Allow-list all Python code in tree for use with the black linter, and re-format all code in-tree accordingly.
To produce this patch I did all of the following:
1. Make changes to tools/lint/black.yml to remove include: stanza and update list of source extensions.
2. Run ./mach lint --linter black --fix
3. Make some ad-hoc manual updates to python/mozbuild/mozbuild/test/configure/test_configure.py -- it has some hard-coded line numbers that the reformat breaks.
4. Make some ad-hoc manual updates to `testing/marionette/client/setup.py`, `testing/marionette/harness/setup.py`, and `testing/firefox-ui/harness/setup.py`, which have hard-coded regexes that break after the reformat.
5. Add a set of exclusions to black.yml. These will be deleted in a follow-up bug (1672023).
# ignore-this-changeset
Differential Revision: https://phabricator.services.mozilla.com/D94045
Allow-list all Python code in tree for use with the black linter, and re-format all code in-tree accordingly.
To produce this patch I did all of the following:
1. Make changes to tools/lint/black.yml to remove include: stanza and update list of source extensions.
2. Run ./mach lint --linter black --fix
3. Make some ad-hoc manual updates to python/mozbuild/mozbuild/test/configure/test_configure.py -- it has some hard-coded line numbers that the reformat breaks.
4. Make some ad-hoc manual updates to `testing/marionette/client/setup.py`, `testing/marionette/harness/setup.py`, and `testing/firefox-ui/harness/setup.py`, which have hard-coded regexes that break after the reformat.
5. Add a set of exclusions to black.yml. These will be deleted in a follow-up bug (1672023).
# ignore-this-changeset
Differential Revision: https://phabricator.services.mozilla.com/D94045
Allow-list all Python code in tree for use with the black linter, and re-format all code in-tree accordingly.
To produce this patch I did all of the following:
1. Make changes to tools/lint/black.yml to remove include: stanza and update list of source extensions.
2. Run ./mach lint --linter black --fix
3. Make some ad-hoc manual updates to python/mozbuild/mozbuild/test/configure/test_configure.py -- it has some hard-coded line numbers that the reformat breaks.
4. Add a set of exclusions to black.yml. These will be deleted in a follow-up bug (1672023).
# ignore-this-changeset
Differential Revision: https://phabricator.services.mozilla.com/D94045
This backs out all work from bug 1627075 as well as all of its
descendents. There were a few conflicts when backing this out but
overall it was pretty clean, so I would say it's a fairly mild
level of risk. Historically Nathan Froyd has reviewed these patches,
but he is no longer at Mozilla, and no one else is particularly
familiar with the code, so I am passing this off to RyanVM who has
at least been familiar with the history of the bug.
Differential Revision: https://phabricator.services.mozilla.com/D90096
The overall goal of this patch is to make the StartupCache accessible anywhere.
There's two main pieces to that equation:
1. Allowing it to be accessed off main thread, which means modifying the
mutex usage to ensure that all data accessed from non-main threads is
protected.
2. Allowing it to be accessed out of the chrome process, which means passing
a handle to a shared cache buffer down to child processes.
Number 1 is somewhat fiddly, but it's all generally straightforward work. I'll
hope that the comments and the code are sufficient to explain what's going on
there.
Number 2 has some decisions to be made:
- The first decision was to pass a handle to a frozen chunk of memory down to
all child processes, rather than passing a handle to an actual file. There's
two reasons for this: 1) since we want to compress the underlying file on
disk, giving that file to child processes would mean they have to decompress
it themselves, eating CPU time. 2) since they would have to decompress it
themselves, they would have to allocate the memory for the decompressed
buffers, meaning they cannot all simply share one big decompressed buffer.
- The drawback of this decision is that we have to load and decompress the
buffer up front, before we spawn any child processes. We attempt to
mitigate this by keeping track of all the entries that child processes
access, and only including those in the frozen decompressed shared buffer.
- We base our implementation of this approach off of the shared preferences
implementation. Hopefully I got all of the pieces to fit together
correctly. They seem to work in local testing and on try, but I think
they require a set of experienced eyes looking carefully at them.
- Another decision was whether to send the handles to the buffers over IPC or
via command line. We went with the command line approach, because the startup
cache would need to be accessed very early on in order to ensure we do not
read from any omnijars, and we could not make that work via IPC.
- Unfortunately this means adding another hard-coded FD, similar to
kPrefMapFileDescriptor. It seems like at the very least we need to rope all
of these together into one place, but I think that should be filed as a
follow-up?
Lastly, because this patch is a bit of a monster to review - first, thank you
for looking at it, and second, the reason we're invested in this is because we
saw a >10% improvement in cold startup times on reference hardware, with a p
value less than 0.01. It's still not abundantly clear how reference hardware
numbers translate to numbers on release, and they certainly don't translate
well to Nightly numbers, but it's enough to convince me that it's worth some
effort.
Depends on D78584
Differential Revision: https://phabricator.services.mozilla.com/D77635
The overall goal of this patch is to make the StartupCache accessible anywhere.
There's two main pieces to that equation:
1. Allowing it to be accessed off main thread, which means modifying the
mutex usage to ensure that all data accessed from non-main threads is
protected.
2. Allowing it to be accessed out of the chrome process, which means passing
a handle to a shared cache buffer down to child processes.
Number 1 is somewhat fiddly, but it's all generally straightforward work. I'll
hope that the comments and the code are sufficient to explain what's going on
there.
Number 2 has some decisions to be made:
- The first decision was to pass a handle to a frozen chunk of memory down to
all child processes, rather than passing a handle to an actual file. There's
two reasons for this: 1) since we want to compress the underlying file on
disk, giving that file to child processes would mean they have to decompress
it themselves, eating CPU time. 2) since they would have to decompress it
themselves, they would have to allocate the memory for the decompressed
buffers, meaning they cannot all simply share one big decompressed buffer.
- The drawback of this decision is that we have to load and decompress the
buffer up front, before we spawn any child processes. We attempt to
mitigate this by keeping track of all the entries that child processes
access, and only including those in the frozen decompressed shared buffer.
- We base our implementation of this approach off of the shared preferences
implementation. Hopefully I got all of the pieces to fit together
correctly. They seem to work in local testing and on try, but I think
they require a set of experienced eyes looking carefully at them.
- Another decision was whether to send the handles to the buffers over IPC or
via command line. We went with the command line approach, because the startup
cache would need to be accessed very early on in order to ensure we do not
read from any omnijars, and we could not make that work via IPC.
- Unfortunately this means adding another hard-coded FD, similar to
kPrefMapFileDescriptor. It seems like at the very least we need to rope all
of these together into one place, but I think that should be filed as a
follow-up?
Lastly, because this patch is a bit of a monster to review - first, thank you
for looking at it, and second, the reason we're invested in this is because we
saw a >10% improvement in cold startup times on reference hardware, with a p
value less than 0.01. It's still not abundantly clear how reference hardware
numbers translate to numbers on release, and they certainly don't translate
well to Nightly numbers, but it's enough to convince me that it's worth some
effort.
Depends on D78584
Differential Revision: https://phabricator.services.mozilla.com/D77635
The overall goal of this patch is to make the StartupCache accessible anywhere.
There's two main pieces to that equation:
1. Allowing it to be accessed off main thread, which means modifying the
mutex usage to ensure that all data accessed from non-main threads is
protected.
2. Allowing it to be accessed out of the chrome process, which means passing
a handle to a shared cache buffer down to child processes.
Number 1 is somewhat fiddly, but it's all generally straightforward work. I'll
hope that the comments and the code are sufficient to explain what's going on
there.
Number 2 has some decisions to be made:
- The first decision was to pass a handle to a frozen chunk of memory down to
all child processes, rather than passing a handle to an actual file. There's
two reasons for this: 1) since we want to compress the underlying file on
disk, giving that file to child processes would mean they have to decompress
it themselves, eating CPU time. 2) since they would have to decompress it
themselves, they would have to allocate the memory for the decompressed
buffers, meaning they cannot all simply share one big decompressed buffer.
- The drawback of this decision is that we have to load and decompress the
buffer up front, before we spawn any child processes. We attempt to
mitigate this by keeping track of all the entries that child processes
access, and only including those in the frozen decompressed shared buffer.
- We base our implementation of this approach off of the shared preferences
implementation. Hopefully I got all of the pieces to fit together
correctly. They seem to work in local testing and on try, but I think
they require a set of experienced eyes looking carefully at them.
- Another decision was whether to send the handles to the buffers over IPC or
via command line. We went with the command line approach, because the startup
cache would need to be accessed very early on in order to ensure we do not
read from any omnijars, and we could not make that work via IPC.
- Unfortunately this means adding another hard-coded FD, similar to
kPrefMapFileDescriptor. It seems like at the very least we need to rope all
of these together into one place, but I think that should be filed as a
follow-up?
Lastly, because this patch is a bit of a monster to review - first, thank you
for looking at it, and second, the reason we're invested in this is because we
saw a >10% improvement in cold startup times on reference hardware, with a p
value less than 0.01. It's still not abundantly clear how reference hardware
numbers translate to numbers on release, and they certainly don't translate
well to Nightly numbers, but it's enough to convince me that it's worth some
effort.
Depends on D78584
Differential Revision: https://phabricator.services.mozilla.com/D77635
The overall goal of this patch is to make the StartupCache accessible anywhere.
There's two main pieces to that equation:
1. Allowing it to be accessed off main thread, which means modifying the
mutex usage to ensure that all data accessed from non-main threads is
protected.
2. Allowing it to be accessed out of the chrome process, which means passing
a handle to a shared cache buffer down to child processes.
Number 1 is somewhat fiddly, but it's all generally straightforward work. I'll
hope that the comments and the code are sufficient to explain what's going on
there.
Number 2 has some decisions to be made:
- The first decision was to pass a handle to a frozen chunk of memory down to
all child processes, rather than passing a handle to an actual file. There's
two reasons for this: 1) since we want to compress the underlying file on
disk, giving that file to child processes would mean they have to decompress
it themselves, eating CPU time. 2) since they would have to decompress it
themselves, they would have to allocate the memory for the decompressed
buffers, meaning they cannot all simply share one big decompressed buffer.
- The drawback of this decision is that we have to load and decompress the
buffer up front, before we spawn any child processes. We attempt to
mitigate this by keeping track of all the entries that child processes
access, and only including those in the frozen decompressed shared buffer.
- We base our implementation of this approach off of the shared preferences
implementation. Hopefully I got all of the pieces to fit together
correctly. They seem to work in local testing and on try, but I think
they require a set of experienced eyes looking carefully at them.
- Another decision was whether to send the handles to the buffers over IPC or
via command line. We went with the command line approach, because the startup
cache would need to be accessed very early on in order to ensure we do not
read from any omnijars, and we could not make that work via IPC.
- Unfortunately this means adding another hard-coded FD, similar to
kPrefMapFileDescriptor. It seems like at the very least we need to rope all
of these together into one place, but I think that should be filed as a
follow-up?
Lastly, because this patch is a bit of a monster to review - first, thank you
for looking at it, and second, the reason we're invested in this is because we
saw a >10% improvement in cold startup times on reference hardware, with a p
value less than 0.01. It's still not abundantly clear how reference hardware
numbers translate to numbers on release, and they certainly don't translate
well to Nightly numbers, but it's enough to convince me that it's worth some
effort.
Depends on D78584
Differential Revision: https://phabricator.services.mozilla.com/D77635
The overall goal of this patch is to make the StartupCache accessible anywhere.
There's two main pieces to that equation:
1. Allowing it to be accessed off main thread, which means modifying the
mutex usage to ensure that all data accessed from non-main threads is
protected.
2. Allowing it to be accessed out of the chrome process, which means passing
a handle to a shared cache buffer down to child processes.
Number 1 is somewhat fiddly, but it's all generally straightforward work. I'll
hope that the comments and the code are sufficient to explain what's going on
there.
Number 2 has some decisions to be made:
- The first decision was to pass a handle to a frozen chunk of memory down to
all child processes, rather than passing a handle to an actual file. There's
two reasons for this: 1) since we want to compress the underlying file on
disk, giving that file to child processes would mean they have to decompress
it themselves, eating CPU time. 2) since they would have to decompress it
themselves, they would have to allocate the memory for the decompressed
buffers, meaning they cannot all simply share one big decompressed buffer.
- The drawback of this decision is that we have to load and decompress the
buffer up front, before we spawn any child processes. We attempt to
mitigate this by keeping track of all the entries that child processes
access, and only including those in the frozen decompressed shared buffer.
- We base our implementation of this approach off of the shared preferences
implementation. Hopefully I got all of the pieces to fit together
correctly. They seem to work in local testing and on try, but I think
they require a set of experienced eyes looking carefully at them.
- Another decision was whether to send the handles to the buffers over IPC or
via command line. We went with the command line approach, because the startup
cache would need to be accessed very early on in order to ensure we do not
read from any omnijars, and we could not make that work via IPC.
- Unfortunately this means adding another hard-coded FD, similar to
kPrefMapFileDescriptor. It seems like at the very least we need to rope all
of these together into one place, but I think that should be filed as a
follow-up?
Lastly, because this patch is a bit of a monster to review - first, thank you
for looking at it, and second, the reason we're invested in this is because we
saw a >10% improvement in cold startup times on reference hardware, with a p
value less than 0.01. It's still not abundantly clear how reference hardware
numbers translate to numbers on release, and they certainly don't translate
well to Nightly numbers, but it's enough to convince me that it's worth some
effort.
Depends on D78584
Differential Revision: https://phabricator.services.mozilla.com/D77635
Adds a new startup cache info service to expose some of the internal
state of the startup cache.
Differential Revision: https://phabricator.services.mozilla.com/D69298
--HG--
extra : moz-landing-system : lando
Adds a new startup cache info service to expose some of the internal
state of the startup cache.
Differential Revision: https://phabricator.services.mozilla.com/D69298
--HG--
extra : moz-landing-system : lando
In bug 1264235 we have some indication that observed bugs with the
startup cache might have been resolved, but we don't really know
until we collect data. Collecting these stats will give us the
ability to have more certainty that the startup cache is functioning
correctly in the wild.
Differential Revision: https://phabricator.services.mozilla.com/D19573
--HG--
extra : moz-landing-system : lando
This class was needed for testing, but no longer.
MozReview-Commit-ID: AIk0kKlbScs
--HG--
extra : rebase_source : 35eed188e44dc4c9899479b35882461dd2cf4624
This removes the unnecessary setting of c-basic-offset from all
python-mode files.
This was automatically generated using
perl -pi -e 's/; *c-basic-offset: *[0-9]+//'
... on the affected files.
The bulk of these files are moz.build files but there a few others as
well.
MozReview-Commit-ID: 2pPf3DEiZqx
--HG--
extra : rebase_source : 0a7dcac80b924174a2c429b093791148ea6ac204
The patch removes 455 occurrences of FAIL_ON_WARNINGS from moz.build files, and
adds 78 instances of ALLOW_COMPILER_WARNINGS. About half of those 78 are in
code we control and which should be removable with a little effort.
--HG--
extra : rebase_source : 82e3387abfbd5f1471e953961d301d3d97ed2973