The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
This commit was generated using the following script, executed at the
top level of a typical source code checkout.
# Don't modify select files in mfbt/ because it's not worth trying to
# tease out the dependencies currently.
#
# Don't modify anything in media/gmp-clearkey/0.1/ because those files
# use their own RefPtr, defined in their own RefCounted.h.
find . -name '*.cpp' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
grep -v 'mfbt/RefPtr.h' | \
grep -v 'mfbt/nsRefPtr.h' | \
grep -v 'mfbt/RefCounted.h' | \
grep -v 'media/gmp-clearkey/0.1/' | \
xargs perl -p -i -e '
s/mozilla::RefPtr/nsRefPtr/g; # handle declarations in headers
s/\bRefPtr</nsRefPtr</g; # handle local variables in functions
s#mozilla/RefPtr.h#mozilla/nsRefPtr.h#; # handle #includes
s#mfbt/RefPtr.h#mfbt/nsRefPtr.h#; # handle strange #includes
'
# |using mozilla::RefPtr;| is OK; |using nsRefPtr;| is invalid syntax.
find . -name '*.cpp' -o -name '*.mm' | xargs sed -i -e '/using nsRefPtr/d'
# RefPtr.h used |byRef| for dealing with COM-style outparams.
# nsRefPtr.h uses |getter_AddRefs|.
# Fixup that mismatch.
find . -name '*.cpp' -o -name '*.h'| \
xargs perl -p -i -e 's/byRef/getter_AddRefs/g'
A lot of existing code has variations on:
if (ManagedPFooChild().Length()) {
...(ManagedPFooChild()[0])...
}
// Do something with nullptr, or some other action.
It's pretty reasonable to repeat this code when the managed protocols
are stored in an array; the code gets much less nice when managed
protocols are stored in a hashtable. Let's write a small utility
function to handle those details for us. Then when we change the
underlying storage, we only need to update this function, rather than a
bunch of callsites.
ProtocolUtils.h is included by all the generated IPDL headers, so
LoneManagedOrNull should be available everywhere the above pattern would
be encountered.
gfxIntSize is just a typedef of gfx::IntSize, so this is very mechanical. The
only tricky part is deciding for each occurrence whether to replace it with
IntSize, gfx::IntSize or mozilla::gfx::IntSize; in all cases I went with the
shortest one that worked given the existing "using namespace" declarations.
--HG--
extra : rebase_source : 67fd15f87222b16defa70ef795c6d77dfacf1c36
The patch removes 455 occurrences of FAIL_ON_WARNINGS from moz.build files, and
adds 78 instances of ALLOW_COMPILER_WARNINGS. About half of those 78 are in
code we control and which should be removable with a little effort.
--HG--
extra : rebase_source : 82e3387abfbd5f1471e953961d301d3d97ed2973
The creation of the surrogate native window in the child NPAPI process was
failing when then sandbox was at low integrity, because the parent is from the
chrome process, so at medium integrity.
Instead of making an IPC call to get the parent, we now create the window upfront
and send it in an IPC message to be parented in the chrome process.
This is done with asynchronous messaging.