gecko-dev/media/gmp-clearkey/0.1/ClearKeyDecryptionManager.cpp

290 строки
9.7 KiB
C++

/*
* Copyright 2015, Mozilla Foundation and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ClearKeyDecryptionManager.h"
#include "psshparser/PsshParser.h"
#include <assert.h>
#include <string.h>
#include <vector>
#include <algorithm>
#include "mozilla/CheckedInt.h"
#include "mozilla/Span.h"
using namespace cdm;
bool AllZero(const std::vector<uint32_t>& aBytes) {
return all_of(aBytes.begin(), aBytes.end(),
[](uint32_t b) { return b == 0; });
}
class ClearKeyDecryptor : public RefCounted {
public:
ClearKeyDecryptor();
void InitKey(const Key& aKey);
bool HasKey() const { return !mKey.empty(); }
Status Decrypt(uint8_t* aBuffer, uint32_t aBufferSize,
const CryptoMetaData& aMetadata);
const Key& DecryptionKey() const { return mKey; }
private:
~ClearKeyDecryptor();
Key mKey;
};
/* static */
ClearKeyDecryptionManager* ClearKeyDecryptionManager::sInstance = nullptr;
/* static */
ClearKeyDecryptionManager* ClearKeyDecryptionManager::Get() {
if (!sInstance) {
sInstance = new ClearKeyDecryptionManager();
}
return sInstance;
}
ClearKeyDecryptionManager::ClearKeyDecryptionManager() {
CK_LOGD("ClearKeyDecryptionManager::ClearKeyDecryptionManager");
}
ClearKeyDecryptionManager::~ClearKeyDecryptionManager() {
CK_LOGD("ClearKeyDecryptionManager::~ClearKeyDecryptionManager");
sInstance = nullptr;
for (auto it = mDecryptors.begin(); it != mDecryptors.end(); it++) {
it->second->Release();
}
mDecryptors.clear();
}
bool ClearKeyDecryptionManager::HasSeenKeyId(const KeyId& aKeyId) const {
CK_LOGD("ClearKeyDecryptionManager::SeenKeyId %s",
mDecryptors.find(aKeyId) != mDecryptors.end() ? "t" : "f");
return mDecryptors.find(aKeyId) != mDecryptors.end();
}
bool ClearKeyDecryptionManager::IsExpectingKeyForKeyId(
const KeyId& aKeyId) const {
CK_LOGARRAY("ClearKeyDecryptionManager::IsExpectingKeyForId ", aKeyId.data(),
aKeyId.size());
const auto& decryptor = mDecryptors.find(aKeyId);
return decryptor != mDecryptors.end() && !decryptor->second->HasKey();
}
bool ClearKeyDecryptionManager::HasKeyForKeyId(const KeyId& aKeyId) const {
CK_LOGD("ClearKeyDecryptionManager::HasKeyForKeyId");
const auto& decryptor = mDecryptors.find(aKeyId);
return decryptor != mDecryptors.end() && decryptor->second->HasKey();
}
const Key& ClearKeyDecryptionManager::GetDecryptionKey(const KeyId& aKeyId) {
assert(HasKeyForKeyId(aKeyId));
return mDecryptors[aKeyId]->DecryptionKey();
}
void ClearKeyDecryptionManager::InitKey(KeyId aKeyId, Key aKey) {
CK_LOGD("ClearKeyDecryptionManager::InitKey ", aKeyId.data(), aKeyId.size());
if (IsExpectingKeyForKeyId(aKeyId)) {
CK_LOGARRAY("Initialized Key ", aKeyId.data(), aKeyId.size());
mDecryptors[aKeyId]->InitKey(aKey);
} else {
CK_LOGARRAY("Failed to initialize key ", aKeyId.data(), aKeyId.size());
}
}
void ClearKeyDecryptionManager::ExpectKeyId(KeyId aKeyId) {
CK_LOGD("ClearKeyDecryptionManager::ExpectKeyId ", aKeyId.data(),
aKeyId.size());
if (!HasSeenKeyId(aKeyId)) {
mDecryptors[aKeyId] = new ClearKeyDecryptor();
}
mDecryptors[aKeyId]->AddRef();
}
void ClearKeyDecryptionManager::ReleaseKeyId(KeyId aKeyId) {
CK_LOGD("ClearKeyDecryptionManager::ReleaseKeyId");
assert(HasSeenKeyId(aKeyId));
ClearKeyDecryptor* decryptor = mDecryptors[aKeyId];
if (!decryptor->Release()) {
mDecryptors.erase(aKeyId);
}
}
Status ClearKeyDecryptionManager::Decrypt(std::vector<uint8_t>& aBuffer,
const CryptoMetaData& aMetadata) {
return Decrypt(&aBuffer[0], aBuffer.size(), aMetadata);
}
Status ClearKeyDecryptionManager::Decrypt(uint8_t* aBuffer,
uint32_t aBufferSize,
const CryptoMetaData& aMetadata) {
CK_LOGD("ClearKeyDecryptionManager::Decrypt");
if (!HasKeyForKeyId(aMetadata.mKeyId)) {
CK_LOGARRAY("Unable to find decryptor for keyId: ", aMetadata.mKeyId.data(),
aMetadata.mKeyId.size());
return Status::kNoKey;
}
CK_LOGARRAY("Found decryptor for keyId: ", aMetadata.mKeyId.data(),
aMetadata.mKeyId.size());
return mDecryptors[aMetadata.mKeyId]->Decrypt(aBuffer, aBufferSize,
aMetadata);
}
ClearKeyDecryptor::ClearKeyDecryptor() { CK_LOGD("ClearKeyDecryptor ctor"); }
ClearKeyDecryptor::~ClearKeyDecryptor() {
if (HasKey()) {
CK_LOGARRAY("ClearKeyDecryptor dtor; key = ", mKey.data(), mKey.size());
} else {
CK_LOGD("ClearKeyDecryptor dtor");
}
}
void ClearKeyDecryptor::InitKey(const Key& aKey) { mKey = aKey; }
Status ClearKeyDecryptor::Decrypt(uint8_t* aBuffer, uint32_t aBufferSize,
const CryptoMetaData& aMetadata) {
CK_LOGD("ClearKeyDecryptor::Decrypt");
// If the sample is split up into multiple encrypted subsamples, we need to
// stitch them into one continuous buffer for decryption.
std::vector<uint8_t> tmp(aBufferSize);
static_assert(sizeof(uintptr_t) == sizeof(uint8_t*),
"We need uintptr_t to be exactly the same size as a pointer");
// Decrypt CBCS case:
if (aMetadata.mEncryptionScheme == EncryptionScheme::kCbcs) {
mozilla::CheckedInt<uintptr_t> data = reinterpret_cast<uintptr_t>(aBuffer);
if (!data.isValid()) {
return Status::kDecryptError;
}
const uintptr_t endBuffer =
reinterpret_cast<uintptr_t>(aBuffer + aBufferSize);
if (aMetadata.NumSubsamples() == 0) {
if (data.value() > endBuffer) {
return Status::kDecryptError;
}
mozilla::Span<uint8_t> encryptedSpan = mozilla::MakeSpan(
reinterpret_cast<uint8_t*>(data.value()), aBufferSize);
if (!ClearKeyUtils::DecryptCbcs(mKey, aMetadata.mIV, encryptedSpan,
aMetadata.mCryptByteBlock,
aMetadata.mSkipByteBlock)) {
return Status::kDecryptError;
}
return Status::kSuccess;
}
for (size_t i = 0; i < aMetadata.NumSubsamples(); i++) {
data += aMetadata.mClearBytes[i];
if (!data.isValid() || data.value() > endBuffer) {
return Status::kDecryptError;
}
mozilla::CheckedInt<uintptr_t> dataAfterCipher =
data + aMetadata.mCipherBytes[i];
if (!dataAfterCipher.isValid() || dataAfterCipher.value() > endBuffer) {
// Trying to read past the end of the buffer!
return Status::kDecryptError;
}
mozilla::Span<uint8_t> encryptedSpan = mozilla::MakeSpan(
reinterpret_cast<uint8_t*>(data.value()), aMetadata.mCipherBytes[i]);
if (!ClearKeyUtils::DecryptCbcs(mKey, aMetadata.mIV, encryptedSpan,
aMetadata.mCryptByteBlock,
aMetadata.mSkipByteBlock)) {
return Status::kDecryptError;
}
data += aMetadata.mCipherBytes[i];
if (!data.isValid()) {
return Status::kDecryptError;
}
return Status::kSuccess;
}
}
// Decrypt CENC case:
if (aMetadata.NumSubsamples()) {
// Take all encrypted parts of subsamples and stitch them into one
// continuous encrypted buffer.
mozilla::CheckedInt<uintptr_t> data = reinterpret_cast<uintptr_t>(aBuffer);
const uintptr_t endBuffer =
reinterpret_cast<uintptr_t>(aBuffer + aBufferSize);
uint8_t* iter = &tmp[0];
for (size_t i = 0; i < aMetadata.NumSubsamples(); i++) {
data += aMetadata.mClearBytes[i];
if (!data.isValid() || data.value() > endBuffer) {
// Trying to read past the end of the buffer!
return Status::kDecryptError;
}
const uint32_t& cipherBytes = aMetadata.mCipherBytes[i];
mozilla::CheckedInt<uintptr_t> dataAfterCipher = data + cipherBytes;
if (!dataAfterCipher.isValid() || dataAfterCipher.value() > endBuffer) {
// Trying to read past the end of the buffer!
return Status::kDecryptError;
}
memcpy(iter, reinterpret_cast<uint8_t*>(data.value()), cipherBytes);
data = dataAfterCipher;
iter += cipherBytes;
}
tmp.resize((size_t)(iter - &tmp[0]));
} else {
memcpy(&tmp[0], aBuffer, aBufferSize);
}
// It is possible that we could be passed an unencrypted sample, if all
// encrypted sample lengths are zero, and in this case, a zero length
// IV is allowed.
assert(aMetadata.mIV.size() == 8 || aMetadata.mIV.size() == 16 ||
(aMetadata.mIV.empty() && AllZero(aMetadata.mCipherBytes)));
std::vector<uint8_t> iv(aMetadata.mIV);
iv.insert(iv.end(), CENC_KEY_LEN - aMetadata.mIV.size(), 0);
if (!ClearKeyUtils::DecryptAES(mKey, tmp, iv)) {
return Status::kDecryptError;
}
if (aMetadata.NumSubsamples()) {
// Take the decrypted buffer, split up into subsamples, and insert those
// subsamples back into their original position in the original buffer.
uint8_t* data = aBuffer;
uint8_t* iter = &tmp[0];
for (size_t i = 0; i < aMetadata.NumSubsamples(); i++) {
data += aMetadata.mClearBytes[i];
uint32_t cipherBytes = aMetadata.mCipherBytes[i];
memcpy(data, iter, cipherBytes);
data += cipherBytes;
iter += cipherBytes;
}
} else {
memcpy(aBuffer, &tmp[0], aBufferSize);
}
return Status::kSuccess;
}