFrame);
}
// Next add this frame and subsequent frames to the bounding box and
// unbroken width.
inlineFrame = aFrame;
while (inlineFrame) {
if (!mLeftBorderData.mFrame &&
!inlineFrame->GetSkipSides().Left()) {
mLeftBorderData.mFrame = inlineFrame;
}
2003-07-05 19:04:34 +04:00
nsRect rect = inlineFrame->GetRect();
mUnbrokenWidth += rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = GetNextContinuation(inlineFrame);
}
mFrame = aFrame;
}
bool AreOnSameLine(nsIFrame* aFrame1, nsIFrame* aFrame2) {
bool isValid1, isValid2;
nsBlockInFlowLineIterator it1(mBlockFrame, aFrame1, &isValid1);
nsBlockInFlowLineIterator it2(mBlockFrame, aFrame2, &isValid2);
return isValid1 && isValid2 &&
// Make sure aFrame1 and aFrame2 are in the same continuation of
// mBlockFrame.
it1.GetContainer() == it2.GetContainer() &&
// And on the same line in it
it1.GetLine() == it2.GetLine();
}
};
// A resolved color stop --- with a specific position along the gradient line,
// and a Thebes color
struct ColorStop {
ColorStop(double aPosition, gfxRGBA aColor) :
mPosition(aPosition), mColor(aColor) {}
double mPosition; // along the gradient line; 0=start, 1=end
gfxRGBA mColor;
};
/* Local functions */
static void DrawBorderImage(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
const nsRect& aDirtyRect,
Sides aSkipSides);
static nscolor MakeBevelColor(mozilla::css::Side whichSide, uint8_t style,
nscolor aBackgroundColor,
nscolor aBorderColor);
static InlineBackgroundData* gInlineBGData = nullptr;
// Initialize any static variables used by nsCSSRendering.
void nsCSSRendering::Init()
{
NS_ASSERTION(!gInlineBGData, "Init called twice");
gInlineBGData = new InlineBackgroundData();
}
// Clean up any global variables used by nsCSSRendering.
void nsCSSRendering::Shutdown()
{
delete gInlineBGData;
gInlineBGData = nullptr;
}
1998-04-14 00:24:54 +04:00
/**
* Make a bevel color
*/
static nscolor
MakeBevelColor(mozilla::css::Side whichSide, uint8_t style,
nscolor aBackgroundColor, nscolor aBorderColor)
1998-04-14 00:24:54 +04:00
{
nscolor colors[2];
nscolor theColor;
1999-03-05 22:23:52 +03:00
// Given a background color and a border color
// calculate the color used for the shading
NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor);
if ((style == NS_STYLE_BORDER_STYLE_OUTSET) ||
1998-04-14 00:24:54 +04:00
(style == NS_STYLE_BORDER_STYLE_RIDGE)) {
// Flip colors for these two border styles
1998-04-14 00:24:54 +04:00
switch (whichSide) {
case NS_SIDE_BOTTOM: whichSide = NS_SIDE_TOP; break;
case NS_SIDE_RIGHT: whichSide = NS_SIDE_LEFT; break;
case NS_SIDE_TOP: whichSide = NS_SIDE_BOTTOM; break;
case NS_SIDE_LEFT: whichSide = NS_SIDE_RIGHT; break;
}
}
switch (whichSide) {
case NS_SIDE_BOTTOM:
theColor = colors[1];
1998-04-14 00:24:54 +04:00
break;
case NS_SIDE_RIGHT:
theColor = colors[1];
1998-04-14 00:24:54 +04:00
break;
case NS_SIDE_TOP:
theColor = colors[0];
1998-04-14 00:24:54 +04:00
break;
case NS_SIDE_LEFT:
1999-04-14 01:52:19 +04:00
default:
theColor = colors[0];
1998-04-14 00:24:54 +04:00
break;
}
return theColor;
}
static bool
GetRadii(nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aOrigBorderArea, const nsRect& aBorderArea,
nscoord aRadii[8])
{
bool haveRoundedCorners;
nsSize sz = aBorderArea.Size();
nsSize frameSize = aForFrame->GetSize();
if (&aBorder == aForFrame->StyleBorder() &&
frameSize == aOrigBorderArea.Size()) {
haveRoundedCorners = aForFrame->GetBorderRadii(sz, sz, Sides(), aRadii);
} else {
haveRoundedCorners =
nsIFrame::ComputeBorderRadii(aBorder.mBorderRadius, frameSize, sz, Sides(), aRadii);
}
return haveRoundedCorners;
}
static bool
GetRadii(nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aOrigBorderArea, const nsRect& aBorderArea,
gfxCornerSizes* aBgRadii)
{
nscoord radii[8];
bool haveRoundedCorners = GetRadii(aForFrame, aBorder, aOrigBorderArea, aBorderArea, radii);
if (haveRoundedCorners) {
auto d2a = aForFrame->PresContext()->AppUnitsPerDevPixel();
nsCSSRendering::ComputePixelRadii(radii, d2a, aBgRadii);
}
return haveRoundedCorners;
}
static nsRect
JoinBoxesForVerticalSlice(nsIFrame* aFrame, const nsRect& aBorderArea)
{
// Inflate vertically as if our continuations were laid out vertically
// adjacent. Note that we don't touch the width.
nsRect borderArea = aBorderArea;
nscoord h = 0;
nsIFrame* f = aFrame->GetNextContinuation();
for (; f; f = f->GetNextContinuation()) {
MOZ_ASSERT(!(f->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT),
"anonymous ib-split block shouldn't have border/background");
h += f->GetRect().height;
}
borderArea.height += h;
h = 0;
f = aFrame->GetPrevContinuation();
for (; f; f = f->GetPrevContinuation()) {
MOZ_ASSERT(!(f->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT),
"anonymous ib-split block shouldn't have border/background");
h += f->GetRect().height;
}
borderArea.y -= h;
borderArea.height += h;
return borderArea;
}
/**
* Inflate aBorderArea which is relative to aFrame's origin to calculate
* a hypothetical non-split frame area for all the continuations.
* See "Joining Boxes for 'slice'" in
* http://dev.w3.org/csswg/css-break/#break-decoration
*/
enum InlineBoxOrder { eForBorder, eForBackground };
static nsRect
JoinBoxesForSlice(nsIFrame* aFrame, const nsRect& aBorderArea,
InlineBoxOrder aOrder)
{
if (aFrame->GetType() == nsGkAtoms::inlineFrame) {
return (aOrder == eForBorder
? gInlineBGData->GetBorderContinuousRect(aFrame, aBorderArea)
: gInlineBGData->GetContinuousRect(aFrame)) +
aBorderArea.TopLeft();
}
return JoinBoxesForVerticalSlice(aFrame, aBorderArea);
}
static bool
IsBoxDecorationSlice(const nsStyleBorder& aStyleBorder)
{
return aStyleBorder.mBoxDecorationBreak ==
NS_STYLE_BOX_DECORATION_BREAK_SLICE;
}
static nsRect
BoxDecorationRectForBorder(nsIFrame* aFrame, const nsRect& aBorderArea,
Sides aSkipSides,
const nsStyleBorder* aStyleBorder = nullptr)
{
if (!aStyleBorder) {
aStyleBorder = aFrame->StyleBorder();
}
// If aSkipSides.IsEmpty() then there are no continuations, or it's
// a ::first-letter that wants all border sides on the first continuation.
return ::IsBoxDecorationSlice(*aStyleBorder) && !aSkipSides.IsEmpty()
? ::JoinBoxesForSlice(aFrame, aBorderArea, eForBorder)
: aBorderArea;
}
static nsRect
BoxDecorationRectForBackground(nsIFrame* aFrame, const nsRect& aBorderArea,
Sides aSkipSides,
const nsStyleBorder* aStyleBorder = nullptr)
{
if (!aStyleBorder) {
aStyleBorder = aFrame->StyleBorder();
}
// If aSkipSides.IsEmpty() then there are no continuations, or it's
// a ::first-letter that wants all border sides on the first continuation.
return ::IsBoxDecorationSlice(*aStyleBorder) && !aSkipSides.IsEmpty()
? ::JoinBoxesForSlice(aFrame, aBorderArea, eForBackground)
: aBorderArea;
}
//----------------------------------------------------------------------
// Thebes Border Rendering Code Start
/*
* Compute the float-pixel radii that should be used for drawing
* this border/outline, given the various input bits.
*/
/* static */ void
nsCSSRendering::ComputePixelRadii(const nscoord *aAppUnitsRadii,
nscoord aAppUnitsPerPixel,
gfxCornerSizes *oBorderRadii)
{
gfxFloat radii[8];
NS_FOR_CSS_HALF_CORNERS(corner)
radii[corner] = gfxFloat(aAppUnitsRadii[corner]) / aAppUnitsPerPixel;
(*oBorderRadii)[C_TL] = gfxSize(radii[NS_CORNER_TOP_LEFT_X],
radii[NS_CORNER_TOP_LEFT_Y]);
(*oBorderRadii)[C_TR] = gfxSize(radii[NS_CORNER_TOP_RIGHT_X],
radii[NS_CORNER_TOP_RIGHT_Y]);
(*oBorderRadii)[C_BR] = gfxSize(radii[NS_CORNER_BOTTOM_RIGHT_X],
radii[NS_CORNER_BOTTOM_RIGHT_Y]);
(*oBorderRadii)[C_BL] = gfxSize(radii[NS_CORNER_BOTTOM_LEFT_X],
radii[NS_CORNER_BOTTOM_LEFT_Y]);
}
void
nsCSSRendering::PaintBorder(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aStyleContext,
Sides aSkipSides)
{
PROFILER_LABEL("nsCSSRendering", "PaintBorder",
js::ProfileEntry::Category::GRAPHICS);
nsStyleContext *styleIfVisited = aStyleContext->GetStyleIfVisited();
const nsStyleBorder *styleBorder = aStyleContext->StyleBorder();
// Don't check RelevantLinkVisited here, since we want to take the
// same amount of time whether or not it's true.
if (!styleIfVisited) {
PaintBorderWithStyleBorder(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, *styleBorder,
aStyleContext, aSkipSides);
return;
}
nsStyleBorder newStyleBorder(*styleBorder);
// We could do something fancy to avoid the TrackImage/UntrackImage
// work, but it doesn't seem worth it. (We need to call TrackImage
// since we're not going through nsRuleNode::ComputeBorderData.)
newStyleBorder.TrackImage(aPresContext);
NS_FOR_CSS_SIDES(side) {
newStyleBorder.SetBorderColor(side,
aStyleContext->GetVisitedDependentColor(
nsCSSProps::SubpropertyEntryFor(eCSSProperty_border_color)[side]));
}
PaintBorderWithStyleBorder(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, newStyleBorder,
aStyleContext, aSkipSides);
// We could do something fancy to avoid the TrackImage/UntrackImage
// work, but it doesn't seem worth it. (We need to call UntrackImage
// since we're not going through nsStyleBorder::Destroy.)
newStyleBorder.UntrackImage(aPresContext);
}
void
nsCSSRendering::PaintBorderWithStyleBorder(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
nsStyleContext* aStyleContext,
Sides aSkipSides)
{
PrintAsStringNewline("++ PaintBorder");
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the border. DO not get the data from aForFrame, since the passed in style context
// may be different! Always use |aStyleContext|!
const nsStyleDisplay* displayData = aStyleContext->StyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame, displayData->mAppearance))
return; // Let the theme handle it.
}
if (aStyleBorder.IsBorderImageLoaded()) {
DrawBorderImage(aPresContext, aRenderingContext, aForFrame,
aBorderArea, aStyleBorder, aDirtyRect, aSkipSides);
return;
}
// Get our style context's color struct.
const nsStyleColor* ourColor = aStyleContext->StyleColor();
// In NavQuirks mode we want to use the parent's context as a starting point
// for determining the background color.
bool quirks = aPresContext->CompatibilityMode() == eCompatibility_NavQuirks;
nsIFrame* bgFrame = FindNonTransparentBackgroundFrame(aForFrame, quirks);
nsStyleContext* bgContext = bgFrame->StyleContext();
nscolor bgColor =
bgContext->GetVisitedDependentColor(eCSSProperty_background_color);
nsMargin border = aStyleBorder.GetComputedBorder();
if (0 == border.left && 0 == border.right &&
0 == border.top && 0 == border.bottom) {
// Empty border area
return;
}
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aBorderArea & aBGClipRect.
nsRect joinedBorderArea =
::BoxDecorationRectForBorder(aForFrame, aBorderArea, aSkipSides, &aStyleBorder);
gfxCornerSizes bgRadii;
::GetRadii(aForFrame, aStyleBorder, aBorderArea, joinedBorderArea, &bgRadii);
PrintAsFormatString(" joinedBorderArea: %d %d %d %d\n", joinedBorderArea.x, joinedBorderArea.y,
joinedBorderArea.width, joinedBorderArea.height);
// start drawing
gfxContext* ctx = aRenderingContext.ThebesContext();
ctx->Save();
if (::IsBoxDecorationSlice(aStyleBorder)) {
if (joinedBorderArea.IsEqualEdges(aBorderArea)) {
// No need for a clip, just skip the sides we don't want.
border.ApplySkipSides(aSkipSides);
} else {
// We're drawing borders around the joined continuation boxes so we need
// to clip that to the slice that we want for this frame.
aRenderingContext.IntersectClip(aBorderArea);
}
} else {
MOZ_ASSERT(joinedBorderArea.IsEqualEdges(aBorderArea),
"Should use aBorderArea for box-decoration-break:clone");
MOZ_ASSERT(aForFrame->GetSkipSides().IsEmpty(),
"Should not skip sides for box-decoration-break:clone except "
"::first-letter/line continuations or other frame types that "
"don't have borders but those shouldn't reach this point.");
}
// Convert to dev pixels.
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
gfxRect joinedBorderAreaPx =
nsLayoutUtils::RectToGfxRect(joinedBorderArea, twipsPerPixel);
gfxFloat borderWidths[4] = { gfxFloat(border.top / twipsPerPixel),
gfxFloat(border.right / twipsPerPixel),
gfxFloat(border.bottom / twipsPerPixel),
gfxFloat(border.left / twipsPerPixel) };
uint8_t borderStyles[4];
nscolor borderColors[4];
nsBorderColors *compositeColors[4];
// pull out styles, colors, composite colors
NS_FOR_CSS_SIDES (i) {
bool foreground;
borderStyles[i] = aStyleBorder.GetBorderStyle(i);
aStyleBorder.GetBorderColor(i, borderColors[i], foreground);
aStyleBorder.GetCompositeColors(i, &compositeColors[i]);
if (foreground)
borderColors[i] = ourColor->mColor;
}
PrintAsFormatString(" borderStyles: %d %d %d %d\n", borderStyles[0], borderStyles[1], borderStyles[2], borderStyles[3]);
//PrintAsFormatString ("bgRadii: %f %f %f %f\n", bgRadii[0], bgRadii[1], bgRadii[2], bgRadii[3]);
#if 0
// this will draw a transparent red backround underneath the border area
ctx->Save();
ctx->Rectangle(joinedBorderAreaPx);
ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 0.5));
ctx->Fill();
ctx->Restore();
#endif
nsCSSBorderRenderer br(twipsPerPixel,
ctx,
joinedBorderAreaPx,
borderStyles,
borderWidths,
bgRadii,
borderColors,
compositeColors,
bgColor);
br.DrawBorders();
ctx->Restore();
PrintAsStringNewline();
}
static nsRect
GetOutlineInnerRect(nsIFrame* aFrame)
{
nsRect* savedOutlineInnerRect = static_cast<nsRect*>
(aFrame->Properties().Get(nsIFrame::OutlineInnerRectProperty()));
if (savedOutlineInnerRect)
return *savedOutlineInnerRect;
NS_NOTREACHED("we should have saved a frame property");
return nsRect(nsPoint(0, 0), aFrame->GetSize());
}
void
nsCSSRendering::PaintOutline(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aStyleContext)
{
nscoord twipsRadii[8];
// Get our style context's color struct.
const nsStyleOutline* ourOutline = aStyleContext->StyleOutline();
MOZ_ASSERT(ourOutline != NS_STYLE_BORDER_STYLE_NONE,
"shouldn't have created nsDisplayOutline item");
uint8_t outlineStyle = ourOutline->GetOutlineStyle();
nscoord width;
ourOutline->GetOutlineWidth(width);
if (width == 0 && outlineStyle != NS_STYLE_BORDER_STYLE_AUTO) {
// Empty outline
return;
}
nsIFrame* bgFrame = nsCSSRendering::FindNonTransparentBackgroundFrame
(aForFrame, false);
nsStyleContext* bgContext = bgFrame->StyleContext();
nscolor bgColor =
bgContext->GetVisitedDependentColor(eCSSProperty_background_color);
nsRect innerRect;
if (
#ifdef MOZ_XUL
aStyleContext->GetPseudoType() == nsCSSPseudoElements::ePseudo_XULTree
#else
false
#endif
) {
innerRect = aBorderArea;
} else {
innerRect = GetOutlineInnerRect(aForFrame) + aBorderArea.TopLeft();
}
nscoord offset = ourOutline->mOutlineOffset;
innerRect.Inflate(offset, offset);
// If the dirty rect is completely inside the border area (e.g., only the
// content is being painted), then we can skip out now
// XXX this isn't exactly true for rounded borders, where the inside curves may
// encroach into the content area. A safer calculation would be to
// shorten insideRect by the radius one each side before performing this test.
if (innerRect.Contains(aDirtyRect))
return;
nsRect outerRect = innerRect;
outerRect.Inflate(width, width);
2000-02-01 19:03:13 +03:00
// get the radius for our outline
nsIFrame::ComputeBorderRadii(ourOutline->mOutlineRadius, aBorderArea.Size(),
outerRect.Size(), Sides(), twipsRadii);
// Get our conversion values
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
// get the outer rectangles
gfxRect oRect(nsLayoutUtils::RectToGfxRect(outerRect, twipsPerPixel));
// convert the radii
nsMargin outlineMargin(width, width, width, width);
gfxCornerSizes outlineRadii;
ComputePixelRadii(twipsRadii, twipsPerPixel, &outlineRadii);
if (nsLayoutUtils::IsOutlineStyleAutoEnabled()) {
if (outlineStyle == NS_STYLE_BORDER_STYLE_AUTO) {
nsITheme* theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame,
NS_THEME_FOCUS_OUTLINE)) {
theme->DrawWidgetBackground(&aRenderingContext, aForFrame,
NS_THEME_FOCUS_OUTLINE, innerRect,
aDirtyRect);
return;
} else if (width == 0) {
return; // empty outline
}
// http://dev.w3.org/csswg/css-ui/#outline
// "User agents may treat 'auto' as 'solid'."
outlineStyle = NS_STYLE_BORDER_STYLE_SOLID;
}
}
uint8_t outlineStyles[4] = { outlineStyle, outlineStyle,
outlineStyle, outlineStyle };
// This handles treating the initial color as 'currentColor'; if we
// ever want 'invert' back we'll need to do a bit of work here too.
nscolor outlineColor =
aStyleContext->GetVisitedDependentColor(eCSSProperty_outline_color);
nscolor outlineColors[4] = { outlineColor,
outlineColor,
outlineColor,
outlineColor };
// convert the border widths
gfxFloat outlineWidths[4] = { gfxFloat(width / twipsPerPixel),
gfxFloat(width / twipsPerPixel),
gfxFloat(width / twipsPerPixel),
gfxFloat(width / twipsPerPixel) };
// start drawing
gfxContext *ctx = aRenderingContext.ThebesContext();
1999-01-03 22:23:21 +03:00
ctx->Save();
nsCSSBorderRenderer br(twipsPerPixel,
ctx,
oRect,
outlineStyles,
outlineWidths,
outlineRadii,
outlineColors,
nullptr,
bgColor);
br.DrawBorders();
ctx->Restore();
PrintAsStringNewline();
}
void
nsCSSRendering::PaintFocus(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aFocusRect,
nscolor aColor)
{
nscoord oneCSSPixel = nsPresContext::CSSPixelsToAppUnits(1);
nscoord oneDevPixel = aPresContext->DevPixelsToAppUnits(1);
gfxRect focusRect(nsLayoutUtils::RectToGfxRect(aFocusRect, oneDevPixel));
gfxCornerSizes focusRadii;
{
nscoord twipsRadii[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
ComputePixelRadii(twipsRadii, oneDevPixel, &focusRadii);
}
gfxFloat focusWidths[4] = { gfxFloat(oneCSSPixel / oneDevPixel),
gfxFloat(oneCSSPixel / oneDevPixel),
gfxFloat(oneCSSPixel / oneDevPixel),
gfxFloat(oneCSSPixel / oneDevPixel) };
uint8_t focusStyles[4] = { NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED };
nscolor focusColors[4] = { aColor, aColor, aColor, aColor };
gfxContext *ctx = aRenderingContext.ThebesContext();
ctx->Save();
// Because this renders a dotted border, the background color
// should not be used. Therefore, we provide a value that will
// be blatantly wrong if it ever does get used. (If this becomes
// something that CSS can style, this function will then have access
// to a style context and can use the same logic that PaintBorder
// and PaintOutline do.)
nsCSSBorderRenderer br(oneDevPixel,
ctx,
focusRect,
focusStyles,
focusWidths,
focusRadii,
focusColors,
nullptr,
NS_RGB(255, 0, 0));
br.DrawBorders();
ctx->Restore();
PrintAsStringNewline();
1998-12-18 01:58:51 +03:00
}
// Thebes Border Rendering Code End
//----------------------------------------------------------------------
1998-12-18 01:58:51 +03:00
1998-04-14 00:24:54 +04:00
//----------------------------------------------------------------------
/**
* Computes the placement of a background image.
*
* @param aOriginBounds is the box to which the tiling position should be
* relative
* This should correspond to 'background-origin' for the frame,
* except when painting on the canvas, in which case the origin bounds
* should be the bounds of the root element's frame.
* @param aTopLeft the top-left corner where an image tile should be drawn
* @param aAnchorPoint a point which should be pixel-aligned by
* nsLayoutUtils::DrawImage. This is the same as aTopLeft, unless CSS
* specifies a percentage (including 'right' or 'bottom'), in which case
* it's that percentage within of aOriginBounds. So 'right' would set
* aAnchorPoint.x to aOriginBounds.XMost().
*
* Points are returned relative to aOriginBounds.
*/
static void
ComputeBackgroundAnchorPoint(const nsStyleBackground::Layer& aLayer,
const nsSize& aOriginBounds,
const nsSize& aImageSize,
nsPoint* aTopLeft,
nsPoint* aAnchorPoint)
{
double percentX = aLayer.mPosition.mXPosition.mPercent;
nscoord lengthX = aLayer.mPosition.mXPosition.mLength;
aAnchorPoint->x = lengthX + NSToCoordRound(percentX*aOriginBounds.width);
aTopLeft->x = lengthX +
NSToCoordRound(percentX*(aOriginBounds.width - aImageSize.width));
double percentY = aLayer.mPosition.mYPosition.mPercent;
nscoord lengthY = aLayer.mPosition.mYPosition.mLength;
aAnchorPoint->y = lengthY + NSToCoordRound(percentY*aOriginBounds.height);
aTopLeft->y = lengthY +
NSToCoordRound(percentY*(aOriginBounds.height - aImageSize.height));
}
nsIFrame*
nsCSSRendering::FindNonTransparentBackgroundFrame(nsIFrame* aFrame,
bool aStartAtParent /*= false*/)
{
NS_ASSERTION(aFrame, "Cannot find NonTransparentBackgroundFrame in a null frame");
nsIFrame* frame = nullptr;
if (aStartAtParent) {
frame = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame);
}
if (!frame) {
frame = aFrame;
}
while (frame) {
// No need to call GetVisitedDependentColor because it always uses
// this alpha component anyway.
if (NS_GET_A(frame->StyleBackground()->mBackgroundColor) > 0)
break;
if (frame->IsThemed())
break;
nsIFrame* parent = nsLayoutUtils::GetParentOrPlaceholderFor(frame);
if (!parent)
break;
frame = parent;
}
return frame;
}
// Returns true if aFrame is a canvas frame.
// We need to treat the viewport as canvas because, even though
// it does not actually paint a background, we need to get the right
// background style so we correctly detect transparent documents.
bool
nsCSSRendering::IsCanvasFrame(nsIFrame* aFrame)
{
nsIAtom* frameType = aFrame->GetType();
return frameType == nsGkAtoms::canvasFrame ||
frameType == nsGkAtoms::rootFrame ||
frameType == nsGkAtoms::pageContentFrame ||
frameType == nsGkAtoms::viewportFrame;
}
nsIFrame*
nsCSSRendering::FindBackgroundStyleFrame(nsIFrame* aForFrame)
{
const nsStyleBackground* result = aForFrame->StyleBackground();
// Check if we need to do propagation from BODY rather than HTML.
if (!result->IsTransparent()) {
return aForFrame;
}
nsIContent* content = aForFrame->GetContent();
// The root element content can't be null. We wouldn't know what
// frame to create for aFrame.
// Use |OwnerDoc| so it works during destruction.
if (!content) {
return aForFrame;
}
nsIDocument* document = content->OwnerDoc();
dom::Element* bodyContent = document->GetBodyElement();
// We need to null check the body node (bug 118829) since
// there are cases, thanks to the fix for bug 5569, where we
// will reflow a document with no body. In particular, if a
// SCRIPT element in the head blocks the parser and then has a
// SCRIPT that does "document.location.href = 'foo'", then
// nsParser::Terminate will call |DidBuildModel| methods
// through to the content sink, which will call |StartLayout|
// and thus |Initialize| on the pres shell. See bug 119351
// for the ugly details.
if (!bodyContent) {
return aForFrame;
}
nsIFrame *bodyFrame = bodyContent->GetPrimaryFrame();
if (!bodyFrame) {
return aForFrame;
}
return nsLayoutUtils::GetStyleFrame(bodyFrame);
}
/**
* |FindBackground| finds the correct style data to use to paint the
* background. It is responsible for handling the following two
* statements in section 14.2 of CSS2:
*
* The background of the box generated by the root element covers the
* entire canvas.
*
* For HTML documents, however, we recommend that authors specify the
* background for the BODY element rather than the HTML element. User
* agents should observe the following precedence rules to fill in the
* background: if the value of the 'background' property for the HTML
* element is different from 'transparent' then use it, else use the
* value of the 'background' property for the BODY element. If the
* resulting value is 'transparent', the rendering is undefined.
*
* Thus, in our implementation, it is responsible for ensuring that:
* + we paint the correct background on the |nsCanvasFrame|,
* |nsRootBoxFrame|, or |nsPageFrame|,
* + we don't paint the background on the root element, and
* + we don't paint the background on the BODY element in *some* cases,
* and for SGML-based HTML documents only.
*
* |FindBackground| returns true if a background should be painted, and
* the resulting style context to use for the background information
* will be filled in to |aBackground|.
*/
nsStyleContext*
nsCSSRendering::FindRootFrameBackground(nsIFrame* aForFrame)
{
return FindBackgroundStyleFrame(aForFrame)->StyleContext();
}
inline bool
FindElementBackground(nsIFrame* aForFrame, nsIFrame* aRootElementFrame,
nsStyleContext** aBackgroundSC)
{
if (aForFrame == aRootElementFrame) {
// We must have propagated our background to the viewport or canvas. Abort.
return false;
}
*aBackgroundSC = aForFrame->StyleContext();
// Return true unless the frame is for a BODY element whose background
// was propagated to the viewport.
2008-08-08 07:34:43 +04:00
nsIContent* content = aForFrame->GetContent();
if (!content || content->Tag() != nsGkAtoms::body)
return true; // not frame for a "body" element
// It could be a non-HTML "body" element but that's OK, we'd fail the
// bodyContent check below
2008-08-08 07:34:43 +04:00
if (aForFrame->StyleContext()->GetPseudo())
return true; // A pseudo-element frame.
2008-08-08 07:34:43 +04:00
// We should only look at the <html> background if we're in an HTML document
nsIDocument* document = content->OwnerDoc();
dom::Element* bodyContent = document->GetBodyElement();
if (bodyContent != content)
return true; // this wasn't the background that was propagated
// This can be called even when there's no root element yet, during frame
// construction, via nsLayoutUtils::FrameHasTransparency and
// nsContainerFrame::SyncFrameViewProperties.
if (!aRootElementFrame)
return true;
const nsStyleBackground* htmlBG = aRootElementFrame->StyleBackground();
return !htmlBG->IsTransparent();
}
bool
nsCSSRendering::FindBackground(nsIFrame* aForFrame,
nsStyleContext** aBackgroundSC)
{
nsIFrame* rootElementFrame =
aForFrame->PresContext()->PresShell()->FrameConstructor()->GetRootElementStyleFrame();
if (IsCanvasFrame(aForFrame)) {
*aBackgroundSC = FindCanvasBackground(aForFrame, rootElementFrame);
return true;
} else {
return FindElementBackground(aForFrame, rootElementFrame, aBackgroundSC);
}
}
void
nsCSSRendering::BeginFrameTreesLocked()
{
++gFrameTreeLockCount;
}
void
nsCSSRendering::EndFrameTreesLocked()
{
NS_ASSERTION(gFrameTreeLockCount > 0, "Unbalanced EndFrameTreeLocked");
--gFrameTreeLockCount;
if (gFrameTreeLockCount == 0) {
gInlineBGData->Reset();
}
}
void
nsCSSRendering::PaintBoxShadowOuter(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aFrameArea,
const nsRect& aDirtyRect,
float aOpacity)
{
const nsStyleBorder* styleBorder = aForFrame->StyleBorder();
nsCSSShadowArray* shadows = styleBorder->mBoxShadow;
if (!shadows)
return;
gfxContextAutoSaveRestore gfxStateRestorer;
bool hasBorderRadius;
bool nativeTheme; // mutually exclusive with hasBorderRadius
const nsStyleDisplay* styleDisplay = aForFrame->StyleDisplay();
nsITheme::Transparency transparency;
if (aForFrame->IsThemed(styleDisplay, &transparency)) {
// We don't respect border-radius for native-themed widgets
hasBorderRadius = false;
// For opaque (rectangular) theme widgets we can take the generic
// border-box path with border-radius disabled.
nativeTheme = transparency != nsITheme::eOpaque;
} else {
nativeTheme = false;
hasBorderRadius = true; // we'll update this below
}
nsRect frameRect = nativeTheme ?
aForFrame->GetVisualOverflowRectRelativeToSelf() + aFrameArea.TopLeft() :
aFrameArea;
Sides skipSides = aForFrame->GetSkipSides();
frameRect = ::BoxDecorationRectForBorder(aForFrame, frameRect, skipSides);
// Get any border radius, since box-shadow must also have rounded corners if
// the frame does.
gfxCornerSizes borderRadii;
const nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
if (hasBorderRadius) {
nscoord twipsRadii[8];
NS_ASSERTION(aFrameArea.Size() == aForFrame->VisualBorderRectRelativeToSelf().Size(),
"unexpected size");
nsSize sz = frameRect.Size();
hasBorderRadius = aForFrame->GetBorderRadii(sz, sz, Sides(), twipsRadii);
if (hasBorderRadius) {
ComputePixelRadii(twipsRadii, twipsPerPixel, &borderRadii);
}
}
gfxRect frameGfxRect(nsLayoutUtils::RectToGfxRect(frameRect, twipsPerPixel));
frameGfxRect.Round();
// We don't show anything that intersects with the frame we're blurring on. So tell the
// blurrer not to do unnecessary work there.
gfxRect skipGfxRect = frameGfxRect;
bool useSkipGfxRect = true;
if (nativeTheme) {
// Optimize non-leaf native-themed frames by skipping computing pixels
// in the padding-box. We assume the padding-box is going to be painted
// opaquely for non-leaf frames.
// XXX this may not be a safe assumption; we should make this go away
// by optimizing box-shadow drawing more for the cases where we don't have a skip-rect.
useSkipGfxRect = !aForFrame->IsLeaf();
nsRect paddingRect =
aForFrame->GetPaddingRect() - aForFrame->GetPosition() + aFrameArea.TopLeft();
skipGfxRect = nsLayoutUtils::RectToGfxRect(paddingRect, twipsPerPixel);
} else if (hasBorderRadius) {
skipGfxRect.Deflate(gfxMargin(
std::max(borderRadii[C_TL].height, borderRadii[C_TR].height), 0,
std::max(borderRadii[C_BL].height, borderRadii[C_BR].height), 0));
}
for (uint32_t i = shadows->Length(); i > 0; --i) {
nsCSSShadowItem* shadowItem = shadows->ShadowAt(i - 1);
if (shadowItem->mInset)
continue;
nsRect shadowRect = frameRect;
shadowRect.MoveBy(shadowItem->mXOffset, shadowItem->mYOffset);
if (!nativeTheme) {
shadowRect.Inflate(shadowItem->mSpread, shadowItem->mSpread);
}
// shadowRect won't include the blur, so make an extra rect here that includes the blur
// for use in the even-odd rule below.
nsRect shadowRectPlusBlur = shadowRect;
nscoord blurRadius = shadowItem->mRadius;
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
shadowRectPlusBlur.Inflate(
nsContextBoxBlur::GetBlurRadiusMargin(blurRadius, twipsPerPixel));
gfxRect shadowGfxRectPlusBlur =
nsLayoutUtils::RectToGfxRect(shadowRectPlusBlur, twipsPerPixel);
shadowGfxRectPlusBlur.RoundOut();
// Set the shadow color; if not specified, use the foreground color
nscolor shadowColor;
if (shadowItem->mHasColor)
shadowColor = shadowItem->mColor;
else
shadowColor = aForFrame->StyleColor()->mColor;
gfxRGBA gfxShadowColor(shadowColor);
gfxShadowColor.a *= aOpacity;
gfxContext* renderContext = aRenderingContext.ThebesContext();
if (nativeTheme) {
nsContextBoxBlur blurringArea;
// When getting the widget shape from the native theme, we're going
// to draw the widget into the shadow surface to create a mask.
// We need to ensure that there actually *is* a shadow surface
// and that we're not going to draw directly into renderContext.
gfxContext* shadowContext =
blurringArea.Init(shadowRect, shadowItem->mSpread,
blurRadius, twipsPerPixel, renderContext, aDirtyRect,
useSkipGfxRect ? &skipGfxRect : nullptr,
nsContextBoxBlur::FORCE_MASK);
if (!shadowContext)
continue;
// shadowContext is owned by either blurringArea or aRenderingContext.
MOZ_ASSERT(shadowContext == blurringArea.GetContext());
renderContext->Save();
renderContext->SetColor(gfxShadowColor);
// Draw the shape of the frame so it can be blurred. Recall how nsContextBoxBlur
// doesn't make any temporary surfaces if blur is 0 and it just returns the original
// surface? If we have no blur, we're painting this fill on the actual content surface
// (renderContext == shadowContext) which is why we set up the color and clip
// before doing this.
// We don't clip the border-box from the shadow, nor any other box.
// We assume that the native theme is going to paint over the shadow.
// Draw the widget shape
gfxContextMatrixAutoSaveRestore save(shadowContext);
nsRefPtr<nsRenderingContext> wrapperCtx = new nsRenderingContext();
wrapperCtx->Init(aPresContext->DeviceContext(), shadowContext);
gfxPoint devPixelOffset =
nsLayoutUtils::PointToGfxPoint(nsPoint(shadowItem->mXOffset,
shadowItem->mYOffset),
aPresContext->AppUnitsPerDevPixel());
wrapperCtx->ThebesContext()->SetMatrix(
wrapperCtx->ThebesContext()->CurrentMatrix().Translate(devPixelOffset));
nsRect nativeRect;
nativeRect.IntersectRect(frameRect, aDirtyRect);
aPresContext->GetTheme()->DrawWidgetBackground(wrapperCtx, aForFrame,
styleDisplay->mAppearance, aFrameArea, nativeRect);
blurringArea.DoPaint();
renderContext->Restore();
} else {
renderContext->Save();
// Clip out the area of the actual frame so the shadow is not shown within
// the frame.
renderContext->NewPath();
renderContext->Rectangle(shadowGfxRectPlusBlur);
if (hasBorderRadius) {
renderContext->RoundedRectangle(frameGfxRect, borderRadii);
} else {
renderContext->Rectangle(frameGfxRect);
}
renderContext->SetFillRule(gfxContext::FILL_RULE_EVEN_ODD);
renderContext->Clip();
// Clip the shadow so that we only get the part that applies to aForFrame.
nsRect fragmentClip = shadowRectPlusBlur;
if (!skipSides.IsEmpty()) {
if (skipSides.Left()) {
nscoord xmost = fragmentClip.XMost();
fragmentClip.x = aFrameArea.x;
fragmentClip.width = xmost - fragmentClip.x;
}
if (skipSides.Right()) {
nscoord xmost = fragmentClip.XMost();
nscoord overflow = xmost - aFrameArea.XMost();
if (overflow > 0) {
fragmentClip.width -= overflow;
}
}
if (skipSides.Top()) {
nscoord ymost = fragmentClip.YMost();
fragmentClip.y = aFrameArea.y;
fragmentClip.height = ymost - fragmentClip.y;
}
if (skipSides.Bottom()) {
nscoord ymost = fragmentClip.YMost();
nscoord overflow = ymost - aFrameArea.YMost();
if (overflow > 0) {
fragmentClip.height -= overflow;
}
}
}
aRenderingContext.IntersectClip(fragmentClip);
gfxCornerSizes clipRectRadii;
if (hasBorderRadius) {
gfxFloat spreadDistance = shadowItem->mSpread / twipsPerPixel;
gfxFloat borderSizes[4];
borderSizes[NS_SIDE_LEFT] = spreadDistance;
borderSizes[NS_SIDE_TOP] = spreadDistance;
borderSizes[NS_SIDE_RIGHT] = spreadDistance;
borderSizes[NS_SIDE_BOTTOM] = spreadDistance;
nsCSSBorderRenderer::ComputeOuterRadii(borderRadii, borderSizes,
&clipRectRadii);
}
nsContextBoxBlur::BlurRectangle(renderContext,
shadowRect,
twipsPerPixel,
hasBorderRadius ? &clipRectRadii : nullptr,
blurRadius,
gfxShadowColor,
aDirtyRect,
skipGfxRect);
renderContext->Restore();
}
}
}
void
nsCSSRendering::PaintBoxShadowInner(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aFrameArea,
const nsRect& aDirtyRect)
{
const nsStyleBorder* styleBorder = aForFrame->StyleBorder();
nsCSSShadowArray* shadows = styleBorder->mBoxShadow;
if (!shadows)
return;
if (aForFrame->IsThemed() && aForFrame->GetContent() &&
!nsContentUtils::IsChromeDoc(aForFrame->GetContent()->GetCurrentDoc())) {
// There's no way of getting hold of a shape corresponding to a
// "padding-box" for native-themed widgets, so just don't draw
// inner box-shadows for them. But we allow chrome to paint inner
// box shadows since chrome can be aware of the platform theme.
return;
}
NS_ASSERTION(aForFrame->GetType() == nsGkAtoms::fieldSetFrame ||
aFrameArea.Size() == aForFrame->GetSize(), "unexpected size");
Sides skipSides = aForFrame->GetSkipSides();
nsRect frameRect =
::BoxDecorationRectForBorder(aForFrame, aFrameArea, skipSides);
nsRect paddingRect = frameRect;
nsMargin border = aForFrame->GetUsedBorder();
paddingRect.Deflate(border);
// Get any border radius, since box-shadow must also have rounded corners
// if the frame does.
nscoord twipsRadii[8];
nsSize sz = frameRect.Size();
bool hasBorderRadius = aForFrame->GetBorderRadii(sz, sz, Sides(), twipsRadii);
const nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
gfxCornerSizes innerRadii;
if (hasBorderRadius) {
gfxCornerSizes borderRadii;
ComputePixelRadii(twipsRadii, twipsPerPixel, &borderRadii);
gfxFloat borderSizes[4] = {
gfxFloat(border.top / twipsPerPixel),
gfxFloat(border.right / twipsPerPixel),
gfxFloat(border.bottom / twipsPerPixel),
gfxFloat(border.left / twipsPerPixel)
};
nsCSSBorderRenderer::ComputeInnerRadii(borderRadii, borderSizes,
&innerRadii);
}
for (uint32_t i = shadows->Length(); i > 0; --i) {
nsCSSShadowItem* shadowItem = shadows->ShadowAt(i - 1);
if (!shadowItem->mInset)
continue;
// shadowPaintRect: the area to paint on the temp surface
// shadowClipRect: the area on the temporary surface within shadowPaintRect
// that we will NOT paint in
nscoord blurRadius = shadowItem->mRadius;
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
nsMargin blurMargin =
nsContextBoxBlur::GetBlurRadiusMargin(blurRadius, twipsPerPixel);
nsRect shadowPaintRect = paddingRect;
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
shadowPaintRect.Inflate(blurMargin);
nsRect shadowClipRect = paddingRect;
shadowClipRect.MoveBy(shadowItem->mXOffset, shadowItem->mYOffset);
shadowClipRect.Deflate(shadowItem->mSpread, shadowItem->mSpread);
gfxCornerSizes clipRectRadii;
if (hasBorderRadius) {
// Calculate the radii the inner clipping rect will have
gfxFloat spreadDistance = shadowItem->mSpread / twipsPerPixel;
gfxFloat borderSizes[4] = {0, 0, 0, 0};
// See PaintBoxShadowOuter and bug 514670
if (innerRadii[C_TL].width > 0 || innerRadii[C_BL].width > 0) {
borderSizes[NS_SIDE_LEFT] = spreadDistance;
}
if (innerRadii[C_TL].height > 0 || innerRadii[C_TR].height > 0) {
borderSizes[NS_SIDE_TOP] = spreadDistance;
}
if (innerRadii[C_TR].width > 0 || innerRadii[C_BR].width > 0) {
borderSizes[NS_SIDE_RIGHT] = spreadDistance;
}
if (innerRadii[C_BL].height > 0 || innerRadii[C_BR].height > 0) {
borderSizes[NS_SIDE_BOTTOM] = spreadDistance;
}
nsCSSBorderRenderer::ComputeInnerRadii(innerRadii, borderSizes,
&clipRectRadii);
}
// Set the "skip rect" to the area within the frame that we don't paint in,
// including after blurring.
nsRect skipRect = shadowClipRect;
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
skipRect.Deflate(blurMargin);
gfxRect skipGfxRect = nsLayoutUtils::RectToGfxRect(skipRect, twipsPerPixel);
if (hasBorderRadius) {
skipGfxRect.Deflate(gfxMargin(
std::max(clipRectRadii[C_TL].height, clipRectRadii[C_TR].height), 0,
std::max(clipRectRadii[C_BL].height, clipRectRadii[C_BR].height), 0));
}
// When there's a blur radius, gfxAlphaBoxBlur leaves the skiprect area
// unchanged. And by construction the gfxSkipRect is not touched by the
// rendered shadow (even after blurring), so those pixels must be completely
// transparent in the shadow, so drawing them changes nothing.
gfxContext* renderContext = aRenderingContext.ThebesContext();
nsContextBoxBlur blurringArea;
2012-10-25 15:17:10 +04:00
gfxContext* shadowContext =
blurringArea.Init(shadowPaintRect, 0, blurRadius, twipsPerPixel,
renderContext, aDirtyRect, &skipGfxRect);
if (!shadowContext)
continue;
2012-10-25 15:17:10 +04:00
// shadowContext is owned by either blurringArea or aRenderingContext.
MOZ_ASSERT(shadowContext == renderContext ||
shadowContext == blurringArea.GetContext());
// Set the shadow color; if not specified, use the foreground color
nscolor shadowColor;
if (shadowItem->mHasColor)
shadowColor = shadowItem->mColor;
else
shadowColor = aForFrame->StyleColor()->mColor;
renderContext->Save();
renderContext->SetColor(gfxRGBA(shadowColor));
// Clip the context to the area of the frame's padding rect, so no part of the
// shadow is painted outside. Also cut out anything beyond where the inset shadow
// will be.
gfxRect shadowGfxRect =
nsLayoutUtils::RectToGfxRect(paddingRect, twipsPerPixel);
shadowGfxRect.Round();
renderContext->NewPath();
if (hasBorderRadius)
renderContext->RoundedRectangle(shadowGfxRect, innerRadii, false);
else
renderContext->Rectangle(shadowGfxRect);
renderContext->Clip();
// Fill the surface minus the area within the frame that we should
// not paint in, and blur and apply it.
gfxRect shadowPaintGfxRect =
nsLayoutUtils::RectToGfxRect(shadowPaintRect, twipsPerPixel);
shadowPaintGfxRect.RoundOut();
gfxRect shadowClipGfxRect =
nsLayoutUtils::RectToGfxRect(shadowClipRect, twipsPerPixel);
shadowClipGfxRect.Round();
shadowContext->NewPath();
shadowContext->Rectangle(shadowPaintGfxRect);
if (hasBorderRadius)
shadowContext->RoundedRectangle(shadowClipGfxRect, clipRectRadii, false);
else
shadowContext->Rectangle(shadowClipGfxRect);
shadowContext->SetFillRule(gfxContext::FILL_RULE_EVEN_ODD);
shadowContext->Fill();
blurringArea.DoPaint();
renderContext->Restore();
}
}
void
nsCSSRendering::PaintBackground(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
uint32_t aFlags,
nsRect* aBGClipRect,
int32_t aLayer)
1998-04-14 00:24:54 +04:00
{
PROFILER_LABEL("nsCSSRendering", "PaintBackground",
js::ProfileEntry::Category::GRAPHICS);
NS_PRECONDITION(aForFrame,
"Frame is expected to be provided to PaintBackground");
nsStyleContext *sc;
if (!FindBackground(aForFrame, &sc)) {
// We don't want to bail out if moz-appearance is set on a root
// node. If it has a parent content node, bail because it's not
// a root, otherwise keep going in order to let the theme stuff
// draw the background. The canvas really should be drawing the
// bg, but there's no way to hook that up via css.
if (!aForFrame->StyleDisplay()->mAppearance) {
return;
}
nsIContent* content = aForFrame->GetContent();
if (!content || content->GetParent()) {
return;
}
sc = aForFrame->StyleContext();
}
PaintBackgroundWithSC(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, sc,
*aForFrame->StyleBorder(), aFlags,
aBGClipRect, aLayer);
}
static bool
IsOpaqueBorderEdge(const nsStyleBorder& aBorder, mozilla::css::Side aSide)
{
if (aBorder.GetComputedBorder().Side(aSide) == 0)
return true;
switch (aBorder.GetBorderStyle(aSide)) {
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
break;
default:
return false;
}
// If we're using a border image, assume it's not fully opaque,
// because we may not even have the image loaded at this point, and
// even if we did, checking whether the relevant tile is fully
// opaque would be too much work.
if (aBorder.mBorderImageSource.GetType() != eStyleImageType_Null)
return false;
nscolor color;
bool isForeground;
aBorder.GetBorderColor(aSide, color, isForeground);
// We don't know the foreground color here, so if it's being used
// we must assume it might be transparent.
if (isForeground)
return false;
return NS_GET_A(color) == 255;
}
/**
* Returns true if all border edges are either missing or opaque.
*/
static bool
IsOpaqueBorder(const nsStyleBorder& aBorder)
{
if (aBorder.mBorderColors)
return false;
NS_FOR_CSS_SIDES(i) {
if (!IsOpaqueBorderEdge(aBorder, i))
return false;
}
return true;
}
static inline void
SetupDirtyRects(const nsRect& aBGClipArea, const nsRect& aCallerDirtyRect,
nscoord aAppUnitsPerPixel,
/* OUT: */
nsRect* aDirtyRect, gfxRect* aDirtyRectGfx)
{
aDirtyRect->IntersectRect(aBGClipArea, aCallerDirtyRect);
// Compute the Thebes equivalent of the dirtyRect.
*aDirtyRectGfx = nsLayoutUtils::RectToGfxRect(*aDirtyRect, aAppUnitsPerPixel);
NS_WARN_IF_FALSE(aDirtyRect->IsEmpty() || !aDirtyRectGfx->IsEmpty(),
"converted dirty rect should not be empty");
NS_ABORT_IF_FALSE(!aDirtyRect->IsEmpty() || aDirtyRectGfx->IsEmpty(),
"second should be empty if first is");
}
/* static */ void
nsCSSRendering::GetBackgroundClip(const nsStyleBackground::Layer& aLayer,
nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aBorderArea, const nsRect& aCallerDirtyRect,
bool aWillPaintBorder, nscoord aAppUnitsPerPixel,
/* out */ BackgroundClipState* aClipState)
{
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aBorderArea.
Sides skipSides = aForFrame->GetSkipSides();
nsRect clipBorderArea =
::BoxDecorationRectForBorder(aForFrame, aBorderArea, skipSides, &aBorder);
bool haveRoundedCorners = GetRadii(aForFrame, aBorder, aBorderArea,
clipBorderArea, aClipState->mRadii);
uint8_t backgroundClip = aLayer.mClip;
bool isSolidBorder =
aWillPaintBorder && IsOpaqueBorder(aBorder);
if (isSolidBorder && backgroundClip == NS_STYLE_BG_CLIP_BORDER) {
// If we have rounded corners, we need to inflate the background
// drawing area a bit to avoid seams between the border and
// background.
backgroundClip = haveRoundedCorners ?
NS_STYLE_BG_CLIP_MOZ_ALMOST_PADDING : NS_STYLE_BG_CLIP_PADDING;
}
aClipState->mBGClipArea = clipBorderArea;
aClipState->mHasAdditionalBGClipArea = false;
aClipState->mCustomClip = false;
if (aForFrame->GetType() == nsGkAtoms::scrollFrame &&
NS_STYLE_BG_ATTACHMENT_LOCAL == aLayer.mAttachment) {
// As of this writing, this is still in discussion in the CSS Working Group
// http://lists.w3.org/Archives/Public/www-style/2013Jul/0250.html
// The rectangle for 'background-clip' scrolls with the content,
// but the background is also clipped at a non-scrolling 'padding-box'
// like the content. (See below.)
// Therefore, only 'content-box' makes a difference here.
if (backgroundClip == NS_STYLE_BG_CLIP_CONTENT) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(aForFrame);
// Clip at a rectangle attached to the scrolled content.
aClipState->mHasAdditionalBGClipArea = true;
aClipState->mAdditionalBGClipArea = nsRect(
aClipState->mBGClipArea.TopLeft()
+ scrollableFrame->GetScrolledFrame()->GetPosition()
// For the dir=rtl case:
+ scrollableFrame->GetScrollRange().TopLeft(),
scrollableFrame->GetScrolledRect().Size());
nsMargin padding = aForFrame->GetUsedPadding();
// padding-bottom is ignored on scrollable frames:
// https://bugzilla.mozilla.org/show_bug.cgi?id=748518
padding.bottom = 0;
padding.ApplySkipSides(skipSides);
aClipState->mAdditionalBGClipArea.Deflate(padding);
}
// Also clip at a non-scrolling, rounded-corner 'padding-box',
// same as the scrolled content because of the 'overflow' property.
backgroundClip = NS_STYLE_BG_CLIP_PADDING;
}
if (backgroundClip != NS_STYLE_BG_CLIP_BORDER) {
nsMargin border = aForFrame->GetUsedBorder();
if (backgroundClip == NS_STYLE_BG_CLIP_MOZ_ALMOST_PADDING) {
// Reduce |border| by 1px (device pixels) on all sides, if
// possible, so that we don't get antialiasing seams between the
// background and border.
border.top = std::max(0, border.top - aAppUnitsPerPixel);
border.right = std::max(0, border.right - aAppUnitsPerPixel);
border.bottom = std::max(0, border.bottom - aAppUnitsPerPixel);
border.left = std::max(0, border.left - aAppUnitsPerPixel);
} else if (backgroundClip != NS_STYLE_BG_CLIP_PADDING) {
NS_ASSERTION(backgroundClip == NS_STYLE_BG_CLIP_CONTENT,
"unexpected background-clip");
border += aForFrame->GetUsedPadding();
}
border.ApplySkipSides(skipSides);
aClipState->mBGClipArea.Deflate(border);
if (haveRoundedCorners) {
nsIFrame::InsetBorderRadii(aClipState->mRadii, border);
}
}
if (haveRoundedCorners) {
auto d2a = aForFrame->PresContext()->AppUnitsPerDevPixel();
nsCSSRendering::ComputePixelRadii(aClipState->mRadii, d2a, &aClipState->mClippedRadii);
aClipState->mHasRoundedCorners = true;
} else {
aClipState->mHasRoundedCorners = false;
}
if (!haveRoundedCorners && aClipState->mHasAdditionalBGClipArea) {
// Do the intersection here to account for the fast path(?) below.
aClipState->mBGClipArea =
aClipState->mBGClipArea.Intersect(aClipState->mAdditionalBGClipArea);
aClipState->mHasAdditionalBGClipArea = false;
}
SetupDirtyRects(aClipState->mBGClipArea, aCallerDirtyRect, aAppUnitsPerPixel,
&aClipState->mDirtyRect, &aClipState->mDirtyRectGfx);
}
static void
SetupBackgroundClip(nsCSSRendering::BackgroundClipState& aClipState,
gfxContext *aCtx, nscoord aAppUnitsPerPixel,
gfxContextAutoSaveRestore* aAutoSR)
{
if (aClipState.mDirtyRectGfx.IsEmpty()) {
// Our caller won't draw anything under this condition, so no need
// to set more up.
return;
}
if (aClipState.mCustomClip) {
// We don't support custom clips and rounded corners, arguably a bug, but
// table painting seems to depend on it.
return;
}
// If we have rounded corners, clip all subsequent drawing to the
// rounded rectangle defined by bgArea and bgRadii (we don't know
// whether the rounded corners intrude on the dirtyRect or not).
// Do not do this if we have a caller-provided clip rect --
// as above with bgArea, arguably a bug, but table painting seems
// to depend on it.
if (aClipState.mHasAdditionalBGClipArea) {
gfxRect bgAreaGfx = nsLayoutUtils::RectToGfxRect(
aClipState.mAdditionalBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
bgAreaGfx.Condition();
aAutoSR->EnsureSaved(aCtx);
aCtx->NewPath();
aCtx->Rectangle(bgAreaGfx, true);
aCtx->Clip();
}
if (aClipState.mHasRoundedCorners) {
gfxRect bgAreaGfx =
nsLayoutUtils::RectToGfxRect(aClipState.mBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
bgAreaGfx.Condition();
if (bgAreaGfx.IsEmpty()) {
// I think it's become possible to hit this since
// http://hg.mozilla.org/mozilla-central/rev/50e934e4979b landed.
NS_WARNING("converted background area should not be empty");
// Make our caller not do anything.
aClipState.mDirtyRectGfx.SizeTo(gfxSize(0.0, 0.0));
return;
}
aAutoSR->EnsureSaved(aCtx);
aCtx->NewPath();
aCtx->RoundedRectangle(bgAreaGfx, aClipState.mClippedRadii);
aCtx->Clip();
}
}
static void
DrawBackgroundColor(nsCSSRendering::BackgroundClipState& aClipState,
gfxContext *aCtx, nscoord aAppUnitsPerPixel)
{
if (aClipState.mDirtyRectGfx.IsEmpty()) {
// Our caller won't draw anything under this condition, so no need
// to set more up.
return;
}
// We don't support custom clips and rounded corners, arguably a bug, but
// table painting seems to depend on it.
if (!aClipState.mHasRoundedCorners || aClipState.mCustomClip) {
aCtx->NewPath();
aCtx->Rectangle(aClipState.mDirtyRectGfx, true);
aCtx->Fill();
return;
}
gfxRect bgAreaGfx =
nsLayoutUtils::RectToGfxRect(aClipState.mBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
bgAreaGfx.Condition();
if (bgAreaGfx.IsEmpty()) {
// I think it's become possible to hit this since
// http://hg.mozilla.org/mozilla-central/rev/50e934e4979b landed.
NS_WARNING("converted background area should not be empty");
// Make our caller not do anything.
aClipState.mDirtyRectGfx.SizeTo(gfxSize(0.0, 0.0));
return;
}
aCtx->Save();
gfxRect dirty = bgAreaGfx.Intersect(aClipState.mDirtyRectGfx);
aCtx->NewPath();
aCtx->Rectangle(dirty, true);
aCtx->Clip();
if (aClipState.mHasAdditionalBGClipArea) {
gfxRect bgAdditionalAreaGfx = nsLayoutUtils::RectToGfxRect(
aClipState.mAdditionalBGClipArea, aAppUnitsPerPixel);
bgAdditionalAreaGfx.Round();
bgAdditionalAreaGfx.Condition();
aCtx->NewPath();
aCtx->Rectangle(bgAdditionalAreaGfx, true);
aCtx->Clip();
}
aCtx->NewPath();
aCtx->RoundedRectangle(bgAreaGfx, aClipState.mClippedRadii);
aCtx->Fill();
aCtx->Restore();
}
nscolor
nsCSSRendering::DetermineBackgroundColor(nsPresContext* aPresContext,
nsStyleContext* aStyleContext,
nsIFrame* aFrame,
bool& aDrawBackgroundImage,
bool& aDrawBackgroundColor)
{
aDrawBackgroundImage = true;
aDrawBackgroundColor = true;
if (aFrame->HonorPrintBackgroundSettings()) {
aDrawBackgroundImage = aPresContext->GetBackgroundImageDraw();
aDrawBackgroundColor = aPresContext->GetBackgroundColorDraw();
}
const nsStyleBackground *bg = aStyleContext->StyleBackground();
nscolor bgColor;
if (aDrawBackgroundColor) {
bgColor =
aStyleContext->GetVisitedDependentColor(eCSSProperty_background_color);
if (NS_GET_A(bgColor) == 0) {
aDrawBackgroundColor = false;
}
} else {
// If GetBackgroundColorDraw() is false, we are still expected to
// draw color in the background of any frame that's not completely
// transparent, but we are expected to use white instead of whatever
// color was specified.
bgColor = NS_RGB(255, 255, 255);
if (aDrawBackgroundImage || !bg->IsTransparent()) {
aDrawBackgroundColor = true;
} else {
bgColor = NS_RGBA(0,0,0,0);
}
}
// We can skip painting the background color if a background image is opaque.
if (aDrawBackgroundColor &&
bg->BottomLayer().mRepeat.mXRepeat == NS_STYLE_BG_REPEAT_REPEAT &&
bg->BottomLayer().mRepeat.mYRepeat == NS_STYLE_BG_REPEAT_REPEAT &&
bg->BottomLayer().mImage.IsOpaque() &&
bg->BottomLayer().mBlendMode == NS_STYLE_BLEND_NORMAL) {
aDrawBackgroundColor = false;
}
return bgColor;
}
static gfxFloat
ConvertGradientValueToPixels(const nsStyleCoord& aCoord,
gfxFloat aFillLength,
int32_t aAppUnitsPerPixel)
{
switch (aCoord.GetUnit()) {
case eStyleUnit_Percent:
return aCoord.GetPercentValue() * aFillLength;
case eStyleUnit_Coord:
return NSAppUnitsToFloatPixels(aCoord.GetCoordValue(), aAppUnitsPerPixel);
case eStyleUnit_Calc: {
const nsStyleCoord::Calc *calc = aCoord.GetCalcValue();
return calc->mPercent * aFillLength +
NSAppUnitsToFloatPixels(calc->mLength, aAppUnitsPerPixel);
}
default:
NS_WARNING("Unexpected coord unit");
return 0;
}
}
// Given a box with size aBoxSize and origin (0,0), and an angle aAngle,
// and a starting point for the gradient line aStart, find the endpoint of
// the gradient line --- the intersection of the gradient line with a line
// perpendicular to aAngle that passes through the farthest corner in the
// direction aAngle.
static gfxPoint
ComputeGradientLineEndFromAngle(const gfxPoint& aStart,
double aAngle,
const gfxSize& aBoxSize)
{
double dx = cos(-aAngle);
double dy = sin(-aAngle);
gfxPoint farthestCorner(dx > 0 ? aBoxSize.width : 0,
dy > 0 ? aBoxSize.height : 0);
gfxPoint delta = farthestCorner - aStart;
double u = delta.x*dy - delta.y*dx;
return farthestCorner + gfxPoint(-u*dy, u*dx);
}
// Compute the start and end points of the gradient line for a linear gradient.
static void
ComputeLinearGradientLine(nsPresContext* aPresContext,
nsStyleGradient* aGradient,
const gfxSize& aBoxSize,
gfxPoint* aLineStart,
gfxPoint* aLineEnd)
{
if (aGradient->mBgPosX.GetUnit() == eStyleUnit_None) {
double angle;
if (aGradient->mAngle.IsAngleValue()) {
angle = aGradient->mAngle.GetAngleValueInRadians();
if (!aGradient->mLegacySyntax) {
angle = M_PI_2 - angle;
}
} else {
angle = -M_PI_2; // defaults to vertical gradient starting from top
}
gfxPoint center(aBoxSize.width/2, aBoxSize.height/2);
*aLineEnd = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
*aLineStart = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineEnd;
} else if (!aGradient->mLegacySyntax) {
float xSign = aGradient->mBgPosX.GetPercentValue() * 2 - 1;
float ySign = 1 - aGradient->mBgPosY.GetPercentValue() * 2;
double angle = atan2(ySign * aBoxSize.width, xSign * aBoxSize.height);
gfxPoint center(aBoxSize.width/2, aBoxSize.height/2);
*aLineEnd = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
*aLineStart = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineEnd;
} else {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
*aLineStart = gfxPoint(
ConvertGradientValueToPixels(aGradient->mBgPosX, aBoxSize.width,
appUnitsPerPixel),
ConvertGradientValueToPixels(aGradient->mBgPosY, aBoxSize.height,
appUnitsPerPixel));
if (aGradient->mAngle.IsAngleValue()) {
MOZ_ASSERT(aGradient->mLegacySyntax);
double angle = aGradient->mAngle.GetAngleValueInRadians();
*aLineEnd = ComputeGradientLineEndFromAngle(*aLineStart, angle, aBoxSize);
} else {
// No angle, the line end is just the reflection of the start point
// through the center of the box
*aLineEnd = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineStart;
}
}
}
// Compute the start and end points of the gradient line for a radial gradient.
// Also returns the horizontal and vertical radii defining the circle or
// ellipse to use.
static void
ComputeRadialGradientLine(nsPresContext* aPresContext,
nsStyleGradient* aGradient,
const gfxSize& aBoxSize,
gfxPoint* aLineStart,
gfxPoint* aLineEnd,
double* aRadiusX,
double* aRadiusY)
{
if (aGradient->mBgPosX.GetUnit() == eStyleUnit_None) {
// Default line start point is the center of the box
*aLineStart = gfxPoint(aBoxSize.width/2, aBoxSize.height/2);
} else {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
*aLineStart = gfxPoint(
ConvertGradientValueToPixels(aGradient->mBgPosX, aBoxSize.width,
appUnitsPerPixel),
ConvertGradientValueToPixels(aGradient->mBgPosY, aBoxSize.height,
appUnitsPerPixel));
}
// Compute gradient shape: the x and y radii of an ellipse.
double radiusX, radiusY;
double leftDistance = Abs(aLineStart->x);
double rightDistance = Abs(aBoxSize.width - aLineStart->x);
double topDistance = Abs(aLineStart->y);
double bottomDistance = Abs(aBoxSize.height - aLineStart->y);
switch (aGradient->mSize) {
case NS_STYLE_GRADIENT_SIZE_CLOSEST_SIDE:
radiusX = std::min(leftDistance, rightDistance);
radiusY = std::min(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = std::min(radiusX, radiusY);
}
break;
case NS_STYLE_GRADIENT_SIZE_CLOSEST_CORNER: {
// Compute x and y distances to nearest corner
double offsetX = std::min(leftDistance, rightDistance);
double offsetY = std::min(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX*M_SQRT2;
radiusY = offsetY*M_SQRT2;
}
break;
}
case NS_STYLE_GRADIENT_SIZE_FARTHEST_SIDE:
radiusX = std::max(leftDistance, rightDistance);
radiusY = std::max(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = std::max(radiusX, radiusY);
}
break;
case NS_STYLE_GRADIENT_SIZE_FARTHEST_CORNER: {
// Compute x and y distances to nearest corner
double offsetX = std::max(leftDistance, rightDistance);
double offsetY = std::max(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX*M_SQRT2;
radiusY = offsetY*M_SQRT2;
}
break;
}
case NS_STYLE_GRADIENT_SIZE_EXPLICIT_SIZE: {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
radiusX = ConvertGradientValueToPixels(aGradient->mRadiusX,
aBoxSize.width, appUnitsPerPixel);
radiusY = ConvertGradientValueToPixels(aGradient->mRadiusY,
aBoxSize.height, appUnitsPerPixel);
break;
}
default:
radiusX = radiusY = 0;
NS_ABORT_IF_FALSE(false, "unknown radial gradient sizing method");
}
*aRadiusX = radiusX;
*aRadiusY = radiusY;
double angle;
if (aGradient->mAngle.IsAngleValue()) {
angle = aGradient->mAngle.GetAngleValueInRadians();
} else {
// Default angle is 0deg
angle = 0.0;
}
// The gradient line end point is where the gradient line intersects
// the ellipse.
*aLineEnd = *aLineStart + gfxPoint(radiusX*cos(-angle), radiusY*sin(-angle));
}
// Returns aFrac*aC2 + (1 - aFrac)*C1. The interpolation is done
// in unpremultiplied space, which is what SVG gradients and cairo
// gradients expect.
static gfxRGBA
InterpolateColor(const gfxRGBA& aC1, const gfxRGBA& aC2, double aFrac)
{
double other = 1 - aFrac;
return gfxRGBA(aC2.r*aFrac + aC1.r*other,
aC2.g*aFrac + aC1.g*other,
aC2.b*aFrac + aC1.b*other,
aC2.a*aFrac + aC1.a*other);
}
static nscoord
FindTileStart(nscoord aDirtyCoord, nscoord aTilePos, nscoord aTileDim)
{
NS_ASSERTION(aTileDim > 0, "Non-positive tile dimension");
double multiples = floor(double(aDirtyCoord - aTilePos)/aTileDim);
return NSToCoordRound(multiples*aTileDim + aTilePos);
}
static gfxFloat
LinearGradientStopPositionForPoint(const gfxPoint& aGradientStart,
const gfxPoint& aGradientEnd,
const gfxPoint& aPoint)
{
gfxPoint d = aGradientEnd - aGradientStart;
gfxPoint p = aPoint - aGradientStart;
/**
* Compute a parameter t such that a line perpendicular to the
* d vector, passing through aGradientStart + d*t, also
* passes through aPoint.
*
* t is given by
* (p.x - d.x*t)*d.x + (p.y - d.y*t)*d.y = 0
*
* Solving for t we get
* numerator = d.x*p.x + d.y*p.y
* denominator = d.x^2 + d.y^2
* t = numerator/denominator
*
* In nsCSSRendering::PaintGradient we know the length of d
* is not zero.
*/
double numerator = d.x * p.x + d.y * p.y;
double denominator = d.x * d.x + d.y * d.y;
return numerator / denominator;
}
static bool
RectIsBeyondLinearGradientEdge(const gfxRect& aRect,
const gfxMatrix& aPatternMatrix,
const nsTArray<ColorStop>& aStops,
const gfxPoint& aGradientStart,
const gfxPoint& aGradientEnd,
gfxRGBA* aOutEdgeColor)
{
gfxFloat topLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.TopLeft()));
gfxFloat topRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.TopRight()));
gfxFloat bottomLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.BottomLeft()));
gfxFloat bottomRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.BottomRight()));
const ColorStop& firstStop = aStops[0];
if (topLeft < firstStop.mPosition && topRight < firstStop.mPosition &&
bottomLeft < firstStop.mPosition && bottomRight < firstStop.mPosition) {
*aOutEdgeColor = firstStop.mColor;
return true;
}
const ColorStop& lastStop = aStops.LastElement();
if (topLeft >= lastStop.mPosition && topRight >= lastStop.mPosition &&
bottomLeft >= lastStop.mPosition && bottomRight >= lastStop.mPosition) {
*aOutEdgeColor = lastStop.mColor;
return true;
}
return false;
}
void
nsCSSRendering::PaintGradient(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsStyleGradient* aGradient,
const nsRect& aDirtyRect,
const nsRect& aDest,
const nsRect& aFillArea,
const CSSIntRect& aSrc,
const nsSize& aIntrinsicSize)
{
PROFILER_LABEL("nsCSSRendering", "PaintGradient",
js::ProfileEntry::Category::GRAPHICS);
Telemetry::AutoTimer<Telemetry::GRADIENT_DURATION, Telemetry::Microsecond> gradientTimer;
if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
return;
}
gfxContext *ctx = aRenderingContext.ThebesContext();
nscoord appUnitsPerDevPixel = aPresContext->AppUnitsPerDevPixel();
gfxSize srcSize = gfxSize(gfxFloat(aIntrinsicSize.width)/appUnitsPerDevPixel,
gfxFloat(aIntrinsicSize.height)/appUnitsPerDevPixel);
bool cellContainsFill = aDest.Contains(aFillArea);
// Compute "gradient line" start and end relative to the intrinsic size of
// the gradient.
gfxPoint lineStart, lineEnd;
double radiusX = 0, radiusY = 0; // for radial gradients only
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR) {
ComputeLinearGradientLine(aPresContext, aGradient, srcSize,
&lineStart, &lineEnd);
} else {
ComputeRadialGradientLine(aPresContext, aGradient, srcSize,
&lineStart, &lineEnd, &radiusX, &radiusY);
}
gfxFloat lineLength = NS_hypot(lineEnd.x - lineStart.x,
lineEnd.y - lineStart.y);
NS_ABORT_IF_FALSE(aGradient->mStops.Length() >= 2,
"The parser should reject gradients with less than two stops");
// Build color stop array and compute stop positions
nsTArray<ColorStop> stops;
// If there is a run of stops before stop i that did not have specified
// positions, then this is the index of the first stop in that run, otherwise
// it's -1.
int32_t firstUnsetPosition = -1;
for (uint32_t i = 0; i < aGradient->mStops.Length(); ++i) {
const nsStyleGradientStop& stop = aGradient->mStops[i];
double position;
switch (stop.mLocation.GetUnit()) {
case eStyleUnit_None:
if (i == 0) {
// First stop defaults to position 0.0
position = 0.0;
} else if (i == aGradient->mStops.Length() - 1) {
// Last stop defaults to position 1.0
position = 1.0;
} else {
// Other stops with no specified position get their position assigned
// later by interpolation, see below.
// Remeber where the run of stops with no specified position starts,
// if it starts here.
if (firstUnsetPosition < 0) {
firstUnsetPosition = i;
}
stops.AppendElement(ColorStop(0, stop.mColor));
continue;
}
break;
case eStyleUnit_Percent:
position = stop.mLocation.GetPercentValue();
break;
case eStyleUnit_Coord:
position = lineLength < 1e-6 ? 0.0 :
stop.mLocation.GetCoordValue() / appUnitsPerDevPixel / lineLength;
break;
case eStyleUnit_Calc:
nsStyleCoord::Calc *calc;
calc = stop.mLocation.GetCalcValue();
position = calc->mPercent +
((lineLength < 1e-6) ? 0.0 :
(NSAppUnitsToFloatPixels(calc->mLength, appUnitsPerDevPixel) / lineLength));
break;
default:
NS_ABORT_IF_FALSE(false, "Unknown stop position type");
}
if (i > 0) {
// Prevent decreasing stop positions by advancing this position
// to the previous stop position, if necessary
position = std::max(position, stops[i - 1].mPosition);
}
stops.AppendElement(ColorStop(position, stop.mColor));
if (firstUnsetPosition > 0) {
// Interpolate positions for all stops that didn't have a specified position
double p = stops[firstUnsetPosition - 1].mPosition;
double d = (stops[i].mPosition - p)/(i - firstUnsetPosition + 1);
for (uint32_t j = firstUnsetPosition; j < i; ++j) {
p += d;
stops[j].mPosition = p;
}
firstUnsetPosition = -1;
}
}
// Eliminate negative-position stops if the gradient is radial.
double firstStop = stops[0].mPosition;
if (aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR && firstStop < 0.0) {
if (aGradient->mRepeating) {
// Choose an instance of the repeated pattern that gives us all positive
// stop-offsets.
double lastStop = stops[stops.Length() - 1].mPosition;
double stopDelta = lastStop - firstStop;
// If all the stops are in approximately the same place then logic below
// will kick in that makes us draw just the last stop color, so don't
// try to do anything in that case. We certainly need to avoid
// dividing by zero.
if (stopDelta >= 1e-6) {
double instanceCount = ceil(-firstStop/stopDelta);
// Advance stops by instanceCount multiples of the period of the
// repeating gradient.
double offset = instanceCount*stopDelta;
for (uint32_t i = 0; i < stops.Length(); i++) {
stops[i].mPosition += offset;
}
}
} else {
// Move negative-position stops to position 0.0. We may also need
// to set the color of the stop to the color the gradient should have
// at the center of the ellipse.
for (uint32_t i = 0; i < stops.Length(); i++) {
double pos = stops[i].mPosition;
if (pos < 0.0) {
stops[i].mPosition = 0.0;
// If this is the last stop, we don't need to adjust the color,
// it will fill the entire area.
if (i < stops.Length() - 1) {
double nextPos = stops[i + 1].mPosition;
// If nextPos is approximately equal to pos, then we don't
// need to adjust the color of this stop because it's
// not going to be displayed.
// If nextPos is negative, we don't need to adjust the color of
// this stop since it's not going to be displayed because
// nextPos will also be moved to 0.0.
if (nextPos >= 0.0 && nextPos - pos >= 1e-6) {
// Compute how far the new position 0.0 is along the interval
// between pos and nextPos.
// XXX Color interpolation (in cairo, too) should use the
// CSS 'color-interpolation' property!
double frac = (0.0 - pos)/(nextPos - pos);
stops[i].mColor =
InterpolateColor(stops[i].mColor, stops[i + 1].mColor, frac);
}
}
}
}
}
firstStop = stops[0].mPosition;
NS_ABORT_IF_FALSE(firstStop >= 0.0, "Failed to fix stop offsets");
}
if (aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR && !aGradient->mRepeating) {
// Direct2D can only handle a particular class of radial gradients because
// of the way the it specifies gradients. Setting firstStop to 0, when we
// can, will help us stay on the fast path. Currently we don't do this
// for repeating gradients but we could by adjusting the stop collection
// to start at 0
firstStop = 0;
}
double lastStop = stops[stops.Length() - 1].mPosition;
// Cairo gradients must have stop positions in the range [0, 1]. So,
// stop positions will be normalized below by subtracting firstStop and then
// multiplying by stopScale.
double stopScale;
double stopOrigin = firstStop;
double stopEnd = lastStop;
double stopDelta = lastStop - firstStop;
bool zeroRadius = aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR &&
(radiusX < 1e-6 || radiusY < 1e-6);
if (stopDelta < 1e-6 || lineLength < 1e-6 || zeroRadius) {
// Stops are all at the same place. Map all stops to 0.0.
// For repeating radial gradients, or for any radial gradients with
// a zero radius, we need to fill with the last stop color, so just set
// both radii to 0.
if (aGradient->mRepeating || zeroRadius) {
radiusX = radiusY = 0.0;
}
stopDelta = 0.0;
lastStop = firstStop;
}
// Don't normalize non-repeating or degenerate gradients below 0..1
// This keeps the gradient line as large as the box and doesn't
// lets us avoiding having to get padding correct for stops
// at 0 and 1
if (!aGradient->mRepeating || stopDelta == 0.0) {
stopOrigin = std::min(stopOrigin, 0.0);
stopEnd = std::max(stopEnd, 1.0);
}
stopScale = 1.0/(stopEnd - stopOrigin);
// Create the gradient pattern.
nsRefPtr<gfxPattern> gradientPattern;
bool forceRepeatToCoverTiles = false;
gfxMatrix matrix;
gfxPoint gradientStart;
gfxPoint gradientEnd;
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR) {
// Compute the actual gradient line ends we need to pass to cairo after
// stops have been normalized.
gradientStart = lineStart + (lineEnd - lineStart)*stopOrigin;
gradientEnd = lineStart + (lineEnd - lineStart)*stopEnd;
gfxPoint gradientStopStart = lineStart + (lineEnd - lineStart)*firstStop;
gfxPoint gradientStopEnd = lineStart + (lineEnd - lineStart)*lastStop;
if (stopDelta == 0.0) {
// Stops are all at the same place. For repeating gradients, this will
// just paint the last stop color. We don't need to do anything.
// For non-repeating gradients, this should render as two colors, one
// on each "side" of the gradient line segment, which is a point. All
// our stops will be at 0.0; we just need to set the direction vector
// correctly.
gradientEnd = gradientStart + (lineEnd - lineStart);
gradientStopEnd = gradientStopStart + (lineEnd - lineStart);
}
gradientPattern = new gfxPattern(gradientStart.x, gradientStart.y,
gradientEnd.x, gradientEnd.y);
// When the gradient line is parallel to the x axis from the left edge
// to the right edge of a tile, then we can repeat by just repeating the
// gradient.
if (!cellContainsFill &&
((gradientStopStart.y == gradientStopEnd.y && gradientStopStart.x == 0 &&
gradientStopEnd.x == srcSize.width) ||
(gradientStopStart.x == gradientStopEnd.x && gradientStopStart.y == 0 &&
gradientStopEnd.y == srcSize.height))) {
forceRepeatToCoverTiles = true;
}
} else {
NS_ASSERTION(firstStop >= 0.0,
"Negative stops not allowed for radial gradients");
// To form an ellipse, we'll stretch a circle vertically, if necessary.
// So our radii are based on radiusX.
double innerRadius = radiusX*stopOrigin;
double outerRadius = radiusX*stopEnd;
if (stopDelta == 0.0) {
// Stops are all at the same place. See above (except we now have
// the inside vs. outside of an ellipse).
outerRadius = innerRadius + 1;
}
gradientPattern = new gfxPattern(lineStart.x, lineStart.y, innerRadius,
lineStart.x, lineStart.y, outerRadius);
if (radiusX != radiusY) {
// Stretch the circles into ellipses vertically by setting a transform
// in the pattern.
// Recall that this is the transform from user space to pattern space.
// So to stretch the ellipse by factor of P vertically, we scale
// user coordinates by 1/P.
matrix.Translate(lineStart);
matrix.Scale(1.0, radiusX/radiusY);
matrix.Translate(-lineStart);
}
}
// Use a pattern transform to take account of source and dest rects
matrix.Translate(gfxPoint(aPresContext->CSSPixelsToDevPixels(aSrc.x),
aPresContext->CSSPixelsToDevPixels(aSrc.y)));
matrix.Scale(gfxFloat(aPresContext->CSSPixelsToAppUnits(aSrc.width))/aDest.width,
gfxFloat(aPresContext->CSSPixelsToAppUnits(aSrc.height))/aDest.height);
gradientPattern->SetMatrix(matrix);
if (gradientPattern->CairoStatus())
return;
if (stopDelta == 0.0) {
// Non-repeating gradient with all stops in same place -> just add
// first stop and last stop, both at position 0.
// Repeating gradient with all stops in the same place, or radial
// gradient with radius of 0 -> just paint the last stop color.
// We use firstStop offset to keep |stops| with same units (will later normalize to 0).
gfxRGBA firstColor(stops[0].mColor);
gfxRGBA lastColor(stops.LastElement().mColor);
stops.Clear();
if (!aGradient->mRepeating && !zeroRadius) {
stops.AppendElement(ColorStop(firstStop, firstColor));
}
stops.AppendElement(ColorStop(firstStop, lastColor));
}
bool isRepeat = aGradient->mRepeating || forceRepeatToCoverTiles;
// Now set normalized color stops in pattern.
// Offscreen gradient surface cache (not a tile):
// On some backends (e.g. D2D), the GradientStops object holds an offscreen surface
// which is a lookup table used to evaluate the gradient. This surface can use
// much memory (ram and/or GPU ram) and can be expensive to create. So we cache it.
// The cache key correlates 1:1 with the arguments for CreateGradientStops (also the implied backend type)
// Note that GradientStop is a simple struct with a stop value (while GradientStops has the surface).
nsTArray<gfx::GradientStop> rawStops(stops.Length());
rawStops.SetLength(stops.Length());
for(uint32_t i = 0; i < stops.Length(); i++) {
rawStops[i].color = gfx::Color(stops[i].mColor.r, stops[i].mColor.g, stops[i].mColor.b, stops[i].mColor.a);
rawStops[i].offset = stopScale * (stops[i].mPosition - stopOrigin);
}
mozilla::RefPtr<mozilla::gfx::GradientStops> gs =
gfxGradientCache::GetOrCreateGradientStops(ctx->GetDrawTarget(),
rawStops,
isRepeat ? gfx::ExtendMode::REPEAT : gfx::ExtendMode::CLAMP);
gradientPattern->SetColorStops(gs);
// Paint gradient tiles. This isn't terribly efficient, but doing it this
// way is simple and sure to get pixel-snapping right. We could speed things
// up by drawing tiles into temporary surfaces and copying those to the
// destination, but after pixel-snapping tiles may not all be the same size.
nsRect dirty;
if (!dirty.IntersectRect(aDirtyRect, aFillArea))
return;
gfxRect areaToFill =
nsLayoutUtils::RectToGfxRect(aFillArea, appUnitsPerDevPixel);
gfxRect dirtyAreaToFill = nsLayoutUtils::RectToGfxRect(dirty, appUnitsPerDevPixel);
dirtyAreaToFill.RoundOut();
gfxMatrix ctm = ctx->CurrentMatrix();
bool isCTMPreservingAxisAlignedRectangles = ctm.PreservesAxisAlignedRectangles();
// xStart/yStart are the top-left corner of the top-left tile.
nscoord xStart = FindTileStart(dirty.x, aDest.x, aDest.width);
nscoord yStart = FindTileStart(dirty.y, aDest.y, aDest.height);
nscoord xEnd = forceRepeatToCoverTiles ? xStart + aDest.width : dirty.XMost();
nscoord yEnd = forceRepeatToCoverTiles ? yStart + aDest.height : dirty.YMost();
// x and y are the top-left corner of the tile to draw
for (nscoord y = yStart; y < yEnd; y += aDest.height) {
for (nscoord x = xStart; x < xEnd; x += aDest.width) {
// The coordinates of the tile
gfxRect tileRect = nsLayoutUtils::RectToGfxRect(
nsRect(x, y, aDest.width, aDest.height),
appUnitsPerDevPixel);
// The actual area to fill with this tile is the intersection of this
// tile with the overall area we're supposed to be filling
gfxRect fillRect =
forceRepeatToCoverTiles ? areaToFill : tileRect.Intersect(areaToFill);
// Try snapping the fill rect. Snap its top-left and bottom-right
// independently to preserve the orientation.
gfxPoint snappedFillRectTopLeft = fillRect.TopLeft();
gfxPoint snappedFillRectTopRight = fillRect.TopRight();
gfxPoint snappedFillRectBottomRight = fillRect.BottomRight();
// Snap three points instead of just two to ensure we choose the
// correct orientation if there's a reflection.
if (isCTMPreservingAxisAlignedRectangles &&
ctx->UserToDevicePixelSnapped(snappedFillRectTopLeft, true) &&
ctx->UserToDevicePixelSnapped(snappedFillRectBottomRight, true) &&
ctx->UserToDevicePixelSnapped(snappedFillRectTopRight, true)) {
if (snappedFillRectTopLeft.x == snappedFillRectBottomRight.x ||
snappedFillRectTopLeft.y == snappedFillRectBottomRight.y) {
// Nothing to draw; avoid scaling by zero and other weirdness that
// could put the context in an error state.
continue;
}
// Set the context's transform to the transform that maps fillRect to
// snappedFillRect. The part of the gradient that was going to
// exactly fill fillRect will fill snappedFillRect instead.
gfxMatrix transform = gfxUtils::TransformRectToRect(fillRect,
snappedFillRectTopLeft, snappedFillRectTopRight,
snappedFillRectBottomRight);
ctx->SetMatrix(transform);
}
ctx->NewPath();
ctx->Rectangle(fillRect);
gfxRect dirtyFillRect = fillRect.Intersect(dirtyAreaToFill);
gfxRect fillRectRelativeToTile = dirtyFillRect - tileRect.TopLeft();
gfxRGBA edgeColor;
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR && !isRepeat &&
RectIsBeyondLinearGradientEdge(fillRectRelativeToTile, matrix, stops,
gradientStart, gradientEnd, &edgeColor)) {
ctx->SetColor(edgeColor);
} else {
ctx->SetMatrix(
ctx->CurrentMatrix().Copy().Translate(tileRect.TopLeft()));
ctx->SetPattern(gradientPattern);
}
ctx->Fill();
ctx->SetMatrix(ctm);
}
}
}
void
nsCSSRendering::PaintBackgroundWithSC(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aBackgroundSC,
const nsStyleBorder& aBorder,
uint32_t aFlags,
nsRect* aBGClipRect,
int32_t aLayer)
{
NS_PRECONDITION(aForFrame,
"Frame is expected to be provided to PaintBackground");
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the background and bail out.
// XXXzw this ignores aBGClipRect.
const nsStyleDisplay* displayData = aForFrame->StyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame,
displayData->mAppearance)) {
nsRect drawing(aBorderArea);
theme->GetWidgetOverflow(aPresContext->DeviceContext(),
aForFrame, displayData->mAppearance, &drawing);
drawing.IntersectRect(drawing, aDirtyRect);
theme->DrawWidgetBackground(&aRenderingContext, aForFrame,
displayData->mAppearance, aBorderArea,
drawing);
return;
}
}
// For canvas frames (in the CSS sense) we draw the background color using
// a solid color item that gets added in nsLayoutUtils::PaintFrame,
// or nsSubDocumentFrame::BuildDisplayList (bug 488242). (The solid
// color may be moved into nsDisplayCanvasBackground by
// nsPresShell::AddCanvasBackgroundColorItem, and painted by
// nsDisplayCanvasBackground directly.) Either way we don't need to
// paint the background color here.
bool isCanvasFrame = IsCanvasFrame(aForFrame);
// Determine whether we are drawing background images and/or
// background colors.
bool drawBackgroundImage;
bool drawBackgroundColor;
nscolor bgColor = DetermineBackgroundColor(aPresContext,
aBackgroundSC,
aForFrame,
drawBackgroundImage,
drawBackgroundColor);
// If we're drawing a specific layer, we don't want to draw the
// background color.
const nsStyleBackground *bg = aBackgroundSC->StyleBackground();
if (drawBackgroundColor && aLayer >= 0) {
drawBackgroundColor = false;
}
// At this point, drawBackgroundImage and drawBackgroundColor are
// true if and only if we are actually supposed to paint an image or
// color into aDirtyRect, respectively.
if (!drawBackgroundImage && !drawBackgroundColor)
return;
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aBorderArea & aBGClipRect.
Sides skipSides = aForFrame->GetSkipSides();
nsRect paintBorderArea =
::BoxDecorationRectForBackground(aForFrame, aBorderArea, skipSides, &aBorder);
nsRect clipBorderArea =
::BoxDecorationRectForBorder(aForFrame, aBorderArea, skipSides, &aBorder);
// The 'bgClipArea' (used only by the image tiling logic, far below)
// is the caller-provided aBGClipRect if any, or else the area
// determined by the value of 'background-clip' in
// SetupCurrentBackgroundClip. (Arguably it should be the
// intersection, but that breaks the table painter -- in particular,
// taking the intersection breaks reftests/bugs/403249-1[ab].)
gfxContext* ctx = aRenderingContext.ThebesContext();
nscoord appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
BackgroundClipState clipState;
if (aBGClipRect) {
clipState.mBGClipArea = *aBGClipRect;
clipState.mCustomClip = true;
clipState.mHasRoundedCorners = false;
SetupDirtyRects(clipState.mBGClipArea, aDirtyRect, appUnitsPerPixel,
&clipState.mDirtyRect, &clipState.mDirtyRectGfx);
} else {
GetBackgroundClip(bg->BottomLayer(),
aForFrame, aBorder, aBorderArea,
aDirtyRect, (aFlags & PAINTBG_WILL_PAINT_BORDER), appUnitsPerPixel,
&clipState);
}
// If we might be using a background color, go ahead and set it now.
if (drawBackgroundColor && !isCanvasFrame)
ctx->SetColor(gfxRGBA(bgColor));
// NOTE: no Save() yet, we do that later by calling autoSR.EnsureSaved(ctx)
// in the cases we need it.
gfxContextAutoSaveRestore autoSR;
// If there is no background image, draw a color. (If there is
// neither a background image nor a color, we wouldn't have gotten
// this far.)
if (!drawBackgroundImage) {
if (!isCanvasFrame) {
DrawBackgroundColor(clipState, ctx, appUnitsPerPixel);
}
return;
}
2009-01-08 13:19:21 +03:00
if (bg->mImageCount < 1) {
// Return if there are no background layers, all work from this point
// onwards happens iteratively on these.
return;
}
// Validate the layer range before we start iterating.
int32_t startLayer = aLayer;
int32_t nLayers = 1;
if (startLayer < 0) {
startLayer = (int32_t)bg->mImageCount - 1;
nLayers = bg->mImageCount;
}
// Ensure we get invalidated for loads of the image. We need to do
// this here because this might be the only code that knows about the
// association of the style data with the frame.
if (aBackgroundSC != aForFrame->StyleContext()) {
NS_FOR_VISIBLE_BACKGROUND_LAYERS_BACK_TO_FRONT_WITH_RANGE(i, bg, startLayer, nLayers) {
aForFrame->AssociateImage(bg->mLayers[i].mImage, aPresContext);
}
}
// The background color is rendered over the entire dirty area,
// even if the image isn't.
if (drawBackgroundColor && !isCanvasFrame) {
DrawBackgroundColor(clipState, ctx, appUnitsPerPixel);
}
if (drawBackgroundImage) {
bool clipSet = false;
uint8_t currentBackgroundClip = NS_STYLE_BG_CLIP_BORDER;
NS_FOR_VISIBLE_BACKGROUND_LAYERS_BACK_TO_FRONT_WITH_RANGE(i, bg, bg->mImageCount - 1,
nLayers + (bg->mImageCount -
startLayer - 1)) {
const nsStyleBackground::Layer &layer = bg->mLayers[i];
if (!aBGClipRect) {
if (currentBackgroundClip != layer.mClip || !clipSet) {
currentBackgroundClip = layer.mClip;
// If clipSet is false that means this is the bottom layer and we
// already called GetBackgroundClip above and it stored its results
// in clipState.
if (clipSet) {
autoSR.Restore(); // reset the previous one
GetBackgroundClip(layer, aForFrame,
aBorder, aBorderArea, aDirtyRect, (aFlags & PAINTBG_WILL_PAINT_BORDER),
appUnitsPerPixel, &clipState);
}
SetupBackgroundClip(clipState, ctx, appUnitsPerPixel, &autoSR);
clipSet = true;
if (!clipBorderArea.IsEqualEdges(aBorderArea)) {
// We're drawing the background for the joined continuation boxes
// so we need to clip that to the slice that we want for this frame.
gfxRect clip =
nsLayoutUtils::RectToGfxRect(aBorderArea, appUnitsPerPixel);
autoSR.EnsureSaved(ctx);
ctx->NewPath();
ctx->SnappedRectangle(clip);
ctx->Clip();
}
}
}
if ((aLayer < 0 || i == (uint32_t)startLayer) &&
!clipState.mDirtyRectGfx.IsEmpty()) {
nsBackgroundLayerState state = PrepareBackgroundLayer(aPresContext, aForFrame,
aFlags, paintBorderArea, clipState.mBGClipArea, layer);
if (!state.mFillArea.IsEmpty()) {
if (state.mCompositingOp != gfxContext::OPERATOR_OVER) {
NS_ASSERTION(ctx->CurrentOperator() == gfxContext::OPERATOR_OVER,
"It is assumed the initial operator is OPERATOR_OVER, when it is restored later");
ctx->SetOperator(state.mCompositingOp);
}
state.mImageRenderer.DrawBackground(aPresContext, aRenderingContext,
state.mDestArea, state.mFillArea,
state.mAnchor + paintBorderArea.TopLeft(),
clipState.mDirtyRect);
if (state.mCompositingOp != gfxContext::OPERATOR_OVER) {
ctx->SetOperator(gfxContext::OPERATOR_OVER);
}
}
}
}
}
}
static inline bool
IsTransformed(nsIFrame* aForFrame, nsIFrame* aTopFrame)
{
for (nsIFrame* f = aForFrame; f != aTopFrame; f = f->GetParent()) {
if (f->IsTransformed()) {
return true;
}
}
return false;
}
nsRect
nsCSSRendering::ComputeBackgroundPositioningArea(nsPresContext* aPresContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleBackground::Layer& aLayer,
nsIFrame** aAttachedToFrame)
{
// Compute background origin area relative to aBorderArea now as we may need
// it to compute the effective image size for a CSS gradient.
nsRect bgPositioningArea;
nsIAtom* frameType = aForFrame->GetType();
nsIFrame* geometryFrame = aForFrame;
if (MOZ_UNLIKELY(frameType == nsGkAtoms::scrollFrame &&
NS_STYLE_BG_ATTACHMENT_LOCAL == aLayer.mAttachment)) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(aForFrame);
bgPositioningArea = nsRect(
scrollableFrame->GetScrolledFrame()->GetPosition()
// For the dir=rtl case:
+ scrollableFrame->GetScrollRange().TopLeft(),
scrollableFrame->GetScrolledRect().Size());
// The ScrolledRects size does not include the borders or scrollbars,
// reverse the handling of background-origin
// compared to the common case below.
if (aLayer.mOrigin == NS_STYLE_BG_ORIGIN_BORDER) {
nsMargin border = geometryFrame->GetUsedBorder();
border.ApplySkipSides(geometryFrame->GetSkipSides());
bgPositioningArea.Inflate(border);
bgPositioningArea.Inflate(scrollableFrame->GetActualScrollbarSizes());
} else if (aLayer.mOrigin != NS_STYLE_BG_ORIGIN_PADDING) {
nsMargin padding = geometryFrame->GetUsedPadding();
padding.ApplySkipSides(geometryFrame->GetSkipSides());
bgPositioningArea.Deflate(padding);
NS_ASSERTION(aLayer.mOrigin == NS_STYLE_BG_ORIGIN_CONTENT,
"unknown background-origin value");
}
*aAttachedToFrame = aForFrame;
return bgPositioningArea;
}
if (MOZ_UNLIKELY(frameType == nsGkAtoms::canvasFrame)) {
geometryFrame = aForFrame->GetFirstPrincipalChild();
// geometryFrame might be null if this canvas is a page created
// as an overflow container (e.g. the in-flow content has already
// finished and this page only displays the continuations of
// absolutely positioned content).
if (geometryFrame) {
bgPositioningArea = geometryFrame->GetRect();
}
} else {
bgPositioningArea = nsRect(nsPoint(0,0), aBorderArea.Size());
}
// Background images are tiled over the 'background-clip' area
// but the origin of the tiling is based on the 'background-origin' area
if (aLayer.mOrigin != NS_STYLE_BG_ORIGIN_BORDER && geometryFrame) {
nsMargin border = geometryFrame->GetUsedBorder();
if (aLayer.mOrigin != NS_STYLE_BG_ORIGIN_PADDING) {
border += geometryFrame->GetUsedPadding();
NS_ASSERTION(aLayer.mOrigin == NS_STYLE_BG_ORIGIN_CONTENT,
"unknown background-origin value");
}
bgPositioningArea.Deflate(border);
}
nsIFrame* attachedToFrame = aForFrame;
if (NS_STYLE_BG_ATTACHMENT_FIXED == aLayer.mAttachment) {
// If it's a fixed background attachment, then the image is placed
// relative to the viewport, which is the area of the root frame
// in a screen context or the page content frame in a print context.
attachedToFrame = aPresContext->PresShell()->FrameManager()->GetRootFrame();
NS_ASSERTION(attachedToFrame, "no root frame");
nsIFrame* pageContentFrame = nullptr;
if (aPresContext->IsPaginated()) {
pageContentFrame =
nsLayoutUtils::GetClosestFrameOfType(aForFrame, nsGkAtoms::pageContentFrame);
if (pageContentFrame) {
attachedToFrame = pageContentFrame;
}
// else this is an embedded shell and its root frame is what we want
}
// Set the background positioning area to the viewport's area
// (relative to aForFrame)
bgPositioningArea =
nsRect(-aForFrame->GetOffsetTo(attachedToFrame), attachedToFrame->GetSize());
if (!pageContentFrame) {
// Subtract the size of scrollbars.
nsIScrollableFrame* scrollableFrame =
aPresContext->PresShell()->GetRootScrollFrameAsScrollable();
if (scrollableFrame) {
nsMargin scrollbars = scrollableFrame->GetActualScrollbarSizes();
bgPositioningArea.Deflate(scrollbars);
}
}
}
*aAttachedToFrame = attachedToFrame;
return bgPositioningArea;
}
// Apply the CSS image sizing algorithm as it applies to background images.
// See http://www.w3.org/TR/css3-background/#the-background-size .
// aIntrinsicSize is the size that the background image 'would like to be'.
// It can be found by calling nsImageRenderer::ComputeIntrinsicSize.
static nsSize
ComputeDrawnSizeForBackground(const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aBgPositioningArea,
const nsStyleBackground::Size& aLayerSize)
{
// Size is dictated by cover or contain rules.
if (aLayerSize.mWidthType == nsStyleBackground::Size::eContain ||
aLayerSize.mWidthType == nsStyleBackground::Size::eCover) {
nsImageRenderer::FitType fitType =
aLayerSize.mWidthType == nsStyleBackground::Size::eCover
? nsImageRenderer::COVER
: nsImageRenderer::CONTAIN;
return nsImageRenderer::ComputeConstrainedSize(aBgPositioningArea,
aIntrinsicSize.mRatio,
fitType);
}
// No cover/contain constraint, use default algorithm.
CSSSizeOrRatio specifiedSize;
if (aLayerSize.mWidthType == nsStyleBackground::Size::eLengthPercentage) {
specifiedSize.SetWidth(
aLayerSize.ResolveWidthLengthPercentage(aBgPositioningArea));
}
if (aLayerSize.mHeightType == nsStyleBackground::Size::eLengthPercentage) {
specifiedSize.SetHeight(
aLayerSize.ResolveHeightLengthPercentage(aBgPositioningArea));
}
return nsImageRenderer::ComputeConcreteSize(specifiedSize,
aIntrinsicSize,
aBgPositioningArea);
}
nsBackgroundLayerState
nsCSSRendering::PrepareBackgroundLayer(nsPresContext* aPresContext,
nsIFrame* aForFrame,
uint32_t aFlags,
const nsRect& aBorderArea,
const nsRect& aBGClipRect,
const nsStyleBackground::Layer& aLayer)
{
/*
* The properties we need to keep in mind when drawing background
* layers are:
*
* background-image
* background-repeat
* background-attachment
* background-position
* background-clip
* background-origin
* background-size
* background-blend-mode
* box-decoration-break
*
* (background-color applies to the entire element and not to individual
* layers, so it is irrelevant to this method.)
*
* These properties have the following dependencies upon each other when
* determining rendering:
*
* background-image
* no dependencies
* background-repeat
* no dependencies
* background-attachment
* no dependencies
* background-position
* depends upon background-size (for the image's scaled size) and
* background-break (for the background positioning area)
* background-clip
* no dependencies
* background-origin
* depends upon background-attachment (only in the case where that value
* is 'fixed')
* background-size
* depends upon box-decoration-break (for the background positioning area
* for resolving percentages), background-image (for the image's intrinsic
* size), background-repeat (if that value is 'round'), and
* background-origin (for the background painting area, when
* background-repeat is 'round')
* box-decoration-break
* no dependencies
*
* As a result of only-if dependencies we don't strictly do a topological
* sort of the above properties when processing, but it's pretty close to one:
*
* background-clip (by caller)
* background-image
* box-decoration-break, background-origin
* background-attachment (postfix for background-origin if 'fixed')
* background-size
* background-position
* background-repeat
*/
uint32_t irFlags = 0;
if (aFlags & nsCSSRendering::PAINTBG_SYNC_DECODE_IMAGES) {
irFlags |= nsImageRenderer::FLAG_SYNC_DECODE_IMAGES;
}
if (aFlags & nsCSSRendering::PAINTBG_TO_WINDOW) {
irFlags |= nsImageRenderer::FLAG_PAINTING_TO_WINDOW;
}
nsBackgroundLayerState state(aForFrame, &aLayer.mImage, irFlags);
if (!state.mImageRenderer.PrepareImage()) {
// There's no image or it's not ready to be painted.
return state;
}
// The frame to which the background is attached
nsIFrame* attachedToFrame = aForFrame;
// Compute background origin area relative to aBorderArea now as we may need
// it to compute the effective image size for a CSS gradient.
nsRect bgPositioningArea =
ComputeBackgroundPositioningArea(aPresContext, aForFrame, aBorderArea,
aLayer, &attachedToFrame);
// For background-attachment:fixed backgrounds, we'll limit the area
// where the background can be drawn to the viewport.
nsRect bgClipRect = aBGClipRect;
// Compute the anchor point.
//
// relative to aBorderArea.TopLeft() (which is where the top-left
// of aForFrame's border-box will be rendered)
nsPoint imageTopLeft;
if (NS_STYLE_BG_ATTACHMENT_FIXED == aLayer.mAttachment) {
if ((aFlags & nsCSSRendering::PAINTBG_TO_WINDOW) &&
!IsTransformed(aForFrame, attachedToFrame)) {
// Clip background-attachment:fixed backgrounds to the viewport, if we're
// painting to the screen and not transformed. This avoids triggering
// tiling in common cases, without affecting output since drawing is
// always clipped to the viewport when we draw to the screen. (But it's
// not a pure optimization since it can affect the values of pixels at the
// edge of the viewport --- whether they're sampled from a putative "next
// tile" or not.)
bgClipRect.IntersectRect(bgClipRect, bgPositioningArea + aBorderArea.TopLeft());
}
}
// Scale the image as specified for background-size and as required for
// proper background positioning when background-position is defined with
// percentages.
CSSSizeOrRatio intrinsicSize = state.mImageRenderer.ComputeIntrinsicSize();
nsSize bgPositionSize = bgPositioningArea.Size();
nsSize imageSize = ComputeDrawnSizeForBackground(intrinsicSize,
bgPositionSize,
aLayer.mSize);
if (imageSize.width <= 0 || imageSize.height <= 0)
return state;
state.mImageRenderer.SetPreferredSize(intrinsicSize,
imageSize);
// Compute the position of the background now that the background's size is
// determined.
ComputeBackgroundAnchorPoint(aLayer, bgPositionSize, imageSize,
&imageTopLeft, &state.mAnchor);
imageTopLeft += bgPositioningArea.TopLeft();
state.mAnchor += bgPositioningArea.TopLeft();
state.mDestArea = nsRect(imageTopLeft + aBorderArea.TopLeft(), imageSize);
state.mFillArea = state.mDestArea;
int repeatX = aLayer.mRepeat.mXRepeat;
int repeatY = aLayer.mRepeat.mYRepeat;
if (repeatX == NS_STYLE_BG_REPEAT_REPEAT) {
state.mFillArea.x = bgClipRect.x;
state.mFillArea.width = bgClipRect.width;
}
if (repeatY == NS_STYLE_BG_REPEAT_REPEAT) {
state.mFillArea.y = bgClipRect.y;
state.mFillArea.height = bgClipRect.height;
}
state.mFillArea.IntersectRect(state.mFillArea, bgClipRect);
state.mCompositingOp = GetGFXBlendMode(aLayer.mBlendMode);
return state;
}
nsRect
nsCSSRendering::GetBackgroundLayerRect(nsPresContext* aPresContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsRect& aClipRect,
const nsStyleBackground::Layer& aLayer,
uint32_t aFlags)
{
Sides skipSides = aForFrame->GetSkipSides();
nsRect borderArea =
::BoxDecorationRectForBackground(aForFrame, aBorderArea, skipSides);
nsBackgroundLayerState state =
PrepareBackgroundLayer(aPresContext, aForFrame, aFlags, borderArea,
aClipRect, aLayer);
return state.mFillArea;
}
/* static */ bool
nsCSSRendering::IsBackgroundImageDecodedForStyleContextAndLayer(
const nsStyleBackground *aBackground, uint32_t aLayer)
{
const nsStyleImage* image = &aBackground->mLayers[aLayer].mImage;
if (image->GetType() == eStyleImageType_Image) {
nsCOMPtr<imgIContainer> img;
if (NS_SUCCEEDED(image->GetImageData()->GetImage(getter_AddRefs(img)))) {
if (!img->IsDecoded()) {
return false;
}
}
}
return true;
}
/* static */ bool
nsCSSRendering::AreAllBackgroundImagesDecodedForFrame(nsIFrame* aFrame)
{
const nsStyleBackground *bg = aFrame->StyleContext()->StyleBackground();
NS_FOR_VISIBLE_BACKGROUND_LAYERS_BACK_TO_FRONT(i, bg) {
if (!IsBackgroundImageDecodedForStyleContextAndLayer(bg, i)) {
return false;
}
}
return true;
}
static void
DrawBorderImage(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
const nsRect& aDirtyRect,
Sides aSkipSides)
{
NS_PRECONDITION(aStyleBorder.IsBorderImageLoaded(),
"drawing border image that isn't successfully loaded");
if (aDirtyRect.IsEmpty())
return;
nsImageRenderer renderer(aForFrame, &aStyleBorder.mBorderImageSource, 0);
// Ensure we get invalidated for loads and animations of the image.
// We need to do this here because this might be the only code that
// knows about the association of the style data with the frame.
// XXX We shouldn't really... since if anybody is passing in a
// different style, they'll potentially have the wrong size for the
// border too.
aForFrame->AssociateImage(aStyleBorder.mBorderImageSource, aPresContext);
if (!renderer.PrepareImage()) {
return;
}
// NOTE: no Save() yet, we do that later by calling autoSR.EnsureSaved()
// in case we need it.
gfxContextAutoSaveRestore autoSR;
// Determine the border image area, which by default corresponds to the
// border box but can be modified by 'border-image-outset'.
// Note that 'border-radius' do not apply to 'border-image' borders per
// <http://dev.w3.org/csswg/css-backgrounds/#corner-clipping>.
nsRect borderImgArea;
nsMargin borderWidths(aStyleBorder.GetComputedBorder());
nsMargin imageOutset(aStyleBorder.GetImageOutset());
if (::IsBoxDecorationSlice(aStyleBorder) && !aSkipSides.IsEmpty()) {
borderImgArea = ::BoxDecorationRectForBorder(aForFrame, aBorderArea,
aSkipSides, &aStyleBorder);
if (borderImgArea.IsEqualEdges(aBorderArea)) {
// No need for a clip, just skip the sides we don't want.
borderWidths.ApplySkipSides(aSkipSides);
imageOutset.ApplySkipSides(aSkipSides);
borderImgArea.Inflate(imageOutset);
} else {
// We're drawing borders around the joined continuation boxes so we need
// to clip that to the slice that we want for this frame.
borderImgArea.Inflate(imageOutset);
imageOutset.ApplySkipSides(aSkipSides);
nsRect clip = aBorderArea;
clip.Inflate(imageOutset);
autoSR.EnsureSaved(aRenderingContext.ThebesContext());
aRenderingContext.IntersectClip(clip);
}
} else {
borderImgArea = aBorderArea;
borderImgArea.Inflate(imageOutset);
}
// Calculate the image size used to compute slice points.
CSSSizeOrRatio intrinsicSize = renderer.ComputeIntrinsicSize();
nsSize imageSize = nsImageRenderer::ComputeConcreteSize(CSSSizeOrRatio(),
intrinsicSize,
borderImgArea.Size());
renderer.SetPreferredSize(intrinsicSize, imageSize);
// Compute the used values of 'border-image-slice' and 'border-image-width';
// we do them together because the latter can depend on the former.
nsMargin slice;
nsMargin border;
NS_FOR_CSS_SIDES(s) {
nsStyleCoord coord = aStyleBorder.mBorderImageSlice.Get(s);
int32_t imgDimension = NS_SIDE_IS_VERTICAL(s)
? imageSize.width : imageSize.height;
nscoord borderDimension = NS_SIDE_IS_VERTICAL(s)
? borderImgArea.width : borderImgArea.height;
double value;
switch (coord.GetUnit()) {
case eStyleUnit_Percent:
value = coord.GetPercentValue() * imgDimension;
break;
case eStyleUnit_Factor:
value = nsPresContext::CSSPixelsToAppUnits(
NS_lround(coord.GetFactorValue()));
break;
default:
NS_NOTREACHED("unexpected CSS unit for image slice");
value = 0;
break;
}
if (value < 0)
value = 0;
if (value > imgDimension)
value = imgDimension;
slice.Side(s) = value;
coord = aStyleBorder.mBorderImageWidth.Get(s);
switch (coord.GetUnit()) {
case eStyleUnit_Coord: // absolute dimension
value = coord.GetCoordValue();
break;
case eStyleUnit_Percent:
value = coord.GetPercentValue() * borderDimension;
break;
case eStyleUnit_Factor:
value = coord.GetFactorValue() * borderWidths.Side(s);
break;
case eStyleUnit_Auto: // same as the slice value, in CSS pixels
value = slice.Side(s);
break;
default:
NS_NOTREACHED("unexpected CSS unit for border image area division");
value = 0;
break;
}
// NSToCoordRoundWithClamp rounds towards infinity, but that's OK
// because we expect value to be non-negative.
MOZ_ASSERT(value >= 0);
border.Side(s) = NSToCoordRoundWithClamp(value);
MOZ_ASSERT(border.Side(s) >= 0);
}
// "If two opposite border-image-width offsets are large enough that they
// overlap, their used values are proportionately reduced until they no
// longer overlap."
uint32_t combinedBorderWidth = uint32_t(border.left) +
uint32_t(border.right);
double scaleX = combinedBorderWidth > uint32_t(borderImgArea.width)
? borderImgArea.width / double(combinedBorderWidth)
: 1.0;
uint32_t combinedBorderHeight = uint32_t(border.top) +
uint32_t(border.bottom);
double scaleY = combinedBorderHeight > uint32_t(borderImgArea.height)
? borderImgArea.height / double(combinedBorderHeight)
: 1.0;
double scale = std::min(scaleX, scaleY);
if (scale < 1.0) {
border.left *= scale;
border.right *= scale;
border.top *= scale;
border.bottom *= scale;
NS_ASSERTION(border.left + border.right <= borderImgArea.width &&
border.top + border.bottom <= borderImgArea.height,
"rounding error in width reduction???");
}
// These helper tables recharacterize the 'slice' and 'width' margins
// in a more convenient form: they are the x/y/width/height coords
// required for various bands of the border, and they have been transformed
// to be relative to the innerRect (for 'slice') or the page (for 'border').
enum {
LEFT, MIDDLE, RIGHT,
TOP = LEFT, BOTTOM = RIGHT
};
const nscoord borderX[3] = {
borderImgArea.x + 0,
borderImgArea.x + border.left,
borderImgArea.x + borderImgArea.width - border.right,
};
const nscoord borderY[3] = {
borderImgArea.y + 0,
borderImgArea.y + border.top,
borderImgArea.y + borderImgArea.height - border.bottom,
};
const nscoord borderWidth[3] = {
border.left,
borderImgArea.width - border.left - border.right,
border.right,
};
const nscoord borderHeight[3] = {
border.top,
borderImgArea.height - border.top - border.bottom,
border.bottom,
};
const int32_t sliceX[3] = {
0,
slice.left,
imageSize.width - slice.right,
};
const int32_t sliceY[3] = {
0,
slice.top,
imageSize.height - slice.bottom,
};
const int32_t sliceWidth[3] = {
slice.left,
std::max(imageSize.width - slice.left - slice.right, 0),
slice.right,
};
const int32_t sliceHeight[3] = {
slice.top,
std::max(imageSize.height - slice.top - slice.bottom, 0),
slice.bottom,
};
for (int i = LEFT; i <= RIGHT; i++) {
for (int j = TOP; j <= BOTTOM; j++) {
uint8_t fillStyleH, fillStyleV;
nsSize unitSize;
if (i == MIDDLE && j == MIDDLE) {
// Discard the middle portion unless set to fill.
if (NS_STYLE_BORDER_IMAGE_SLICE_NOFILL ==
aStyleBorder.mBorderImageFill) {
continue;
}
NS_ASSERTION(NS_STYLE_BORDER_IMAGE_SLICE_FILL ==
aStyleBorder.mBorderImageFill,
"Unexpected border image fill");
// css-background:
// The middle image's width is scaled by the same factor as the
// top image unless that factor is zero or infinity, in which
// case the scaling factor of the bottom is substituted, and
// failing that, the width is not scaled. The height of the
// middle image is scaled by the same factor as the left image
// unless that factor is zero or infinity, in which case the
// scaling factor of the right image is substituted, and failing
// that, the height is not scaled.
gfxFloat hFactor, vFactor;
if (0 < border.left && 0 < slice.left)
vFactor = gfxFloat(border.left)/slice.left;
else if (0 < border.right && 0 < slice.right)
vFactor = gfxFloat(border.right)/slice.right;
else
vFactor = 1;
if (0 < border.top && 0 < slice.top)
hFactor = gfxFloat(border.top)/slice.top;
else if (0 < border.bottom && 0 < slice.bottom)
hFactor = gfxFloat(border.bottom)/slice.bottom;
else
hFactor = 1;
unitSize.width = sliceWidth[i]*hFactor;
unitSize.height = sliceHeight[j]*vFactor;
fillStyleH = aStyleBorder.mBorderImageRepeatH;
fillStyleV = aStyleBorder.mBorderImageRepeatV;
} else if (i == MIDDLE) { // top, bottom
// Sides are always stretched to the thickness of their border,
// and stretched proportionately on the other axis.
gfxFloat factor;
if (0 < borderHeight[j] && 0 < sliceHeight[j])
factor = gfxFloat(borderHeight[j])/sliceHeight[j];
else
factor = 1;
unitSize.width = sliceWidth[i]*factor;
unitSize.height = borderHeight[j];
fillStyleH = aStyleBorder.mBorderImageRepeatH;
fillStyleV = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
} else if (j == MIDDLE) { // left, right
gfxFloat factor;
if (0 < borderWidth[i] && 0 < sliceWidth[i])
factor = gfxFloat(borderWidth[i])/sliceWidth[i];
else
factor = 1;
unitSize.width = borderWidth[i];
unitSize.height = sliceHeight[j]*factor;
fillStyleH = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
fillStyleV = aStyleBorder.mBorderImageRepeatV;
} else {
// Corners are always stretched to fit the corner.
unitSize.width = borderWidth[i];
unitSize.height = borderHeight[j];
fillStyleH = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
fillStyleV = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
}
2009-02-07 13:37:23 +03:00
nsRect destArea(borderX[i], borderY[j], borderWidth[i], borderHeight[j]);
nsRect subArea(sliceX[i], sliceY[j], sliceWidth[i], sliceHeight[j]);
nsIntRect intSubArea = subArea.ToOutsidePixels(nsPresContext::AppUnitsPerCSSPixel());
renderer.DrawBorderImageComponent(aPresContext,
aRenderingContext, aDirtyRect,
destArea, CSSIntRect(intSubArea.x,
intSubArea.y,
intSubArea.width,
intSubArea.height),
fillStyleH, fillStyleV,
unitSize, j * (RIGHT + 1) + i);
}
}
}
// Begin table border-collapsing section
// These functions were written to not disrupt the normal ones and yet satisfy some additional requirements
// At some point, all functions should be unified to include the additional functionality that these provide
static nscoord
RoundIntToPixel(nscoord aValue,
nscoord aTwipsPerPixel,
bool aRoundDown = false)
{
if (aTwipsPerPixel <= 0)
// We must be rendering to a device that has a resolution greater than Twips!
// In that case, aValue is as accurate as it's going to get.
return aValue;
nscoord halfPixel = NSToCoordRound(aTwipsPerPixel / 2.0f);
nscoord extra = aValue % aTwipsPerPixel;
nscoord finalValue = (!aRoundDown && (extra >= halfPixel)) ? aValue + (aTwipsPerPixel - extra) : aValue - extra;
return finalValue;
}
static nscoord
RoundFloatToPixel(float aValue,
nscoord aTwipsPerPixel,
bool aRoundDown = false)
{
return RoundIntToPixel(NSToCoordRound(aValue), aTwipsPerPixel, aRoundDown);
}
static void
SetPoly(const nsRect& aRect,
nsPoint* poly)
{
poly[0].x = aRect.x;
poly[0].y = aRect.y;
poly[1].x = aRect.x + aRect.width;
poly[1].y = aRect.y;
poly[2].x = aRect.x + aRect.width;
poly[2].y = aRect.y + aRect.height;
poly[3].x = aRect.x;
poly[3].y = aRect.y + aRect.height;
poly[4].x = aRect.x;
poly[4].y = aRect.y;
}
static void
DrawSolidBorderSegment(nsRenderingContext& aContext,
nsRect aRect,
nscoord aTwipsPerPixel,
uint8_t aStartBevelSide = 0,
nscoord aStartBevelOffset = 0,
uint8_t aEndBevelSide = 0,
nscoord aEndBevelOffset = 0)
{
if ((aRect.width == aTwipsPerPixel) || (aRect.height == aTwipsPerPixel) ||
((0 == aStartBevelOffset) && (0 == aEndBevelOffset))) {
// simple line or rectangle
if ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide)) {
if (1 == aRect.height)
aContext.DrawLine(aRect.TopLeft(), aRect.BottomLeft());
else
aContext.FillRect(aRect);
}
else {
if (1 == aRect.width)
aContext.DrawLine(aRect.TopLeft(), aRect.TopRight());
else
aContext.FillRect(aRect);
}
}
else {
// polygon with beveling
nsPoint poly[5];
SetPoly(aRect, poly);
switch(aStartBevelSide) {
case NS_SIDE_TOP:
poly[0].x += aStartBevelOffset;
poly[4].x = poly[0].x;
break;
case NS_SIDE_BOTTOM:
poly[3].x += aStartBevelOffset;
break;
case NS_SIDE_RIGHT:
poly[1].y += aStartBevelOffset;
break;
case NS_SIDE_LEFT:
poly[0].y += aStartBevelOffset;
poly[4].y = poly[0].y;
}
switch(aEndBevelSide) {
case NS_SIDE_TOP:
poly[1].x -= aEndBevelOffset;
break;
case NS_SIDE_BOTTOM:
poly[2].x -= aEndBevelOffset;
break;
case NS_SIDE_RIGHT:
poly[2].y -= aEndBevelOffset;
break;
case NS_SIDE_LEFT:
poly[3].y -= aEndBevelOffset;
}
aContext.FillPolygon(poly, 5);
}
}
static void
GetDashInfo(nscoord aBorderLength,
nscoord aDashLength,
nscoord aTwipsPerPixel,
int32_t& aNumDashSpaces,
nscoord& aStartDashLength,
nscoord& aEndDashLength)
{
aNumDashSpaces = 0;
if (aStartDashLength + aDashLength + aEndDashLength >= aBorderLength) {
aStartDashLength = aBorderLength;
aEndDashLength = 0;
}
else {
aNumDashSpaces = (aBorderLength - aDashLength)/ (2 * aDashLength); // round down
nscoord extra = aBorderLength - aStartDashLength - aEndDashLength - (((2 * aNumDashSpaces) - 1) * aDashLength);
if (extra > 0) {
nscoord half = RoundIntToPixel(extra / 2, aTwipsPerPixel);
aStartDashLength += half;
aEndDashLength += (extra - half);
}
}
}
void
nsCSSRendering::DrawTableBorderSegment(nsRenderingContext& aContext,
uint8_t aBorderStyle,
nscolor aBorderColor,
const nsStyleBackground* aBGColor,
const nsRect& aBorder,
int32_t aAppUnitsPerCSSPixel,
uint8_t aStartBevelSide,
nscoord aStartBevelOffset,
uint8_t aEndBevelSide,
nscoord aEndBevelOffset)
{
aContext.SetColor (aBorderColor);
bool horizontal = ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide));
nscoord twipsPerPixel = NSIntPixelsToAppUnits(1, aAppUnitsPerCSSPixel);
uint8_t ridgeGroove = NS_STYLE_BORDER_STYLE_RIDGE;
if ((twipsPerPixel >= aBorder.width) || (twipsPerPixel >= aBorder.height) ||
(NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) || (NS_STYLE_BORDER_STYLE_DOTTED == aBorderStyle)) {
// no beveling for 1 pixel border, dash or dot
aStartBevelOffset = 0;
aEndBevelOffset = 0;
}
gfxContext *ctx = aContext.ThebesContext();
AntialiasMode oldMode = ctx->CurrentAntialiasMode();
ctx->SetAntialiasMode(AntialiasMode::NONE);
switch (aBorderStyle) {
case NS_STYLE_BORDER_STYLE_NONE:
case NS_STYLE_BORDER_STYLE_HIDDEN:
//NS_ASSERTION(false, "style of none or hidden");
break;
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
{
nscoord dashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) ? DASH_LENGTH : DOT_LENGTH;
// make the dash length proportional to the border thickness
dashLength *= (horizontal) ? aBorder.height : aBorder.width;
// make the min dash length for the ends 1/2 the dash length
nscoord minDashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle)
? RoundFloatToPixel(((float)dashLength) / 2.0f, twipsPerPixel) : dashLength;
minDashLength = std::max(minDashLength, twipsPerPixel);
nscoord numDashSpaces = 0;
nscoord startDashLength = minDashLength;
nscoord endDashLength = minDashLength;
if (horizontal) {
GetDashInfo(aBorder.width, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, startDashLength, aBorder.height);
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
for (int32_t spaceX = 0; spaceX < numDashSpaces; spaceX++) {
rect.x += rect.width + dashLength;
rect.width = (spaceX == (numDashSpaces - 1)) ? endDashLength : dashLength;
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
}
}
else {
GetDashInfo(aBorder.height, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, aBorder.width, startDashLength);
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
for (int32_t spaceY = 0; spaceY < numDashSpaces; spaceY++) {
rect.y += rect.height + dashLength;
rect.height = (spaceY == (numDashSpaces - 1)) ? endDashLength : dashLength;
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
}
}
}
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
ridgeGroove = NS_STYLE_BORDER_STYLE_GROOVE; // and fall through to ridge
case NS_STYLE_BORDER_STYLE_RIDGE:
if ((horizontal && (twipsPerPixel >= aBorder.height)) ||
(!horizontal && (twipsPerPixel >= aBorder.width))) {
// a one pixel border
DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide, aStartBevelOffset,
aEndBevelSide, aEndBevelOffset);
}
else {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aStartBevelOffset, twipsPerPixel, true) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aEndBevelOffset, twipsPerPixel, true) : 0;
mozilla::css::Side ridgeGrooveSide = (horizontal) ? NS_SIDE_TOP : NS_SIDE_LEFT;
// FIXME: In theory, this should use the visited-dependent
// background color, but I don't care.
aContext.SetColor (
MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor));
nsRect rect(aBorder);
nscoord half;
if (horizontal) { // top, bottom
half = RoundFloatToPixel(0.5f * (float)aBorder.height, twipsPerPixel);
rect.height = half;
if (NS_SIDE_TOP == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (NS_SIDE_TOP == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else { // left, right
half = RoundFloatToPixel(0.5f * (float)aBorder.width, twipsPerPixel);
rect.width = half;
if (NS_SIDE_LEFT == aStartBevelSide) {
rect.y += startBevel;
rect.height -= startBevel;
}
if (NS_SIDE_LEFT == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
rect = aBorder;
ridgeGrooveSide = (NS_SIDE_TOP == ridgeGrooveSide) ? NS_SIDE_BOTTOM : NS_SIDE_RIGHT;
// FIXME: In theory, this should use the visited-dependent
// background color, but I don't care.
aContext.SetColor (
MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor));
if (horizontal) {
rect.y = rect.y + half;
rect.height = aBorder.height - half;
if (NS_SIDE_BOTTOM == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (NS_SIDE_BOTTOM == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else {
rect.x = rect.x + half;
rect.width = aBorder.width - half;
if (NS_SIDE_RIGHT == aStartBevelSide) {
rect.y += aStartBevelOffset - startBevel;
rect.height -= startBevel;
}
if (NS_SIDE_RIGHT == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
}
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
// We can only do "double" borders if the thickness of the border
// is more than 2px. Otherwise, we fall through to painting a
// solid border.
if ((aBorder.width > 2*twipsPerPixel || horizontal) &&
(aBorder.height > 2*twipsPerPixel || !horizontal)) {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aStartBevelOffset, twipsPerPixel) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aEndBevelOffset, twipsPerPixel) : 0;
if (horizontal) { // top, bottom
nscoord thirdHeight = RoundFloatToPixel(0.333333f * (float)aBorder.height, twipsPerPixel);
// draw the top line or rect
nsRect topRect(aBorder.x, aBorder.y, aBorder.width, thirdHeight);
if (NS_SIDE_TOP == aStartBevelSide) {
topRect.x += aStartBevelOffset - startBevel;
topRect.width -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_TOP == aEndBevelSide) {
topRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, topRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
// draw the botom line or rect
nscoord heightOffset = aBorder.height - thirdHeight;
nsRect bottomRect(aBorder.x, aBorder.y + heightOffset, aBorder.width, aBorder.height - heightOffset);
if (NS_SIDE_BOTTOM == aStartBevelSide) {
bottomRect.x += aStartBevelOffset - startBevel;
bottomRect.width -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_BOTTOM == aEndBevelSide) {
bottomRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, bottomRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else { // left, right
nscoord thirdWidth = RoundFloatToPixel(0.333333f * (float)aBorder.width, twipsPerPixel);
nsRect leftRect(aBorder.x, aBorder.y, thirdWidth, aBorder.height);
if (NS_SIDE_LEFT == aStartBevelSide) {
leftRect.y += aStartBevelOffset - startBevel;
leftRect.height -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_LEFT == aEndBevelSide) {
leftRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, leftRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
nscoord widthOffset = aBorder.width - thirdWidth;
nsRect rightRect(aBorder.x + widthOffset, aBorder.y, aBorder.width - widthOffset, aBorder.height);
if (NS_SIDE_RIGHT == aStartBevelSide) {
rightRect.y += aStartBevelOffset - startBevel;
rightRect.height -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_RIGHT == aEndBevelSide) {
rightRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, rightRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
break;
}
// else fall through to solid
case NS_STYLE_BORDER_STYLE_SOLID:
DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide,
aStartBevelOffset, aEndBevelSide, aEndBevelOffset);
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_INSET:
NS_ASSERTION(false, "inset, outset should have been converted to groove, ridge");
break;
case NS_STYLE_BORDER_STYLE_AUTO:
NS_ASSERTION(false, "Unexpected 'auto' table border");
break;
}
ctx->SetAntialiasMode(oldMode);
}
// End table border-collapsing section
gfxRect
nsCSSRendering::ExpandPaintingRectForDecorationLine(nsIFrame* aFrame,
const uint8_t aStyle,
const gfxRect& aClippedRect,
const gfxFloat aXInFrame,
const gfxFloat aCycleLength)
{
switch (aStyle) {
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED:
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED:
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY:
break;
default:
NS_ERROR("Invalid style was specified");
return aClippedRect;
}
nsBlockFrame* block = nullptr;
// Note that when we paint the decoration lines in relative positioned
// box, we should paint them like all of the boxes are positioned as static.
nscoord frameXInBlockAppUnits = 0;
for (nsIFrame* f = aFrame; f; f = f->GetParent()) {
block = do_QueryFrame(f);
if (block) {
break;
}
frameXInBlockAppUnits += f->GetNormalPosition().x;
}
NS_ENSURE_TRUE(block, aClippedRect);
nsPresContext *pc = aFrame->PresContext();
gfxFloat frameXInBlock = pc->AppUnitsToGfxUnits(frameXInBlockAppUnits);
int32_t rectXInBlock = int32_t(NS_round(frameXInBlock + aXInFrame));
int32_t extraLeft =
rectXInBlock - (rectXInBlock / int32_t(aCycleLength) * aCycleLength);
gfxRect rect(aClippedRect);
rect.x -= extraLeft;
rect.width += extraLeft;
return rect;
}
void
nsCSSRendering::PaintDecorationLine(nsIFrame* aFrame,
gfxContext* aGfxContext,
const gfxRect& aDirtyRect,
const nscolor aColor,
const gfxPoint& aPt,
const gfxFloat aXInFrame,
const gfxSize& aLineSize,
const gfxFloat aAscent,
const gfxFloat aOffset,
const uint8_t aDecoration,
const uint8_t aStyle,
const gfxFloat aDescentLimit)
{
NS_ASSERTION(aStyle != NS_STYLE_TEXT_DECORATION_STYLE_NONE, "aStyle is none");
gfxRect rect =
GetTextDecorationRectInternal(aPt, aLineSize, aAscent, aOffset,
aDecoration, aStyle, aDescentLimit);
if (rect.IsEmpty() || !rect.Intersects(aDirtyRect)) {
return;
}
if (aDecoration != NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_LINE_OVERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH) {
NS_ERROR("Invalid decoration value!");
return;
}
gfxFloat lineHeight = std::max(NS_round(aLineSize.height), 1.0);
bool contextIsSaved = false;
gfxFloat oldLineWidth;
nsRefPtr<gfxPattern> oldPattern;
switch (aStyle) {
case NS_STYLE_TEXT_DECORATION_STYLE_SOLID:
case NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE:
oldLineWidth = aGfxContext->CurrentLineWidth();
oldPattern = aGfxContext->GetPattern();
break;
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED: {
aGfxContext->Save();
contextIsSaved = true;
aGfxContext->Clip(rect);
gfxFloat dashWidth = lineHeight * DOT_LENGTH * DASH_LENGTH;
gfxFloat dash[2] = { dashWidth, dashWidth };
aGfxContext->SetLineCap(gfxContext::LINE_CAP_BUTT);
aGfxContext->SetDash(dash, 2, 0.0);
rect = ExpandPaintingRectForDecorationLine(aFrame, aStyle, rect,
aXInFrame, dashWidth * 2);
// We should continue to draw the last dash even if it is not in the rect.
rect.width += dashWidth;
break;
}
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED: {
aGfxContext->Save();
contextIsSaved = true;
aGfxContext->Clip(rect);
gfxFloat dashWidth = lineHeight * DOT_LENGTH;
gfxFloat dash[2];
if (lineHeight > 2.0) {
dash[0] = 0.0;
dash[1] = dashWidth * 2.0;
aGfxContext->SetLineCap(gfxContext::LINE_CAP_ROUND);
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
aGfxContext->SetDash(dash, 2, 0.0);
rect = ExpandPaintingRectForDecorationLine(aFrame, aStyle, rect,
aXInFrame, dashWidth * 2);
// We should continue to draw the last dot even if it is not in the rect.
rect.width += dashWidth;
break;
}
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY:
aGfxContext->Save();
contextIsSaved = true;
aGfxContext->Clip(rect);
if (lineHeight > 2.0) {
aGfxContext->SetAntialiasMode(AntialiasMode::SUBPIXEL);
} else {
// Don't use anti-aliasing here. Because looks like lighter color wavy
// line at this case. And probably, users don't think the
// non-anti-aliased wavy line is not pretty.
aGfxContext->SetAntialiasMode(AntialiasMode::NONE);
}
break;
default:
NS_ERROR("Invalid style value!");
return;
}
// The y position should be set to the middle of the line.
rect.y += lineHeight / 2;
aGfxContext->SetColor(gfxRGBA(aColor));
aGfxContext->SetLineWidth(lineHeight);
switch (aStyle) {
case NS_STYLE_TEXT_DECORATION_STYLE_SOLID:
aGfxContext->NewPath();
aGfxContext->MoveTo(rect.TopLeft());
aGfxContext->LineTo(rect.TopRight());
aGfxContext->Stroke();
break;
case NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE:
/**
* We are drawing double line as:
*
* +-------------------------------------------+
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineHeight
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* | |
* | |
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineHeight
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* +-------------------------------------------+
*/
aGfxContext->NewPath();
aGfxContext->MoveTo(rect.TopLeft());
aGfxContext->LineTo(rect.TopRight());
rect.height -= lineHeight;
aGfxContext->MoveTo(rect.BottomLeft());
aGfxContext->LineTo(rect.BottomRight());
aGfxContext->Stroke();
break;
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED:
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED:
aGfxContext->NewPath();
aGfxContext->MoveTo(rect.TopLeft());
aGfxContext->LineTo(rect.TopRight());
aGfxContext->Stroke();
break;
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY: {
/**
* We are drawing wavy line as:
*
* P: Path, X: Painted pixel
*
* +---------------------------------------+
* XX|X XXXXXX XXXXXX |
* PP|PX XPPPPPPX XPPPPPPX | ^
* XX|XPX XPXXXXXXPX XPXXXXXXPX| |
* | XPX XPX XPX XPX XP|X |adv
* | XPXXXXXXPX XPXXXXXXPX X|PX |
* | XPPPPPPX XPPPPPPX |XPX v
* | XXXXXX XXXXXX | XX
* +---------------------------------------+
* <---><---> ^
* adv flatLengthAtVertex rightMost
*
* 1. Always starts from top-left of the drawing area, however, we need
* to draw the line from outside of the rect. Because the start
* point of the line is not good style if we draw from inside it.
* 2. First, draw horizontal line from outside the rect to top-left of
* the rect;
* 3. Goes down to bottom of the area at 45 degrees.
* 4. Slides to right horizontaly, see |flatLengthAtVertex|.
* 5. Goes up to top of the area at 45 degrees.
* 6. Slides to right horizontaly.
* 7. Repeat from 2 until reached to right-most edge of the area.
*/
gfxFloat adv = rect.Height() - lineHeight;
gfxFloat flatLengthAtVertex = std::max((lineHeight - 1.0) * 2.0, 1.0);
// Align the start of wavy lines to the nearest ancestor block.
gfxFloat cycleLength = 2 * (adv + flatLengthAtVertex);
rect = ExpandPaintingRectForDecorationLine(aFrame, aStyle, rect,
aXInFrame, cycleLength);
// figure out if we can trim whole cycles from the left and right edges
// of the line, to try and avoid creating an unnecessarily long and
// complex path
int32_t skipCycles = floor((aDirtyRect.x - rect.x) / cycleLength);
if (skipCycles > 0) {
rect.x += skipCycles * cycleLength;
rect.width -= skipCycles * cycleLength;
}
rect.x += lineHeight / 2.0;
gfxPoint pt(rect.TopLeft());
gfxFloat rightMost = pt.x + rect.Width() + lineHeight;
skipCycles = floor((rightMost - aDirtyRect.XMost()) / cycleLength);
if (skipCycles > 0) {
rightMost -= skipCycles * cycleLength;
}
aGfxContext->NewPath();
pt.x -= lineHeight;
aGfxContext->MoveTo(pt); // 1
pt.x = rect.X();
aGfxContext->LineTo(pt); // 2
bool goDown = true;
uint32_t iter = 0;
while (pt.x < rightMost) {
if (++iter > 1000) {
// stroke the current path and start again, to avoid pathological
// behavior in cairo with huge numbers of path segments
aGfxContext->Stroke();
aGfxContext->NewPath();
aGfxContext->MoveTo(pt);
iter = 0;
}
pt.x += adv;
pt.y += goDown ? adv : -adv;
aGfxContext->LineTo(pt); // 3 and 5
pt.x += flatLengthAtVertex;
aGfxContext->LineTo(pt); // 4 and 6
goDown = !goDown;
}
aGfxContext->Stroke();
break;
}
default:
NS_ERROR("Invalid style value!");
break;
}
if (contextIsSaved) {
aGfxContext->Restore();
} else {
aGfxContext->SetPattern(oldPattern);
aGfxContext->SetLineWidth(oldLineWidth);
}
}
void
nsCSSRendering::DecorationLineToPath(nsIFrame* aFrame,
gfxContext* aGfxContext,
const gfxRect& aDirtyRect,
const nscolor aColor,
const gfxPoint& aPt,
const gfxFloat aXInFrame,
const gfxSize& aLineSize,
const gfxFloat aAscent,
const gfxFloat aOffset,
const uint8_t aDecoration,
const uint8_t aStyle,
const gfxFloat aDescentLimit)
{
NS_ASSERTION(aStyle != NS_STYLE_TEXT_DECORATION_STYLE_NONE, "aStyle is none");
aGfxContext->NewPath();
gfxRect rect =
GetTextDecorationRectInternal(aPt, aLineSize, aAscent, aOffset,
aDecoration, aStyle, aDescentLimit);
if (rect.IsEmpty() || !rect.Intersects(aDirtyRect)) {
return;
}
if (aDecoration != NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_LINE_OVERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH) {
NS_ERROR("Invalid decoration value!");
return;
}
if (aStyle != NS_STYLE_TEXT_DECORATION_STYLE_SOLID) {
// For the moment, we support only solid text decorations.
return;
}
gfxFloat lineHeight = std::max(NS_round(aLineSize.height), 1.0);
// The y position should be set to the middle of the line.
rect.y += lineHeight / 2;
aGfxContext->Rectangle
(gfxRect(gfxPoint(rect.TopLeft() - gfxPoint(0.0, lineHeight / 2)),
gfxSize(rect.Width(), lineHeight)));
}
nsRect
nsCSSRendering::GetTextDecorationRect(nsPresContext* aPresContext,
const gfxSize& aLineSize,
const gfxFloat aAscent,
const gfxFloat aOffset,
const uint8_t aDecoration,
const uint8_t aStyle,
const gfxFloat aDescentLimit)
{
NS_ASSERTION(aPresContext, "aPresContext is null");
NS_ASSERTION(aStyle != NS_STYLE_TEXT_DECORATION_STYLE_NONE, "aStyle is none");
gfxRect rect =
GetTextDecorationRectInternal(gfxPoint(0, 0), aLineSize, aAscent, aOffset,
aDecoration, aStyle, aDescentLimit);
// The rect values are already rounded to nearest device pixels.
nsRect r;
r.x = aPresContext->GfxUnitsToAppUnits(rect.X());
r.y = aPresContext->GfxUnitsToAppUnits(rect.Y());
r.width = aPresContext->GfxUnitsToAppUnits(rect.Width());
r.height = aPresContext->GfxUnitsToAppUnits(rect.Height());
return r;
}
gfxRect
nsCSSRendering::GetTextDecorationRectInternal(const gfxPoint& aPt,
const gfxSize& aLineSize,
const gfxFloat aAscent,
const gfxFloat aOffset,
const uint8_t aDecoration,
const uint8_t aStyle,
const gfxFloat aDescentLimit)
{
NS_ASSERTION(aStyle <= NS_STYLE_TEXT_DECORATION_STYLE_WAVY,
"Invalid aStyle value");
if (aStyle == NS_STYLE_TEXT_DECORATION_STYLE_NONE)
return gfxRect(0, 0, 0, 0);
bool canLiftUnderline = aDescentLimit >= 0.0;
const gfxFloat left = floor(aPt.x + 0.5),
right = floor(aPt.x + aLineSize.width + 0.5);
gfxRect r(left, 0, right - left, 0);
gfxFloat lineHeight = NS_round(aLineSize.height);
lineHeight = std::max(lineHeight, 1.0);
gfxFloat ascent = NS_round(aAscent);
gfxFloat descentLimit = floor(aDescentLimit);
gfxFloat suggestedMaxRectHeight = std::max(std::min(ascent, descentLimit), 1.0);
r.height = lineHeight;
if (aStyle == NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE) {
/**
* We will draw double line as:
*
* +-------------------------------------------+
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineHeight
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* | | ^
* | | | gap
* | | v
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineHeight
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* +-------------------------------------------+
*/
gfxFloat gap = NS_round(lineHeight / 2.0);
gap = std::max(gap, 1.0);
r.height = lineHeight * 2.0 + gap;
if (canLiftUnderline) {
if (r.Height() > suggestedMaxRectHeight) {
// Don't shrink the line height, because the thickness has some meaning.
// We can just shrink the gap at this time.
r.height = std::max(suggestedMaxRectHeight, lineHeight * 2.0 + 1.0);
}
}
} else if (aStyle == NS_STYLE_TEXT_DECORATION_STYLE_WAVY) {
/**
* We will draw wavy line as:
*
* +-------------------------------------------+
* |XXXXX XXXXXX XXXXXX | ^
* |XXXXXX XXXXXXXX XXXXXXXX | | lineHeight
* |XXXXXXX XXXXXXXXXX XXXXXXXXXX| v
* | XXX XXX XXX XXX XX|
* | XXXXXXXXXX XXXXXXXXXX X|
* | XXXXXXXX XXXXXXXX |
* | XXXXXX XXXXXX |
* +-------------------------------------------+
*/
r.height = lineHeight > 2.0 ? lineHeight * 4.0 : lineHeight * 3.0;
if (canLiftUnderline) {
if (r.Height() > suggestedMaxRectHeight) {
// Don't shrink the line height even if there is not enough space,
// because the thickness has some meaning. E.g., the 1px wavy line and
// 2px wavy line can be used for different meaning in IME selections
// at same time.
r.height = std::max(suggestedMaxRectHeight, lineHeight * 2.0);
}
}
}
gfxFloat baseline = floor(aPt.y + aAscent + 0.5);
gfxFloat offset = 0.0;
switch (aDecoration) {
case NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE:
offset = aOffset;
if (canLiftUnderline) {
if (descentLimit < -offset + r.Height()) {
// If we can ignore the offset and the decoration line is overflowing,
// we should align the bottom edge of the decoration line rect if it's
// possible. Otherwise, we should lift up the top edge of the rect as
// far as possible.
gfxFloat offsetBottomAligned = -descentLimit + r.Height();
gfxFloat offsetTopAligned = 0.0;
offset = std::min(offsetBottomAligned, offsetTopAligned);
}
}
break;
case NS_STYLE_TEXT_DECORATION_LINE_OVERLINE:
offset = aOffset - lineHeight + r.Height();
break;
case NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH: {
gfxFloat extra = floor(r.Height() / 2.0 + 0.5);
extra = std::max(extra, lineHeight);
offset = aOffset - lineHeight + extra;
break;
}
default:
NS_ERROR("Invalid decoration value!");
}
r.y = baseline - floor(offset + 0.5);
return r;
}
// ------------------
// ImageRenderer
// ------------------
nsImageRenderer::nsImageRenderer(nsIFrame* aForFrame,
const nsStyleImage* aImage,
uint32_t aFlags)
: mForFrame(aForFrame)
, mImage(aImage)
, mType(aImage->GetType())
, mImageContainer(nullptr)
, mGradientData(nullptr)
, mPaintServerFrame(nullptr)
, mIsReady(false)
, mSize(0, 0)
, mFlags(aFlags)
{
}
nsImageRenderer::~nsImageRenderer()
{
}
bool
nsImageRenderer::PrepareImage()
{
if (mImage->IsEmpty())
return false;
if (!mImage->IsComplete()) {
// Make sure the image is actually decoding
mImage->StartDecoding();
// check again to see if we finished
if (!mImage->IsComplete()) {
// We can not prepare the image for rendering if it is not fully loaded.
//
// Special case: If we requested a sync decode and we have an image, push
// on through because the Draw() will do a sync decode then
nsCOMPtr<imgIContainer> img;
if (!((mFlags & FLAG_SYNC_DECODE_IMAGES) &&
(mType == eStyleImageType_Image) &&
(NS_SUCCEEDED(mImage->GetImageData()->GetImage(getter_AddRefs(img))))))
return false;
}
}
switch (mType) {
case eStyleImageType_Image:
{
nsCOMPtr<imgIContainer> srcImage;
DebugOnly<nsresult> rv =
mImage->GetImageData()->GetImage(getter_AddRefs(srcImage));
NS_ABORT_IF_FALSE(NS_SUCCEEDED(rv) && srcImage,
"If GetImage() is failing, mImage->IsComplete() "
"should have returned false");
if (!mImage->GetCropRect()) {
mImageContainer.swap(srcImage);
} else {
nsIntRect actualCropRect;
bool isEntireImage;
bool success =
mImage->ComputeActualCropRect(actualCropRect, &isEntireImage);
NS_ASSERTION(success, "ComputeActualCropRect() should not fail here");
if (!success || actualCropRect.IsEmpty()) {
// The cropped image has zero size
return false;
}
if (isEntireImage) {
// The cropped image is identical to the source image
mImageContainer.swap(srcImage);
} else {
nsCOMPtr<imgIContainer> subImage = ImageOps::Clip(srcImage, actualCropRect);
mImageContainer.swap(subImage);
}
}
mIsReady = true;
break;
}
case eStyleImageType_Gradient:
mGradientData = mImage->GetGradientData();
mIsReady = true;
break;
case eStyleImageType_Element:
{
nsAutoString elementId =
NS_LITERAL_STRING("#") + nsDependentString(mImage->GetElementId());
nsCOMPtr<nsIURI> targetURI;
nsCOMPtr<nsIURI> base = mForFrame->GetContent()->GetBaseURI();
nsContentUtils::NewURIWithDocumentCharset(getter_AddRefs(targetURI), elementId,
mForFrame->GetContent()->GetCurrentDoc(), base);
nsSVGPaintingProperty* property = nsSVGEffects::GetPaintingPropertyForURI(
targetURI, mForFrame->FirstContinuation(),
nsSVGEffects::BackgroundImageProperty());
if (!property)
return false;
mPaintServerFrame = property->GetReferencedFrame();
// If the referenced element doesn't have a frame we might still be able
// to paint it if it's an <img>, <canvas>, or <video> element.
if (!mPaintServerFrame) {
mImageElementSurface =
nsLayoutUtils::SurfaceFromElement(property->GetReferencedElement());
if (!mImageElementSurface.mSourceSurface)
return false;
}
mIsReady = true;
break;
}
case eStyleImageType_Null:
default:
break;
}
return mIsReady;
}
nsSize
CSSSizeOrRatio::ComputeConcreteSize() const
{
NS_ASSERTION(CanComputeConcreteSize(), "Cannot compute");
if (mHasWidth && mHasHeight) {
return nsSize(mWidth, mHeight);
}
if (mHasWidth) {
nscoord height = NSCoordSaturatingNonnegativeMultiply(
mWidth,
double(mRatio.height) / mRatio.width);
return nsSize(mWidth, height);
}
MOZ_ASSERT(mHasHeight);
nscoord width = NSCoordSaturatingNonnegativeMultiply(
mHeight,
double(mRatio.width) / mRatio.height);
return nsSize(width, mHeight);
}
CSSSizeOrRatio
nsImageRenderer::ComputeIntrinsicSize()
{
NS_ASSERTION(mIsReady, "Ensure PrepareImage() has returned true "
"before calling me");
CSSSizeOrRatio result;
switch (mType) {
case eStyleImageType_Image:
{
bool haveWidth, haveHeight;
nsIntSize imageIntSize;
nsLayoutUtils::ComputeSizeForDrawing(mImageContainer, imageIntSize,
result.mRatio, haveWidth, haveHeight);
if (haveWidth) {
result.SetWidth(nsPresContext::CSSPixelsToAppUnits(imageIntSize.width));
}
if (haveHeight) {
result.SetHeight(nsPresContext::CSSPixelsToAppUnits(imageIntSize.height));
}
break;
}
case eStyleImageType_Element:
{
// XXX element() should have the width/height of the referenced element,
// and that element's ratio, if it matches. If it doesn't match, it
// should have no width/height or ratio. See element() in CSS images:
// <http://dev.w3.org/csswg/css-images-4/#element-notation>.
// Make sure to change nsStyleBackground::Size::DependsOnFrameSize
// when fixing this!
if (mPaintServerFrame) {
// SVG images have no intrinsic size
if (!mPaintServerFrame->IsFrameOfType(nsIFrame::eSVG)) {
// The intrinsic image size for a generic nsIFrame paint server is
// the union of the border-box rects of all of its continuations,
// rounded to device pixels.
int32_t appUnitsPerDevPixel =
mForFrame->PresContext()->AppUnitsPerDevPixel();
result.SetSize(
nsSVGIntegrationUtils::GetContinuationUnionSize(mPaintServerFrame).
ToNearestPixels(appUnitsPerDevPixel).
ToAppUnits(appUnitsPerDevPixel));
}
} else {
NS_ASSERTION(mImageElementSurface.mSourceSurface, "Surface should be ready.");
gfxIntSize surfaceSize = mImageElementSurface.mSize;
result.SetSize(
nsSize(nsPresContext::CSSPixelsToAppUnits(surfaceSize.width),
nsPresContext::CSSPixelsToAppUnits(surfaceSize.height)));
}
break;
}
case eStyleImageType_Gradient:
// Per <http://dev.w3.org/csswg/css3-images/#gradients>, gradients have no
// intrinsic dimensions.
case eStyleImageType_Null:
default:
break;
}
return result;
}
/* static */ nsSize
nsImageRenderer::ComputeConcreteSize(const CSSSizeOrRatio& aSpecifiedSize,
const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aDefaultSize)
{
// The specified size is fully specified, just use that
if (aSpecifiedSize.IsConcrete()) {
return aSpecifiedSize.ComputeConcreteSize();
}
MOZ_ASSERT(!aSpecifiedSize.mHasWidth || !aSpecifiedSize.mHasHeight);
if (!aSpecifiedSize.mHasWidth && !aSpecifiedSize.mHasHeight) {
// no specified size, try using the intrinsic size
if (aIntrinsicSize.CanComputeConcreteSize()) {
return aIntrinsicSize.ComputeConcreteSize();
}
if (aIntrinsicSize.mHasWidth) {
return nsSize(aIntrinsicSize.mWidth, aDefaultSize.height);
}
if (aIntrinsicSize.mHasHeight) {
return nsSize(aDefaultSize.width, aIntrinsicSize.mHeight);
}
// couldn't use the intrinsic size either, revert to using the default size
return ComputeConstrainedSize(aDefaultSize,
aIntrinsicSize.mRatio,
CONTAIN);
}
MOZ_ASSERT(aSpecifiedSize.mHasWidth || aSpecifiedSize.mHasHeight);
// The specified height is partial, try to compute the missing part.
if (aSpecifiedSize.mHasWidth) {
nscoord height;
if (aIntrinsicSize.HasRatio()) {
height = NSCoordSaturatingNonnegativeMultiply(
aSpecifiedSize.mWidth,
double(aIntrinsicSize.mRatio.height) / aIntrinsicSize.mRatio.width);
} else if (aIntrinsicSize.mHasHeight) {
height = aIntrinsicSize.mHeight;
} else {
height = aDefaultSize.height;
}
return nsSize(aSpecifiedSize.mWidth, height);
}
MOZ_ASSERT(aSpecifiedSize.mHasHeight);
nscoord width;
if (aIntrinsicSize.HasRatio()) {
width = NSCoordSaturatingNonnegativeMultiply(
aSpecifiedSize.mHeight,
double(aIntrinsicSize.mRatio.width) / aIntrinsicSize.mRatio.height);
} else if (aIntrinsicSize.mHasWidth) {
width = aIntrinsicSize.mWidth;
} else {
width = aDefaultSize.width;
}
return nsSize(width, aSpecifiedSize.mHeight);
}
/* static */ nsSize
nsImageRenderer::ComputeConstrainedSize(const nsSize& aConstrainingSize,
const nsSize& aIntrinsicRatio,
FitType aFitType)
{
if (aIntrinsicRatio.width <= 0 && aIntrinsicRatio.height <= 0) {
return aConstrainingSize;
}
float scaleX = double(aConstrainingSize.width) / aIntrinsicRatio.width;
float scaleY = double(aConstrainingSize.height) / aIntrinsicRatio.height;
nsSize size;
if ((aFitType == CONTAIN) == (scaleX < scaleY)) {
size.width = aConstrainingSize.width;
size.height = NSCoordSaturatingNonnegativeMultiply(
aIntrinsicRatio.height, scaleX);
} else {
size.width = NSCoordSaturatingNonnegativeMultiply(
aIntrinsicRatio.width, scaleY);
size.height = aConstrainingSize.height;
}
return size;
}
/**
* mSize is the image's "preferred" size for this particular rendering, while
* the drawn (aka concrete) size is the actual rendered size after accounting
* for background-size etc.. The preferred size is most often the image's
* intrinsic dimensions. But for images with incomplete intrinsic dimensions,
* the preferred size varies, depending on the specified and default sizes, see
* nsImageRenderer::Compute*Size.
*
* This distinction is necessary because the components of a vector image are
* specified with respect to its preferred size for a rendering situation, not
* to its actual rendered size. For example, consider a 4px wide background
* vector image with no height which contains a left-aligned
* 2px wide black rectangle with height 100%. If the background-size width is
* auto (or 4px), the vector image will render 4px wide, and the black rectangle
* will be 2px wide. If the background-size width is 8px, the vector image will
* render 8px wide, and the black rectangle will be 4px wide -- *not* 2px wide.
* In both cases mSize.width will be 4px; but in the first case the returned
* width will be 4px, while in the second case the returned width will be 8px.
*/
void
nsImageRenderer::SetPreferredSize(const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aDefaultSize)
{
mSize.width = aIntrinsicSize.mHasWidth
? aIntrinsicSize.mWidth
: aDefaultSize.width;
mSize.height = aIntrinsicSize.mHasHeight
? aIntrinsicSize.mHeight
: aDefaultSize.height;
}
// Convert from nsImageRenderer flags to the flags we want to use for drawing in
// the imgIContainer namespace.
static uint32_t
ConvertImageRendererToDrawFlags(uint32_t aImageRendererFlags)
{
uint32_t drawFlags = imgIContainer::FLAG_NONE;
if (aImageRendererFlags & nsImageRenderer::FLAG_SYNC_DECODE_IMAGES) {
drawFlags |= imgIContainer::FLAG_SYNC_DECODE;
}
if (aImageRendererFlags & nsImageRenderer::FLAG_PAINTING_TO_WINDOW) {
drawFlags |= imgIContainer::FLAG_HIGH_QUALITY_SCALING;
}
return drawFlags;
}
void
nsImageRenderer::Draw(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDirtyRect,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const CSSIntRect& aSrc)
{
if (!mIsReady) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return;
}
if (aDest.IsEmpty() || aFill.IsEmpty() ||
mSize.width <= 0 || mSize.height <= 0) {
return;
}
GraphicsFilter filter = nsLayoutUtils::GetGraphicsFilterForFrame(mForFrame);
switch (mType) {
case eStyleImageType_Image:
{
nsIntSize imageSize(nsPresContext::AppUnitsToIntCSSPixels(mSize.width),
nsPresContext::AppUnitsToIntCSSPixels(mSize.height));
nsLayoutUtils::DrawBackgroundImage(&aRenderingContext, aPresContext,
mImageContainer, imageSize, filter,
aDest, aFill, aAnchor, aDirtyRect,
ConvertImageRendererToDrawFlags(mFlags));
return;
}
case eStyleImageType_Gradient:
{
nsCSSRendering::PaintGradient(aPresContext, aRenderingContext,
mGradientData, aDirtyRect,
aDest, aFill, aSrc, mSize);
return;
}
case eStyleImageType_Element:
{
nsRefPtr<gfxDrawable> drawable = DrawableForElement(aDest,
aRenderingContext);
if (!drawable) {
NS_WARNING("Could not create drawable for element");
return;
}
gfxContext* ctx = aRenderingContext.ThebesContext();
gfxContext::GraphicsOperator op = ctx->CurrentOperator();
if (op != gfxContext::OPERATOR_OVER) {
ctx->PushGroup(gfxContentType::COLOR_ALPHA);
ctx->SetOperator(gfxContext::OPERATOR_OVER);
}
nsCOMPtr<imgIContainer> image(ImageOps::CreateFromDrawable(drawable));
nsLayoutUtils::DrawImage(&aRenderingContext, aPresContext, image,
filter, aDest, aFill, aAnchor, aDirtyRect,
ConvertImageRendererToDrawFlags(mFlags));
if (op != gfxContext::OPERATOR_OVER) {
ctx->PopGroupToSource();
ctx->Paint();
}
return;
}
case eStyleImageType_Null:
default:
return;
}
}
already_AddRefed<gfxDrawable>
nsImageRenderer::DrawableForElement(const nsRect& aImageRect,
nsRenderingContext& aRenderingContext)
{
NS_ASSERTION(mType == eStyleImageType_Element,
"DrawableForElement only makes sense if backed by an element");
if (mPaintServerFrame) {
int32_t appUnitsPerDevPixel = mForFrame->PresContext()->AppUnitsPerDevPixel();
nsRect destRect = aImageRect - aImageRect.TopLeft();
nsIntSize roundedOut = destRect.ToOutsidePixels(appUnitsPerDevPixel).Size();
gfxIntSize imageSize(roundedOut.width, roundedOut.height);
nsRefPtr<gfxDrawable> drawable =
nsSVGIntegrationUtils::DrawableFromPaintServer(
mPaintServerFrame, mForFrame, mSize, imageSize,
aRenderingContext.ThebesContext()->CurrentMatrix(),
mFlags & FLAG_SYNC_DECODE_IMAGES
? nsSVGIntegrationUtils::FLAG_SYNC_DECODE_IMAGES
: 0);
return drawable.forget();
}
NS_ASSERTION(mImageElementSurface.mSourceSurface, "Surface should be ready.");
nsRefPtr<gfxDrawable> drawable = new gfxSurfaceDrawable(
mImageElementSurface.mSourceSurface,
mImageElementSurface.mSize);
return drawable.forget();
}
void
nsImageRenderer::DrawBackground(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsRect& aDirty)
{
if (!mIsReady) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return;
}
if (aDest.IsEmpty() || aFill.IsEmpty() ||
mSize.width <= 0 || mSize.height <= 0) {
return;
}
Draw(aPresContext, aRenderingContext,
aDirty, aDest, aFill, aAnchor,
CSSIntRect(0, 0,
nsPresContext::AppUnitsToIntCSSPixels(mSize.width),
nsPresContext::AppUnitsToIntCSSPixels(mSize.height)));
}
/**
* Compute the size and position of the master copy of the image. I.e., a single
* tile used to fill the dest rect.
* aFill The destination rect to be filled
* aHFill and aVFill are the repeat patterns for the component -
* NS_STYLE_BORDER_IMAGE_REPEAT_* - i.e., how a tiling unit is used to fill aFill
* aUnitSize The size of the source rect in dest coords.
*/
static nsRect
ComputeTile(const nsRect& aFill,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize)
{
nsRect tile;
switch (aHFill) {
case NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH:
tile.x = aFill.x;
tile.width = aFill.width;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_REPEAT:
tile.x = aFill.x + aFill.width/2 - aUnitSize.width/2;
tile.width = aUnitSize.width;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_ROUND:
tile.x = aFill.x;
tile.width = aFill.width / ceil(gfxFloat(aFill.width)/aUnitSize.width);
break;
default:
NS_NOTREACHED("unrecognized border-image fill style");
}
switch (aVFill) {
case NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH:
tile.y = aFill.y;
tile.height = aFill.height;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_REPEAT:
tile.y = aFill.y + aFill.height/2 - aUnitSize.height/2;
tile.height = aUnitSize.height;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_ROUND:
tile.y = aFill.y;
tile.height = aFill.height/ceil(gfxFloat(aFill.height)/aUnitSize.height);
break;
default:
NS_NOTREACHED("unrecognized border-image fill style");
}
return tile;
}
/**
* Returns true if the given set of arguments will require the tiles which fill
* the dest rect to be scaled from the source tile. See comment on ComputeTile
* for argument descriptions.
*/
static bool
RequiresScaling(const nsRect& aFill,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize)
{
// If we have no tiling in either direction, we can skip the intermediate
// scaling step.
return (aHFill != NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH ||
aVFill != NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH) &&
(aUnitSize.width != aFill.width ||
aUnitSize.height != aFill.height);
}
void
nsImageRenderer::DrawBorderImageComponent(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDirtyRect,
const nsRect& aFill,
const CSSIntRect& aSrc,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize,
uint8_t aIndex)
{
if (!mIsReady) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return;
}
if (aFill.IsEmpty() || aSrc.IsEmpty()) {
return;
}
if (mType == eStyleImageType_Image || mType == eStyleImageType_Element) {
nsCOMPtr<imgIContainer> subImage;
// Retrieve or create the subimage we'll draw.
nsIntRect srcRect(aSrc.x, aSrc.y, aSrc.width, aSrc.height);
if (mType == eStyleImageType_Image) {
if ((subImage = mImage->GetSubImage(aIndex)) == nullptr) {
subImage = ImageOps::Clip(mImageContainer, srcRect);
mImage->SetSubImage(aIndex, subImage);
}
} else {
// This path, for eStyleImageType_Element, is currently slower than it
// needs to be because we don't cache anything. (In particular, if we have
// to draw to a temporary surface inside ClippedImage, we don't cache that
// temporary surface since we immediately throw the ClippedImage we create
// here away.) However, if we did cache, we'd need to know when to
// invalidate that cache, and it's not clear that it's worth the trouble
// since using border-image with -moz-element is rare.
nsRefPtr<gfxDrawable> drawable = DrawableForElement(nsRect(nsPoint(), mSize),
aRenderingContext);
if (!drawable) {
NS_WARNING("Could not create drawable for element");
return;
}
nsCOMPtr<imgIContainer> image(ImageOps::CreateFromDrawable(drawable));
subImage = ImageOps::Clip(image, srcRect);
}
GraphicsFilter graphicsFilter =
nsLayoutUtils::GetGraphicsFilterForFrame(mForFrame);
if (!RequiresScaling(aFill, aHFill, aVFill, aUnitSize)) {
nsLayoutUtils::DrawSingleImage(&aRenderingContext,
aPresContext,
subImage,
graphicsFilter,
aFill, aDirtyRect,
nullptr,
imgIContainer::FLAG_NONE);
return;
}
nsRect tile = ComputeTile(aFill, aHFill, aVFill, aUnitSize);
nsLayoutUtils::DrawImage(&aRenderingContext,
aPresContext,
subImage,
graphicsFilter,
tile, aFill, tile.TopLeft(), aDirtyRect,
imgIContainer::FLAG_NONE);
return;
}
nsRect destTile = RequiresScaling(aFill, aHFill, aVFill, aUnitSize)
? ComputeTile(aFill, aHFill, aVFill, aUnitSize)
: aFill;
Draw(aPresContext, aRenderingContext, aDirtyRect, destTile,
aFill, destTile.TopLeft(), aSrc);
}
bool
nsImageRenderer::IsRasterImage()
{
if (mType != eStyleImageType_Image || !mImageContainer)
return false;
return mImageContainer->GetType() == imgIContainer::TYPE_RASTER;
}
bool
nsImageRenderer::IsAnimatedImage()
{
if (mType != eStyleImageType_Image || !mImageContainer)
return false;
bool animated = false;
if (NS_SUCCEEDED(mImageContainer->GetAnimated(&animated)) && animated)
return true;
return false;
}
already_AddRefed<mozilla::layers::ImageContainer>
nsImageRenderer::GetContainer(LayerManager* aManager)
{
if (mType != eStyleImageType_Image || !mImageContainer)
return nullptr;
nsRefPtr<ImageContainer> container;
nsresult rv = mImageContainer->GetImageContainer(aManager, getter_AddRefs(container));
NS_ENSURE_SUCCESS(rv, nullptr);
return container.forget();
}
#define MAX_BLUR_RADIUS 300
#define MAX_SPREAD_RADIUS 50
static inline gfxPoint ComputeBlurStdDev(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxFloat aScaleX,
gfxFloat aScaleY)
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
{
// http://dev.w3.org/csswg/css3-background/#box-shadow says that the
// standard deviation of the blur should be half the given blur value.
gfxFloat blurStdDev = gfxFloat(aBlurRadius) / gfxFloat(aAppUnitsPerDevPixel);
return gfxPoint(std::min((blurStdDev * aScaleX),
gfxFloat(MAX_BLUR_RADIUS)) / 2.0,
std::min((blurStdDev * aScaleY),
gfxFloat(MAX_BLUR_RADIUS)) / 2.0);
}
static inline gfxIntSize
ComputeBlurRadius(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxFloat aScaleX = 1.0,
gfxFloat aScaleY = 1.0)
{
gfxPoint scaledBlurStdDev = ComputeBlurStdDev(aBlurRadius, aAppUnitsPerDevPixel,
aScaleX, aScaleY);
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
return
gfxAlphaBoxBlur::CalculateBlurRadius(scaledBlurStdDev);
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
}
// -----
// nsContextBoxBlur
// -----
gfxContext*
nsContextBoxBlur::Init(const nsRect& aRect, nscoord aSpreadRadius,
nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxContext* aDestinationCtx,
const nsRect& aDirtyRect,
const gfxRect* aSkipRect,
uint32_t aFlags)
{
if (aRect.IsEmpty()) {
mContext = nullptr;
return nullptr;
}
gfxFloat scaleX = 1;
gfxFloat scaleY = 1;
// Do blurs in device space when possible.
// Chrome/Skia always does the blurs in device space
// and will sometimes get incorrect results (e.g. rotated blurs)
gfxMatrix transform = aDestinationCtx->CurrentMatrix();
// XXX: we could probably handle negative scales but for now it's easier just to fallback
if (transform.HasNonAxisAlignedTransform() || transform._11 <= 0.0 || transform._22 <= 0.0) {
transform = gfxMatrix();
} else {
scaleX = transform._11;
scaleY = transform._22;
}
// compute a large or smaller blur radius
gfxIntSize blurRadius = ComputeBlurRadius(aBlurRadius, aAppUnitsPerDevPixel, scaleX, scaleY);
gfxIntSize spreadRadius = gfxIntSize(std::min(int32_t(aSpreadRadius * scaleX / aAppUnitsPerDevPixel),
int32_t(MAX_SPREAD_RADIUS)),
std::min(int32_t(aSpreadRadius * scaleY / aAppUnitsPerDevPixel),
int32_t(MAX_SPREAD_RADIUS)));
mDestinationCtx = aDestinationCtx;
2009-09-04 17:32:17 +04:00
// If not blurring, draw directly onto the destination device
if (blurRadius.width <= 0 && blurRadius.height <= 0 &&
spreadRadius.width <= 0 && spreadRadius.height <= 0 &&
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
!(aFlags & FORCE_MASK)) {
mContext = aDestinationCtx;
return mContext;
}
// Convert from app units to device pixels
gfxRect rect = nsLayoutUtils::RectToGfxRect(aRect, aAppUnitsPerDevPixel);
gfxRect dirtyRect =
nsLayoutUtils::RectToGfxRect(aDirtyRect, aAppUnitsPerDevPixel);
dirtyRect.RoundOut();
rect = transform.TransformBounds(rect);
mPreTransformed = !transform.IsIdentity();
// Create the temporary surface for blurring
dirtyRect = transform.TransformBounds(dirtyRect);
if (aSkipRect) {
gfxRect skipRect = transform.TransformBounds(*aSkipRect);
mContext = blur.Init(rect, spreadRadius,
blurRadius, &dirtyRect, &skipRect);
} else {
mContext = blur.Init(rect, spreadRadius,
blurRadius, &dirtyRect, nullptr);
}
if (mContext) {
// we don't need to blur if skipRect is equal to rect
// and mContext will be nullptr
mContext->Multiply(transform);
}
return mContext;
}
void
nsContextBoxBlur::DoPaint()
{
if (mContext == mDestinationCtx)
return;
gfxContextMatrixAutoSaveRestore saveMatrix(mDestinationCtx);
if (mPreTransformed) {
mDestinationCtx->SetMatrix(gfxMatrix());
}
blur.Paint(mDestinationCtx);
}
gfxContext*
nsContextBoxBlur::GetContext()
{
return mContext;
}
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
/* static */ nsMargin
nsContextBoxBlur::GetBlurRadiusMargin(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel)
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
{
gfxIntSize blurRadius = ComputeBlurRadius(aBlurRadius, aAppUnitsPerDevPixel);
nsMargin result;
result.top = result.bottom = blurRadius.height * aAppUnitsPerDevPixel;
result.left = result.right = blurRadius.width * aAppUnitsPerDevPixel;
Change the blur radius for -moz-box-shadow and text-shadow to match what is specified in css3-background, and the blur radius for canvas to follow what is specified in HTML5. (Bug 590039) r=roc a2.0=blocking2.0:beta6 This fixes the multiplication by 1.5 in gfxAlphaBoxBlur::CalculateBlurRadius (originally added in changeset ce9f05b57b95 for bug 467518) to work correctly. It was previously a multiplication by 1 due to integer division. CalculateBlurRadius previously multiplied by 1.880; it now multiplies by 2.820. This changes canvas shadow handling to multiply shadowBlur by 2 before taking its square root, as described in the spec. This means that canvas shadow blurs 8px or smaller are 1.5 times larger than they were previously (due to the CalculateBlurRadius change), and canvas shadow blurs larger than 8px are 2.121 times larger than they were previously (due to the CalculateBlurRadius change *and* the additional factor of sqrt(2)). This changes text-shadow and -moz-box-shadow handling to use CalculateBlurRadius on half of the value given instead of passing the value through directly. This means that text-shadow and box-shadow blurs are multiplied by 1.410 relative to their old sizes. It also means that we round rather than floor, so that the effect that used to be drawn by a blur in the range 1px to 1.99px is now drawn by a blur anywhere in the range 0.36px to 1.05px, the effect that used to be drawn by a blur in the range 2px to 2.99px is now drawn by a blur anywhere in the range 1.06px to 1.77px, what used to be a drawn by a blur in the range 3px to 3.99px is now drawn by a blur anywhere in the range 1.78px to 2.47px, etc.
2010-09-11 20:27:12 +04:00
return result;
}
/* static */ void
nsContextBoxBlur::BlurRectangle(gfxContext* aDestinationCtx,
const nsRect& aRect,
int32_t aAppUnitsPerDevPixel,
gfxCornerSizes* aCornerRadii,
nscoord aBlurRadius,
const gfxRGBA& aShadowColor,
const nsRect& aDirtyRect,
const gfxRect& aSkipRect)
{
if (aRect.IsEmpty()) {
return;
}
gfxRect shadowGfxRect =
nsLayoutUtils::RectToGfxRect(aRect, aAppUnitsPerDevPixel);
if (aBlurRadius <= 0) {
aDestinationCtx->SetColor(aShadowColor);
aDestinationCtx->NewPath();
if (aCornerRadii) {
aDestinationCtx->RoundedRectangle(shadowGfxRect, *aCornerRadii);
} else {
aDestinationCtx->Rectangle(shadowGfxRect);
}
aDestinationCtx->Fill();
return;
}
gfxFloat scaleX = 1;
gfxFloat scaleY = 1;
// Do blurs in device space when possible.
// Chrome/Skia always does the blurs in device space
// and will sometimes get incorrect results (e.g. rotated blurs)
gfxMatrix transform = aDestinationCtx->CurrentMatrix();
// XXX: we could probably handle negative scales but for now it's easier just to fallback
if (!transform.HasNonAxisAlignedTransform() && transform._11 > 0.0 && transform._22 > 0.0) {
scaleX = transform._11;
scaleY = transform._22;
aDestinationCtx->SetMatrix(gfxMatrix());
} else {
transform = gfxMatrix();
}
gfxPoint blurStdDev = ComputeBlurStdDev(aBlurRadius, aAppUnitsPerDevPixel, scaleX, scaleY);
gfxRect dirtyRect =
nsLayoutUtils::RectToGfxRect(aDirtyRect, aAppUnitsPerDevPixel);
dirtyRect.RoundOut();
shadowGfxRect = transform.TransformBounds(shadowGfxRect);
dirtyRect = transform.TransformBounds(dirtyRect);
gfxRect skipRect = transform.TransformBounds(aSkipRect);
if (aCornerRadii) {
aCornerRadii->Scale(scaleX, scaleY);
}
gfxAlphaBoxBlur::BlurRectangle(aDestinationCtx,
shadowGfxRect,
aCornerRadii,
blurStdDev,
aShadowColor,
dirtyRect,
skipRect);
}