gecko-dev/gfx/layers/d3d11/MLGDeviceD3D11.cpp

2135 строки
63 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MLGDeviceD3D11.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Telemetry.h"
#include "mozilla/WindowsVersion.h"
#include "mozilla/gfx/GPUParent.h"
#include "mozilla/gfx/StackArray.h"
#include "mozilla/layers/DiagnosticsD3D11.h"
#include "mozilla/layers/LayerMLGPU.h"
#include "mozilla/layers/MemoryReportingMLGPU.h"
#include "mozilla/layers/ShaderDefinitionsMLGPU.h"
#include "mozilla/layers/UtilityMLGPU.h"
#include "mozilla/widget/CompositorWidget.h"
#include "mozilla/widget/WinCompositorWidget.h"
#include "MLGShaders.h"
#include "TextureD3D11.h"
#include "gfxConfig.h"
#include "gfxPrefs.h"
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
using namespace mozilla::widget;
using namespace mozilla::layers::mlg;
using namespace std;
// Defined in CompositorD3D11.cpp.
bool CanUsePartialPresents(ID3D11Device* aDevice);
static D3D11_BOX RectToBox(const gfx::IntRect& aRect);
MLGRenderTargetD3D11::MLGRenderTargetD3D11(const gfx::IntSize& aSize, MLGRenderTargetFlags aFlags)
: MLGRenderTarget(aFlags),
mSize(aSize)
{
}
MLGRenderTargetD3D11::~MLGRenderTargetD3D11()
{
if (mDepthBuffer) {
sRenderTargetUsage -= mSize.width * mSize.height * 1;
}
ForgetTexture();
}
bool
MLGRenderTargetD3D11::Initialize(ID3D11Device* aDevice)
{
D3D11_TEXTURE2D_DESC desc;
::ZeroMemory(&desc, sizeof(desc));
desc.Width = mSize.width;
desc.Height = mSize.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.SampleDesc.Count = 1;
desc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE;
RefPtr<ID3D11Texture2D> texture;
HRESULT hr = aDevice->CreateTexture2D(&desc, nullptr, getter_AddRefs(texture));
if (FAILED(hr) || !texture) {
gfxCriticalNote << "Failed to create render target texture: " << hexa(hr);
return false;
}
return Initialize(aDevice, texture);
}
bool
MLGRenderTargetD3D11::Initialize(ID3D11Device* aDevice, ID3D11Texture2D* aTexture)
{
if (!UpdateTexture(aTexture)) {
return false;
}
if ((mFlags & MLGRenderTargetFlags::ZBuffer) && !CreateDepthBuffer(aDevice)) {
return false;
}
return true;
}
bool
MLGRenderTargetD3D11::UpdateTexture(ID3D11Texture2D* aTexture)
{
// Save the view first, in case we can re-use it.
RefPtr<ID3D11RenderTargetView> view = mRTView.forget();
ForgetTexture();
if (!aTexture) {
return true;
}
#ifdef DEBUG
D3D11_TEXTURE2D_DESC desc;
aTexture->GetDesc(&desc);
MOZ_ASSERT(desc.Width == mSize.width && desc.Height == mSize.height);
#endif
RefPtr<ID3D11Device> device;
aTexture->GetDevice(getter_AddRefs(device));
if (view) {
// Check that the view matches the backing texture.
RefPtr<ID3D11Resource> resource;
view->GetResource(getter_AddRefs(resource));
if (resource != aTexture) {
view = nullptr;
}
}
// If we couldn't re-use a view from before, make one now.
if (!view) {
HRESULT hr = device->CreateRenderTargetView(aTexture, nullptr, getter_AddRefs(view));
if (FAILED(hr) || !view) {
gfxCriticalNote << "Failed to create render target view: " << hexa(hr);
return false;
}
}
mTexture = aTexture;
mRTView = view.forget();
sRenderTargetUsage += mSize.width * mSize.height * 4;
return true;
}
void
MLGRenderTargetD3D11::ForgetTexture()
{
if (mTexture) {
sRenderTargetUsage -= mSize.width * mSize.height * 4;
mTexture = nullptr;
}
mRTView = nullptr;
mTextureSource = nullptr;
}
bool
MLGRenderTargetD3D11::CreateDepthBuffer(ID3D11Device* aDevice)
{
D3D11_TEXTURE2D_DESC desc;
::ZeroMemory(&desc, sizeof(desc));
desc.Width = mSize.width;
desc.Height = mSize.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = DXGI_FORMAT_D32_FLOAT;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
RefPtr<ID3D11Texture2D> buffer;
HRESULT hr = aDevice->CreateTexture2D(&desc, nullptr, getter_AddRefs(buffer));
if (FAILED(hr) || !buffer) {
gfxCriticalNote << "Could not create depth-stencil buffer: " << hexa(hr);
return false;
}
D3D11_DEPTH_STENCIL_VIEW_DESC viewDesc;
::ZeroMemory(&viewDesc, sizeof(viewDesc));
viewDesc.Format = DXGI_FORMAT_D32_FLOAT;
viewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
RefPtr<ID3D11DepthStencilView> dsv;
hr = aDevice->CreateDepthStencilView(buffer, &viewDesc, getter_AddRefs(dsv));
if (FAILED(hr) || !dsv) {
gfxCriticalNote << "Could not create depth-stencil view: " << hexa(hr);
return false;
}
mDepthBuffer = buffer;
mDepthStencilView = dsv;
sRenderTargetUsage += mSize.width * mSize.height * 1;
return true;
}
ID3D11DepthStencilView*
MLGRenderTargetD3D11::GetDSV()
{
return mDepthStencilView;
}
ID3D11RenderTargetView*
MLGRenderTargetD3D11::GetRenderTargetView()
{
return mRTView;
}
IntSize
MLGRenderTargetD3D11::GetSize() const
{
return mSize;
}
MLGTexture*
MLGRenderTargetD3D11::GetTexture()
{
if (!mTextureSource) {
mTextureSource = new MLGTextureD3D11(mTexture);
}
return mTextureSource;
}
MLGSwapChainD3D11::MLGSwapChainD3D11(MLGDeviceD3D11* aParent, ID3D11Device* aDevice)
: mParent(aParent),
mDevice(aDevice),
mWidget(nullptr),
mCanUsePartialPresents(CanUsePartialPresents(aDevice))
{
}
MLGSwapChainD3D11::~MLGSwapChainD3D11()
{
}
void
MLGSwapChainD3D11::Destroy()
{
if (mRT == mParent->GetRenderTarget()) {
mParent->SetRenderTarget(nullptr);
}
mWidget = nullptr;
mRT = nullptr;
mSwapChain = nullptr;
mSwapChain1 = nullptr;
}
RefPtr<MLGSwapChainD3D11>
MLGSwapChainD3D11::Create(MLGDeviceD3D11* aParent, ID3D11Device* aDevice, CompositorWidget* aWidget)
{
RefPtr<MLGSwapChainD3D11> swapChain = new MLGSwapChainD3D11(aParent, aDevice);
if (!swapChain->Initialize(aWidget)) {
return nullptr;
}
return swapChain.forget();
}
bool
MLGSwapChainD3D11::Initialize(CompositorWidget* aWidget)
{
HWND hwnd = aWidget->AsWindows()->GetHwnd();
RefPtr<IDXGIDevice> dxgiDevice;
mDevice->QueryInterface(dxgiDevice.StartAssignment());
RefPtr<IDXGIFactory> dxgiFactory;
{
RefPtr<IDXGIAdapter> adapter;
dxgiDevice->GetAdapter(getter_AddRefs(adapter));
adapter->GetParent(IID_PPV_ARGS(dxgiFactory.StartAssignment()));
}
RefPtr<IDXGIFactory2> dxgiFactory2;
if (gfxPrefs::Direct3D11UseDoubleBuffering() &&
SUCCEEDED(dxgiFactory->QueryInterface(dxgiFactory2.StartAssignment())) &&
dxgiFactory2 &&
IsWin10OrLater())
{
// DXGI_SCALING_NONE is not available on Windows 7 with the Platform Update:
// This looks awful for things like the awesome bar and browser window
// resizing, so we don't use a flip buffer chain here. (Note when using
// EFFECT_SEQUENTIAL Windows doesn't stretch the surface when resizing).
//
// We choose not to run this on platforms earlier than Windows 10 because
// it appears sometimes this breaks our ability to test ASAP compositing,
// which breaks Talos.
DXGI_SWAP_CHAIN_DESC1 desc;
::ZeroMemory(&desc, sizeof(desc));
desc.Width = 0;
desc.Height = 0;
desc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
desc.BufferCount = 2;
desc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
desc.Scaling = DXGI_SCALING_NONE;
desc.Flags = 0;
HRESULT hr = dxgiFactory2->CreateSwapChainForHwnd(
mDevice,
hwnd,
&desc,
nullptr,
nullptr,
getter_AddRefs(mSwapChain1));
if (SUCCEEDED(hr) && mSwapChain1) {
DXGI_RGBA color = { 1.0f, 1.0f, 1.0f, 1.0f };
mSwapChain1->SetBackgroundColor(&color);
mSwapChain = mSwapChain1;
mIsDoubleBuffered = true;
}
}
if (!mSwapChain) {
DXGI_SWAP_CHAIN_DESC swapDesc;
::ZeroMemory(&swapDesc, sizeof(swapDesc));
swapDesc.BufferDesc.Width = 0;
swapDesc.BufferDesc.Height = 0;
swapDesc.BufferDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
swapDesc.BufferDesc.RefreshRate.Numerator = 60;
swapDesc.BufferDesc.RefreshRate.Denominator = 1;
swapDesc.SampleDesc.Count = 1;
swapDesc.SampleDesc.Quality = 0;
swapDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapDesc.BufferCount = 1;
swapDesc.OutputWindow = hwnd;
swapDesc.Windowed = TRUE;
swapDesc.Flags = 0;
swapDesc.SwapEffect = DXGI_SWAP_EFFECT_SEQUENTIAL;
HRESULT hr = dxgiFactory->CreateSwapChain(dxgiDevice, &swapDesc, getter_AddRefs(mSwapChain));
if (FAILED(hr)) {
gfxCriticalNote << "Could not create swap chain: " << hexa(hr);
return false;
}
// Try to get an IDXGISwapChain1 if we can, for partial presents.
mSwapChain->QueryInterface(mSwapChain1.StartAssignment());
}
// We need this because we don't want DXGI to respond to Alt+Enter.
dxgiFactory->MakeWindowAssociation(hwnd, DXGI_MWA_NO_WINDOW_CHANGES);
mWidget = aWidget;
return true;
}
RefPtr<MLGRenderTarget>
MLGSwapChainD3D11::AcquireBackBuffer()
{
RefPtr<ID3D11Texture2D> texture;
HRESULT hr = mSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), getter_AddRefs(texture));
if (hr == DXGI_ERROR_INVALID_CALL && mDevice->GetDeviceRemovedReason() != S_OK) {
// This can happen on some drivers when there's a TDR.
mParent->HandleDeviceReset("SwapChain::GetBuffer");
return nullptr;
}
if (FAILED(hr)) {
gfxCriticalNote << "Failed to acquire swap chain's backbuffer: " << hexa(hr);
return nullptr;
}
if (!mRT) {
MLGRenderTargetFlags flags = MLGRenderTargetFlags::Default;
if (gfxPrefs::AdvancedLayersEnableDepthBuffer()) {
flags |= MLGRenderTargetFlags::ZBuffer;
}
mRT = new MLGRenderTargetD3D11(mSize, flags);
if (!mRT->Initialize(mDevice, nullptr)) {
return nullptr;
}
}
if (!mRT->UpdateTexture(texture)) {
return nullptr;
}
if (mIsDoubleBuffered) {
UpdateBackBufferContents(texture);
}
return mRT;
}
void
MLGSwapChainD3D11::UpdateBackBufferContents(ID3D11Texture2D* aBack)
{
MOZ_ASSERT(mIsDoubleBuffered);
// The front region contains the newly invalid region for this frame. The
// back region contains that, plus the region that was only drawn into the
// back buffer on the previous frame. Thus by subtracting the two, we can
// find the region that needs to be copied from the front buffer to the
// back. We do this so we don't have to re-render those pixels.
nsIntRegion frontValid;
frontValid.Sub(mBackBufferInvalid, mFrontBufferInvalid);
if (frontValid.IsEmpty()) {
return;
}
RefPtr<ID3D11Texture2D> front;
HRESULT hr = mSwapChain->GetBuffer(1, __uuidof(ID3D11Texture2D), getter_AddRefs(front));
if (FAILED(hr) || !front) {
return;
}
RefPtr<ID3D11DeviceContext> context;
mDevice->GetImmediateContext(getter_AddRefs(context));
for (auto iter = frontValid.RectIter(); !iter.Done(); iter.Next()) {
const IntRect& rect = iter.Get();
D3D11_BOX box = RectToBox(rect);
context->CopySubresourceRegion(aBack, 0, rect.X(), rect.Y(), 0, front, 0, &box);
}
// The back and front buffers are now in sync.
mBackBufferInvalid = mFrontBufferInvalid;
MOZ_ASSERT(!mBackBufferInvalid.IsEmpty());
}
bool
MLGSwapChainD3D11::ResizeBuffers(const IntSize& aSize)
{
// We have to clear all references to the old backbuffer before resizing.
mRT = nullptr;
// Clear the size before re-allocating. If allocation fails we want to try
// again, because we had to sacrifice our original backbuffer to try
// resizing.
mSize = IntSize(0, 0);
HRESULT hr = mSwapChain->ResizeBuffers(0, aSize.width, aSize.height, DXGI_FORMAT_B8G8R8A8_UNORM, 0);
if (hr == DXGI_ERROR_DEVICE_REMOVED) {
mParent->HandleDeviceReset("ResizeBuffers");
return false;
}
if (FAILED(hr)) {
gfxCriticalNote << "Failed to resize swap chain buffers: " << hexa(hr);
return false;
}
mSize = aSize;
mBackBufferInvalid = IntRect(IntPoint(0, 0), mSize);
mFrontBufferInvalid = IntRect(IntPoint(0, 0), mSize);
return true;
}
IntSize
MLGSwapChainD3D11::GetSize() const
{
return mSize;
}
void
MLGSwapChainD3D11::Present()
{
MOZ_ASSERT(!mBackBufferInvalid.IsEmpty());
MOZ_ASSERT(mBackBufferInvalid.GetNumRects() > 0);
// See bug 1260611 comment #28 for why we do this.
mParent->InsertPresentWaitQuery();
HRESULT hr;
if (mCanUsePartialPresents && mSwapChain1) {
StackArray<RECT, 4> rects(mBackBufferInvalid.GetNumRects());
size_t i = 0;
for (auto iter = mBackBufferInvalid.RectIter(); !iter.Done(); iter.Next()) {
const IntRect& rect = iter.Get();
rects[i].left = rect.X();
rects[i].top = rect.Y();
rects[i].bottom = rect.YMost();
rects[i].right = rect.XMost();
i++;
}
DXGI_PRESENT_PARAMETERS params;
PodZero(&params);
params.DirtyRectsCount = mBackBufferInvalid.GetNumRects();
params.pDirtyRects = rects.data();
hr = mSwapChain1->Present1(0, 0, &params);
} else {
hr = mSwapChain->Present(0, 0);
}
if (hr == DXGI_ERROR_DEVICE_REMOVED) {
mParent->HandleDeviceReset("Present");
}
if (FAILED(hr)) {
gfxCriticalNote << "D3D11 swap chain failed to present: " << hexa(hr);
}
if (mIsDoubleBuffered) {
// Both the front and back buffer invalid regions are in sync, but now the
// presented buffer (the front buffer) is clean, so we clear its invalid
// region. The back buffer that will be used next frame however is now
// dirty.
MOZ_ASSERT(mFrontBufferInvalid.GetBounds() == mBackBufferInvalid.GetBounds());
mFrontBufferInvalid.SetEmpty();
} else {
mBackBufferInvalid.SetEmpty();
}
mLastPresentSize = mSize;
// Note: this waits on the query we inserted in the previous frame,
// not the one we just inserted now. Example:
// Insert query #1
// Present #1
// (first frame, no wait)
// Insert query #2
// Present #2
// Wait for query #1.
// Insert query #3
// Present #3
// Wait for query #2.
//
// This ensures we're done reading textures before swapping buffers.
mParent->WaitForPreviousPresentQuery();
}
void
MLGSwapChainD3D11::ForcePresent()
{
DXGI_SWAP_CHAIN_DESC desc;
mSwapChain->GetDesc(&desc);
LayoutDeviceIntSize size = mWidget->GetClientSize();
if (desc.BufferDesc.Width != size.width || desc.BufferDesc.Height != size.height) {
return;
}
mSwapChain->Present(0, 0);
if (mIsDoubleBuffered) {
// Make sure we present the old front buffer since we know it is completely
// valid. This non-vsynced present should be pretty much 'free' for a flip
// chain.
mSwapChain->Present(0, 0);
}
mLastPresentSize = mSize;
}
void
MLGSwapChainD3D11::CopyBackbuffer(gfx::DrawTarget* aTarget, const gfx::IntRect& aBounds)
{
RefPtr<ID3D11DeviceContext> context;
mDevice->GetImmediateContext(getter_AddRefs(context));
RefPtr<ID3D11Texture2D> backbuffer;
HRESULT hr = mSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)backbuffer.StartAssignment());
if (FAILED(hr)) {
gfxWarning() << "Failed to acquire swapchain backbuffer: " << hexa(hr);
return;
}
D3D11_TEXTURE2D_DESC bbDesc;
backbuffer->GetDesc(&bbDesc);
CD3D11_TEXTURE2D_DESC tempDesc(bbDesc.Format, bbDesc.Width, bbDesc.Height);
tempDesc.MipLevels = 1;
tempDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
tempDesc.Usage = D3D11_USAGE_STAGING;
tempDesc.BindFlags = 0;
RefPtr<ID3D11Texture2D> temp;
hr = mDevice->CreateTexture2D(&tempDesc, nullptr, getter_AddRefs(temp));
if (FAILED(hr)) {
gfxWarning() << "Failed to create a temporary texture for PresentAndCopy: " << hexa(hr);
return;
}
context->CopyResource(temp, backbuffer);
D3D11_MAPPED_SUBRESOURCE map;
hr = context->Map(temp, 0, D3D11_MAP_READ, 0, &map);
if (FAILED(hr)) {
gfxWarning() << "Failed to map temporary texture for PresentAndCopy: " << hexa(hr);
return;
}
RefPtr<DataSourceSurface> source = Factory::CreateWrappingDataSourceSurface(
(uint8_t*)map.pData,
map.RowPitch,
IntSize(bbDesc.Width, bbDesc.Height),
SurfaceFormat::B8G8R8A8);
aTarget->CopySurface(
source,
IntRect(0, 0, bbDesc.Width, bbDesc.Height),
IntPoint(-aBounds.X(), -aBounds.Y()));
aTarget->Flush();
context->Unmap(temp, 0);
}
RefPtr<MLGBufferD3D11>
MLGBufferD3D11::Create(ID3D11Device* aDevice,
MLGBufferType aType,
uint32_t aSize,
MLGUsage aUsage,
const void* aInitialData)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = aSize;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
switch (aUsage) {
case MLGUsage::Dynamic:
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
break;
case MLGUsage::Immutable:
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.CPUAccessFlags = 0;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown buffer usage type");
return nullptr;
}
switch (aType) {
case MLGBufferType::Vertex:
desc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
break;
case MLGBufferType::Constant:
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown buffer type");
return nullptr;
}
D3D11_SUBRESOURCE_DATA data;
data.pSysMem = aInitialData;
data.SysMemPitch = aSize;
data.SysMemSlicePitch = 0;
RefPtr<ID3D11Buffer> buffer;
HRESULT hr = aDevice->CreateBuffer(&desc, aInitialData ? &data : nullptr, getter_AddRefs(buffer));
if (FAILED(hr) || !buffer) {
gfxCriticalError() << "Failed to create ID3D11Buffer.";
return nullptr;
}
return new MLGBufferD3D11(buffer, aType, aSize);
}
MLGBufferD3D11::MLGBufferD3D11(ID3D11Buffer* aBuffer, MLGBufferType aType, size_t aSize)
: mBuffer(aBuffer),
mType(aType),
mSize(aSize)
{
switch (mType) {
case MLGBufferType::Vertex:
mlg::sVertexBufferUsage += mSize;
break;
case MLGBufferType::Constant:
mlg::sConstantBufferUsage += mSize;
break;
}
}
MLGBufferD3D11::~MLGBufferD3D11()
{
switch (mType) {
case MLGBufferType::Vertex:
mlg::sVertexBufferUsage -= mSize;
break;
case MLGBufferType::Constant:
mlg::sConstantBufferUsage -= mSize;
break;
}
}
MLGTextureD3D11::MLGTextureD3D11(ID3D11Texture2D* aTexture)
: mTexture(aTexture)
{
D3D11_TEXTURE2D_DESC desc;
aTexture->GetDesc(&desc);
mSize.width = desc.Width;
mSize.height = desc.Height;
}
/* static */ RefPtr<MLGTextureD3D11>
MLGTextureD3D11::Create(ID3D11Device* aDevice,
const gfx::IntSize& aSize,
gfx::SurfaceFormat aFormat,
MLGUsage aUsage,
MLGTextureFlags aFlags)
{
D3D11_TEXTURE2D_DESC desc;
::ZeroMemory(&desc, sizeof(desc));
desc.Width = aSize.width;
desc.Height = aSize.height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.SampleDesc.Count = 1;
switch (aFormat) {
case SurfaceFormat::B8G8R8A8:
desc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unsupported surface format");
return nullptr;
}
switch (aUsage) {
case MLGUsage::Immutable:
desc.Usage = D3D11_USAGE_IMMUTABLE;
break;
case MLGUsage::Default:
desc.Usage = D3D11_USAGE_DEFAULT;
break;
case MLGUsage::Dynamic:
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
break;
case MLGUsage::Staging:
desc.Usage = D3D11_USAGE_STAGING;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unsupported usage type");
break;
}
if (aFlags & MLGTextureFlags::ShaderResource) {
desc.BindFlags |= D3D11_BIND_SHADER_RESOURCE;
}
if (aFlags & MLGTextureFlags::RenderTarget) {
desc.BindFlags |= D3D11_BIND_RENDER_TARGET;
}
RefPtr<ID3D11Texture2D> texture;
HRESULT hr = aDevice->CreateTexture2D(&desc, nullptr, getter_AddRefs(texture));
if (FAILED(hr) || !texture) {
gfxCriticalNote << "Failed to create 2D texture: " << hexa(hr);
return nullptr;
}
ReportTextureMemoryUsage(texture, aSize.width * aSize.height * 4);
return new MLGTextureD3D11(texture);
}
ID3D11ShaderResourceView*
MLGTextureD3D11::GetShaderResourceView()
{
if (!mView) {
RefPtr<ID3D11Device> device;
mTexture->GetDevice(getter_AddRefs(device));
HRESULT hr = device->CreateShaderResourceView(mTexture, nullptr, getter_AddRefs(mView));
if (FAILED(hr) || !mView) {
gfxWarning() << "Could not create shader resource view: " << hexa(hr);
return nullptr;
}
}
return mView;
}
MLGDeviceD3D11::MLGDeviceD3D11(ID3D11Device* aDevice)
: mDevice(aDevice),
mScissored(false)
{
}
MLGDeviceD3D11::~MLGDeviceD3D11()
{
// Caller should have unlocked all textures after presenting.
MOZ_ASSERT(mLockedTextures.IsEmpty());
MOZ_ASSERT(mLockAttemptedTextures.IsEmpty());
}
bool
MLGDeviceD3D11::Initialize()
{
if (!mDevice) {
return Fail("FEATURE_FAILURE_NO_DEVICE");
}
if (mDevice->GetFeatureLevel() < D3D_FEATURE_LEVEL_10_0) {
return Fail("FEATURE_FAILURE_NEED_LEVEL_10_0");
}
mDevice->GetImmediateContext(getter_AddRefs(mCtx));
if (!mCtx) {
return Fail("FEATURE_FAILURE_NO_CONTEXT");
}
mCtx->QueryInterface((ID3D11DeviceContext1**)getter_AddRefs(mCtx1));
if (mCtx1) {
// Windows 7 can have Direct3D 11.1 if the platform update is installed,
// but according to some NVIDIA presentations it is known to be buggy.
// It's not clear whether that only refers to command list emulation,
// or whether it just has performance penalties. To be safe we only use
// it on Windows 8 or higher.
//
// https://docs.microsoft.com/en-us/windows-hardware/drivers/display/directx-feature-improvements-in-windows-8#buffers
D3D11_FEATURE_DATA_D3D11_OPTIONS options;
HRESULT hr = mDevice->CheckFeatureSupport(
D3D11_FEATURE_D3D11_OPTIONS,
&options,
sizeof(options));
if (SUCCEEDED(hr)) {
if (IsWin8OrLater()) {
mCanUseConstantBufferOffsetBinding = (options.ConstantBufferOffsetting != FALSE);
} else {
gfxConfig::EnableFallback(Fallback::NO_CONSTANT_BUFFER_OFFSETTING,
"Unsupported by driver");
}
mCanUseClearView = (options.ClearView != FALSE);
} else {
gfxCriticalNote << "Failed to query D3D11.1 feature support: " << hexa(hr);
}
}
// Get capabilities.
switch (mDevice->GetFeatureLevel()) {
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
mMaxConstantBufferBindSize = D3D11_REQ_CONSTANT_BUFFER_ELEMENT_COUNT * 16;
break;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
mMaxConstantBufferBindSize = D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT * 16;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown feature level");
}
mDiagnostics = MakeUnique<DiagnosticsD3D11>(mDevice, mCtx);
{
struct Vertex2D { float x; float y; };
Vertex2D vertices[] = { { 0, 0 }, { 1.0f, 0 }, { 0, 1.0f }, { 1.0f, 1.0f } };
mUnitQuadVB = CreateBuffer(
MLGBufferType::Vertex,
sizeof(Vertex2D) * 4,
MLGUsage::Immutable,
&vertices);
if (!mUnitQuadVB) {
return Fail("FEATURE_FAILURE_UNIT_QUAD_BUFFER");
}
}
{
struct Vertex3D { float x; float y; float z; };
Vertex3D vertices[3] = {
{ 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f }
};
mUnitTriangleVB = CreateBuffer(
MLGBufferType::Vertex,
sizeof(Vertex3D) * 3,
MLGUsage::Immutable,
&vertices);
if (!mUnitTriangleVB) {
return Fail("FEATURE_FAILURE_UNIT_TRIANGLE_BUFFER");
}
}
// Define pixel shaders.
#define LAZY_PS(cxxName, enumName) mLazyPixelShaders[PixelShaderID::enumName] = &s##cxxName;
LAZY_PS(TexturedVertexRGB, TexturedVertexRGB);
LAZY_PS(TexturedVertexRGBA, TexturedVertexRGBA);
LAZY_PS(TexturedQuadRGB, TexturedQuadRGB);
LAZY_PS(TexturedQuadRGBA, TexturedQuadRGBA);
LAZY_PS(ColoredQuadPS, ColoredQuad);
LAZY_PS(ColoredVertexPS, ColoredVertex);
LAZY_PS(ComponentAlphaQuadPS, ComponentAlphaQuad);
LAZY_PS(ComponentAlphaVertexPS, ComponentAlphaVertex);
LAZY_PS(TexturedVertexIMC4, TexturedVertexIMC4);
LAZY_PS(TexturedVertexNV12, TexturedVertexNV12);
LAZY_PS(TexturedQuadIMC4, TexturedQuadIMC4);
LAZY_PS(TexturedQuadNV12, TexturedQuadNV12);
LAZY_PS(BlendMultiplyPS, BlendMultiply);
LAZY_PS(BlendScreenPS, BlendScreen);
LAZY_PS(BlendOverlayPS, BlendOverlay);
LAZY_PS(BlendDarkenPS, BlendDarken);
LAZY_PS(BlendLightenPS, BlendLighten);
LAZY_PS(BlendColorDodgePS, BlendColorDodge);
LAZY_PS(BlendColorBurnPS, BlendColorBurn);
LAZY_PS(BlendHardLightPS, BlendHardLight);
LAZY_PS(BlendSoftLightPS, BlendSoftLight);
LAZY_PS(BlendDifferencePS, BlendDifference);
LAZY_PS(BlendExclusionPS, BlendExclusion);
LAZY_PS(BlendHuePS, BlendHue);
LAZY_PS(BlendSaturationPS, BlendSaturation);
LAZY_PS(BlendColorPS, BlendColor);
LAZY_PS(BlendLuminosityPS, BlendLuminosity);
LAZY_PS(ClearPS, Clear);
LAZY_PS(MaskCombinerPS, MaskCombiner);
LAZY_PS(DiagnosticTextPS, DiagnosticText);
#undef LAZY_PS
// Define vertex shaders.
#define LAZY_VS(cxxName, enumName) mLazyVertexShaders[VertexShaderID::enumName] = &s##cxxName;
LAZY_VS(TexturedQuadVS, TexturedQuad);
LAZY_VS(TexturedVertexVS, TexturedVertex);
LAZY_VS(BlendVertexVS, BlendVertex);
LAZY_VS(ColoredQuadVS, ColoredQuad);
LAZY_VS(ColoredVertexVS, ColoredVertex);
LAZY_VS(ClearVS, Clear);
LAZY_VS(MaskCombinerVS, MaskCombiner);
LAZY_VS(DiagnosticTextVS, DiagnosticText);
#undef LAZY_VS
// Force critical shaders to initialize early.
if (!InitPixelShader(PixelShaderID::TexturedQuadRGB) ||
!InitPixelShader(PixelShaderID::TexturedQuadRGBA) ||
!InitPixelShader(PixelShaderID::ColoredQuad) ||
!InitPixelShader(PixelShaderID::ComponentAlphaQuad) ||
!InitPixelShader(PixelShaderID::Clear) ||
!InitVertexShader(VertexShaderID::TexturedQuad) ||
!InitVertexShader(VertexShaderID::ColoredQuad) ||
!InitVertexShader(VertexShaderID::Clear))
{
return Fail("FEATURE_FAILURE_CRITICAL_SHADER_FAILURE");
}
// Common unit quad layout: vPos, vRect, vLayerIndex, vDepth
# define BASE_UNIT_QUAD_LAYOUT \
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, \
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "TEXCOORD", 1, DXGI_FORMAT_R32_UINT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "TEXCOORD", 2, DXGI_FORMAT_R32_SINT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
// Common unit triangle layout: vUnitPos, vPos1-3, vLayerIndex, vDepth
# define BASE_UNIT_TRIANGLE_LAYOUT \
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, \
{ "POSITION", 1, DXGI_FORMAT_R32G32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "POSITION", 2, DXGI_FORMAT_R32G32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "POSITION", 3, DXGI_FORMAT_R32G32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "TEXCOORD", 0, DXGI_FORMAT_R32_UINT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }, \
{ "TEXCOORD", 1, DXGI_FORMAT_R32_SINT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
// Initialize input layouts.
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
BASE_UNIT_QUAD_LAYOUT,
// vTexRect
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sTexturedQuadVS, VertexShaderID::TexturedQuad)) {
return Fail("FEATURE_FAILURE_UNIT_QUAD_TEXTURED_LAYOUT");
}
}
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
BASE_UNIT_QUAD_LAYOUT,
// vColor
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sColoredQuadVS, VertexShaderID::ColoredQuad)) {
return Fail("FEATURE_FAILURE_UNIT_QUAD_COLORED_LAYOUT");
}
}
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
BASE_UNIT_TRIANGLE_LAYOUT,
// vTexCoord1, vTexCoord2, vTexCoord3
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
{ "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sTexturedVertexVS, VertexShaderID::TexturedVertex)) {
return Fail("FEATURE_FAILURE_TEXTURED_INPUT_LAYOUT");
}
// Propagate the input layout to other vertex shaders that use the same.
mInputLayouts[VertexShaderID::BlendVertex] = mInputLayouts[VertexShaderID::TexturedVertex];
}
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
BASE_UNIT_TRIANGLE_LAYOUT,
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sColoredVertexVS, VertexShaderID::ColoredVertex)) {
return Fail("FEATURE_FAILURE_COLORED_INPUT_LAYOUT");
}
}
# undef BASE_UNIT_QUAD_LAYOUT
# undef BASE_UNIT_TRIANGLE_LAYOUT
// Ancillary shaders that are not used for batching.
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
// vPos
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
// vRect
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_SINT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
// vDepth
{ "TEXCOORD", 1, DXGI_FORMAT_R32_SINT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sClearVS, VertexShaderID::Clear)) {
return Fail("FEATURE_FAILURE_CLEAR_INPUT_LAYOUT");
}
}
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
// vPos
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
// vTexCoords
{ "POSITION", 1, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sMaskCombinerVS, VertexShaderID::MaskCombiner)) {
return Fail("FEATURE_FAILURE_MASK_COMBINER_INPUT_LAYOUT");
}
}
{
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
// vPos
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
// vRect
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
// vTexCoords
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
};
if (!InitInputLayout(inputDesc, MOZ_ARRAY_LENGTH(inputDesc), sDiagnosticTextVS, VertexShaderID::DiagnosticText)) {
return Fail("FEATURE_FAILURE_DIAGNOSTIC_INPUT_LAYOUT");
}
}
if (!InitRasterizerStates() ||
!InitDepthStencilState() ||
!InitBlendStates() ||
!InitSamplerStates() ||
!InitSyncObject())
{
return false;
}
mCtx->RSSetState(mRasterizerStateNoScissor);
return MLGDevice::Initialize();
}
bool
MLGDeviceD3D11::InitPixelShader(PixelShaderID aShaderID)
{
const ShaderBytes* code = mLazyPixelShaders[aShaderID];
HRESULT hr = mDevice->CreatePixelShader(
code->mData,
code->mLength,
nullptr,
getter_AddRefs(mPixelShaders[aShaderID]));
if (FAILED(hr)) {
gfxCriticalNote << "Could not create pixel shader " << hexa(unsigned(aShaderID)) << ": " << hexa(hr);
return false;
}
return true;
}
bool
MLGDeviceD3D11::InitRasterizerStates()
{
{
CD3D11_RASTERIZER_DESC desc = CD3D11_RASTERIZER_DESC(CD3D11_DEFAULT());
desc.CullMode = D3D11_CULL_NONE;
desc.FillMode = D3D11_FILL_SOLID;
desc.ScissorEnable = TRUE;
HRESULT hr = mDevice->CreateRasterizerState(&desc, getter_AddRefs(mRasterizerStateScissor));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_SCISSOR_RASTERIZER",
"Could not create scissor rasterizer (%x)", hr);
}
}
{
CD3D11_RASTERIZER_DESC desc = CD3D11_RASTERIZER_DESC(CD3D11_DEFAULT());
desc.CullMode = D3D11_CULL_NONE;
desc.FillMode = D3D11_FILL_SOLID;
HRESULT hr = mDevice->CreateRasterizerState(&desc, getter_AddRefs(mRasterizerStateNoScissor));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_DEFAULT_RASTERIZER",
"Could not create default rasterizer (%x)", hr);
}
}
return true;
}
bool
MLGDeviceD3D11::InitSamplerStates()
{
{
CD3D11_SAMPLER_DESC desc = CD3D11_SAMPLER_DESC(CD3D11_DEFAULT());
HRESULT hr = mDevice->CreateSamplerState(&desc, getter_AddRefs(mSamplerStates[SamplerMode::LinearClamp]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_LINEAR_CLAMP_SAMPLER",
"Could not create linear clamp sampler (%x)", hr);
}
}
{
CD3D11_SAMPLER_DESC desc = CD3D11_SAMPLER_DESC(CD3D11_DEFAULT());
desc.AddressU = D3D11_TEXTURE_ADDRESS_BORDER;
desc.AddressV = D3D11_TEXTURE_ADDRESS_BORDER;
desc.AddressW = D3D11_TEXTURE_ADDRESS_BORDER;
memset(desc.BorderColor, 0, sizeof(desc.BorderColor));
HRESULT hr = mDevice->CreateSamplerState(&desc, getter_AddRefs(mSamplerStates[SamplerMode::LinearClampToZero]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_LINEAR_CLAMP_ZERO_SAMPLER",
"Could not create linear clamp to zero sampler (%x)", hr);
}
}
{
CD3D11_SAMPLER_DESC desc = CD3D11_SAMPLER_DESC(CD3D11_DEFAULT());
desc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
desc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
desc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
HRESULT hr = mDevice->CreateSamplerState(&desc, getter_AddRefs(mSamplerStates[SamplerMode::LinearRepeat]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_LINEAR_CLAMP_ZERO_SAMPLER",
"Could not create linear clamp to zero sampler (%x)", hr);
}
}
{
CD3D11_SAMPLER_DESC desc = CD3D11_SAMPLER_DESC(CD3D11_DEFAULT());
desc.Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
HRESULT hr = mDevice->CreateSamplerState(&desc, getter_AddRefs(mSamplerStates[SamplerMode::Point]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_POINT_SAMPLER",
"Could not create point sampler (%x)", hr);
}
}
return true;
}
bool
MLGDeviceD3D11::InitBlendStates()
{
{
CD3D11_BLEND_DESC desc = CD3D11_BLEND_DESC(CD3D11_DEFAULT());
HRESULT hr = mDevice->CreateBlendState(&desc, getter_AddRefs(mBlendStates[MLGBlendState::Copy]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_COPY_BLEND_STATE",
"Could not create copy blend state (%x)", hr);
}
}
{
CD3D11_BLEND_DESC desc = CD3D11_BLEND_DESC(CD3D11_DEFAULT());
desc.RenderTarget[0].BlendEnable = TRUE;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
HRESULT hr = mDevice->CreateBlendState(&desc, getter_AddRefs(mBlendStates[MLGBlendState::Over]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_OVER_BLEND_STATE",
"Could not create over blend state (%x)", hr);
}
}
{
CD3D11_BLEND_DESC desc = CD3D11_BLEND_DESC(CD3D11_DEFAULT());
desc.RenderTarget[0].BlendEnable = TRUE;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
HRESULT hr = mDevice->CreateBlendState(&desc, getter_AddRefs(mBlendStates[MLGBlendState::OverAndPremultiply]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_OVER_BLEND_STATE",
"Could not create over blend state (%x)", hr);
}
}
{
CD3D11_BLEND_DESC desc = CD3D11_BLEND_DESC(CD3D11_DEFAULT());
desc.RenderTarget[0].BlendEnable = TRUE;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_MIN;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_MIN;
HRESULT hr = mDevice->CreateBlendState(&desc, getter_AddRefs(mBlendStates[MLGBlendState::Min]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_MIN_BLEND_STATE",
"Could not create min blend state (%x)", hr);
}
}
{
CD3D11_BLEND_DESC desc = CD3D11_BLEND_DESC(CD3D11_DEFAULT());
desc.RenderTarget[0].BlendEnable = TRUE;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC1_COLOR;
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
HRESULT hr = mDevice->CreateBlendState(&desc, getter_AddRefs(mBlendStates[MLGBlendState::ComponentAlpha]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_COMPONENT_ALPHA_BLEND_STATE",
"Could not create component alpha blend state (%x)", hr);
}
}
return true;
}
bool
MLGDeviceD3D11::InitDepthStencilState()
{
D3D11_DEPTH_STENCIL_DESC desc = CD3D11_DEPTH_STENCIL_DESC(D3D11_DEFAULT);
HRESULT hr = mDevice->CreateDepthStencilState(
&desc, getter_AddRefs(mDepthStencilStates[MLGDepthTestMode::Write]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_WRITE_DEPTH_STATE",
"Could not create write depth stencil state (%x)", hr);
}
desc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
hr = mDevice->CreateDepthStencilState(
&desc, getter_AddRefs(mDepthStencilStates[MLGDepthTestMode::ReadOnly]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_READ_DEPTH_STATE",
"Could not create read depth stencil state (%x)", hr);
}
desc.DepthEnable = FALSE;
hr = mDevice->CreateDepthStencilState(
&desc, getter_AddRefs(mDepthStencilStates[MLGDepthTestMode::Disabled]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_DISABLED_DEPTH_STATE",
"Could not create disabled depth stencil state (%x)", hr);
}
desc = CD3D11_DEPTH_STENCIL_DESC(D3D11_DEFAULT);
desc.DepthFunc = D3D11_COMPARISON_ALWAYS;
hr = mDevice->CreateDepthStencilState(
&desc, getter_AddRefs(mDepthStencilStates[MLGDepthTestMode::AlwaysWrite]));
if (FAILED(hr)) {
return Fail("FEATURE_FAILURE_WRITE_DEPTH_STATE",
"Could not create always-write depth stencil state (%x)", hr);
}
return true;
}
bool
MLGDeviceD3D11::InitVertexShader(VertexShaderID aShaderID)
{
const ShaderBytes* code = mLazyVertexShaders[aShaderID];
HRESULT hr = mDevice->CreateVertexShader(
code->mData,
code->mLength,
nullptr,
getter_AddRefs(mVertexShaders[aShaderID]));
if (FAILED(hr)) {
gfxCriticalNote << "Could not create vertex shader " << hexa(unsigned(aShaderID)) << ": " << hexa(hr);
return false;
}
return true;
}
bool
MLGDeviceD3D11::InitInputLayout(D3D11_INPUT_ELEMENT_DESC* aDesc,
size_t aNumElements,
const ShaderBytes& aCode,
VertexShaderID aShaderID)
{
HRESULT hr = mDevice->CreateInputLayout(
aDesc,
aNumElements,
aCode.mData,
aCode.mLength,
getter_AddRefs(mInputLayouts[aShaderID]));
if (FAILED(hr)) {
gfxCriticalNote << "Could not create input layout for shader "
<< hexa(unsigned(aShaderID))
<< ": " << hexa(hr);
return false;
}
return true;
}
TextureFactoryIdentifier
MLGDeviceD3D11::GetTextureFactoryIdentifier() const
{
TextureFactoryIdentifier ident(
GetLayersBackend(),
XRE_GetProcessType(),
GetMaxTextureSize());
if (mSyncObject) {
ident.mSyncHandle = mSyncObject->GetSyncHandle();
}
return ident;
}
inline uint32_t GetMaxTextureSizeForFeatureLevel1(D3D_FEATURE_LEVEL aFeatureLevel)
{
int32_t maxTextureSize;
switch (aFeatureLevel) {
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
maxTextureSize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION;
break;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
maxTextureSize = D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION;
break;
case D3D_FEATURE_LEVEL_9_3:
maxTextureSize = D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION;
break;
default:
maxTextureSize = D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION;
}
return maxTextureSize;
}
LayersBackend
MLGDeviceD3D11::GetLayersBackend() const
{
return LayersBackend::LAYERS_D3D11;
}
int32_t
MLGDeviceD3D11::GetMaxTextureSize() const
{
return GetMaxTextureSizeForFeatureLevel1(mDevice->GetFeatureLevel());
}
RefPtr<MLGSwapChain>
MLGDeviceD3D11::CreateSwapChainForWidget(widget::CompositorWidget* aWidget)
{
return MLGSwapChainD3D11::Create(this, mDevice, aWidget);
}
RefPtr<DataTextureSource>
MLGDeviceD3D11::CreateDataTextureSource(TextureFlags aFlags)
{
return new DataTextureSourceD3D11(mDevice, gfx::SurfaceFormat::UNKNOWN, aFlags);
}
static inline D3D11_MAP
ToD3D11Map(MLGMapType aType)
{
switch (aType) {
case MLGMapType::READ:
return D3D11_MAP_READ;
case MLGMapType::READ_WRITE:
return D3D11_MAP_READ_WRITE;
case MLGMapType::WRITE:
return D3D11_MAP_WRITE;
case MLGMapType::WRITE_DISCARD:
return D3D11_MAP_WRITE_DISCARD;
}
return D3D11_MAP_WRITE;
}
bool
MLGDeviceD3D11::Map(MLGResource* aResource, MLGMapType aType, MLGMappedResource* aMap)
{
ID3D11Resource* resource = aResource->AsResourceD3D11()->GetResource();
MOZ_ASSERT(resource);
D3D11_MAPPED_SUBRESOURCE map;
HRESULT hr = mCtx->Map(resource, 0, ToD3D11Map(aType), 0, &map);
if (FAILED(hr)) {
gfxWarning() << "Could not map MLG resource: " << hexa(hr);
return false;
}
aMap->mData = reinterpret_cast<uint8_t*>(map.pData);
aMap->mStride = map.RowPitch;
return true;
}
void
MLGDeviceD3D11::Unmap(MLGResource* aResource)
{
ID3D11Resource* resource = aResource->AsResourceD3D11()->GetResource();
mCtx->Unmap(resource, 0);
}
void
MLGDeviceD3D11::UpdatePartialResource(MLGResource* aResource,
const gfx::IntRect* aRect,
void* aData, uint32_t aStride)
{
D3D11_BOX box;
if (aRect) {
box = RectToBox(*aRect);
}
ID3D11Resource* resource = aResource->AsResourceD3D11()->GetResource();
mCtx->UpdateSubresource(resource, 0, aRect ? &box : nullptr, aData, aStride, 0);
}
void
MLGDeviceD3D11::SetRenderTarget(MLGRenderTarget* aRT)
{
ID3D11RenderTargetView* rtv = nullptr;
ID3D11DepthStencilView* dsv = nullptr;
if (aRT) {
MLGRenderTargetD3D11* rt = aRT->AsD3D11();
rtv = rt->GetRenderTargetView();
dsv = rt->GetDSV();
}
mCtx->OMSetRenderTargets(1, &rtv, dsv);
mCurrentRT = aRT;
}
MLGRenderTarget*
MLGDeviceD3D11::GetRenderTarget()
{
return mCurrentRT;
}
void
MLGDeviceD3D11::SetViewport(const gfx::IntRect& aViewport)
{
D3D11_VIEWPORT vp;
vp.MaxDepth = 1.0f;
vp.MinDepth = 0.0f;
vp.TopLeftX = aViewport.X();
vp.TopLeftY = aViewport.Y();
vp.Width = aViewport.Width();
vp.Height = aViewport.Height();
mCtx->RSSetViewports(1, &vp);
}
static inline D3D11_RECT
ToD3D11Rect(const gfx::IntRect& aRect)
{
D3D11_RECT rect;
rect.left = aRect.X();
rect.top = aRect.Y();
rect.right = aRect.XMost();
rect.bottom = aRect.YMost();
return rect;
}
void
MLGDeviceD3D11::SetScissorRect(const Maybe<gfx::IntRect>& aScissorRect)
{
if (!aScissorRect) {
if (mScissored) {
mCtx->RSSetState(mRasterizerStateNoScissor);
mScissored = false;
}
return;
}
D3D11_RECT rect = ToD3D11Rect(aScissorRect.value());
mCtx->RSSetScissorRects(1, &rect);
if (!mScissored) {
mScissored = true;
mCtx->RSSetState(mRasterizerStateScissor);
}
}
void
MLGDeviceD3D11::SetVertexShader(VertexShaderID aShader)
{
if (!mVertexShaders[aShader]) {
InitVertexShader(aShader);
MOZ_ASSERT(mInputLayouts[aShader]);
}
SetVertexShader(mVertexShaders[aShader]);
SetInputLayout(mInputLayouts[aShader]);
}
void
MLGDeviceD3D11::SetInputLayout(ID3D11InputLayout* aLayout)
{
if (mCurrentInputLayout == aLayout) {
return;
}
mCtx->IASetInputLayout(aLayout);
mCurrentInputLayout = aLayout;
}
void
MLGDeviceD3D11::SetVertexShader(ID3D11VertexShader* aShader)
{
if (mCurrentVertexShader == aShader) {
return;
}
mCtx->VSSetShader(aShader, nullptr, 0);
mCurrentVertexShader = aShader;
}
void
MLGDeviceD3D11::SetPixelShader(PixelShaderID aShader)
{
if (!mPixelShaders[aShader]) {
InitPixelShader(aShader);
}
if (mCurrentPixelShader != mPixelShaders[aShader]) {
mCtx->PSSetShader(mPixelShaders[aShader], nullptr, 0);
mCurrentPixelShader = mPixelShaders[aShader];
}
}
void
MLGDeviceD3D11::SetSamplerMode(uint32_t aIndex, SamplerMode aMode)
{
ID3D11SamplerState* sampler = mSamplerStates[aMode];
mCtx->PSSetSamplers(aIndex, 1, &sampler);
}
void
MLGDeviceD3D11::SetBlendState(MLGBlendState aState)
{
if (mCurrentBlendState != mBlendStates[aState]) {
FLOAT blendFactor[4] = { 0, 0, 0, 0 };
mCtx->OMSetBlendState(mBlendStates[aState], blendFactor, 0xFFFFFFFF);
mCurrentBlendState = mBlendStates[aState];
}
}
void
MLGDeviceD3D11::SetVertexBuffer(uint32_t aSlot, MLGBuffer* aBuffer, uint32_t aStride, uint32_t aOffset)
{
ID3D11Buffer* buffer = aBuffer ? aBuffer->AsD3D11()->GetBuffer() : nullptr;
mCtx->IASetVertexBuffers(aSlot, 1, &buffer, &aStride, &aOffset);
}
void
MLGDeviceD3D11::SetVSConstantBuffer(uint32_t aSlot, MLGBuffer* aBuffer)
{
MOZ_ASSERT(aSlot < kMaxVertexShaderConstantBuffers);
ID3D11Buffer* buffer = aBuffer ? aBuffer->AsD3D11()->GetBuffer() : nullptr;
mCtx->VSSetConstantBuffers(aSlot, 1, &buffer);
}
void
MLGDeviceD3D11::SetPSConstantBuffer(uint32_t aSlot, MLGBuffer* aBuffer)
{
MOZ_ASSERT(aSlot < kMaxPixelShaderConstantBuffers);
ID3D11Buffer* buffer = aBuffer ? aBuffer->AsD3D11()->GetBuffer() : nullptr;
mCtx->PSSetConstantBuffers(aSlot, 1, &buffer);
}
void
MLGDeviceD3D11::SetVSConstantBuffer(uint32_t aSlot, MLGBuffer* aBuffer, uint32_t aFirstConstant, uint32_t aNumConstants)
{
MOZ_ASSERT(aSlot < kMaxVertexShaderConstantBuffers);
MOZ_ASSERT(mCanUseConstantBufferOffsetBinding);
MOZ_ASSERT(mCtx1);
MOZ_ASSERT(aFirstConstant % 16 == 0);
ID3D11Buffer* buffer = aBuffer ? aBuffer->AsD3D11()->GetBuffer() : nullptr;
mCtx1->VSSetConstantBuffers1(aSlot, 1, &buffer, &aFirstConstant, &aNumConstants);
}
void
MLGDeviceD3D11::SetPSConstantBuffer(uint32_t aSlot, MLGBuffer* aBuffer, uint32_t aFirstConstant, uint32_t aNumConstants)
{
MOZ_ASSERT(aSlot < kMaxPixelShaderConstantBuffers);
MOZ_ASSERT(mCanUseConstantBufferOffsetBinding);
MOZ_ASSERT(mCtx1);
MOZ_ASSERT(aFirstConstant % 16 == 0);
ID3D11Buffer* buffer = aBuffer ? aBuffer->AsD3D11()->GetBuffer() : nullptr;
mCtx1->PSSetConstantBuffers1(aSlot, 1, &buffer, &aFirstConstant, &aNumConstants);
}
void
MLGDeviceD3D11::SetPrimitiveTopology(MLGPrimitiveTopology aTopology)
{
D3D11_PRIMITIVE_TOPOLOGY topology;
switch (aTopology) {
case MLGPrimitiveTopology::TriangleStrip:
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP;
break;
case MLGPrimitiveTopology::TriangleList:
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
break;
case MLGPrimitiveTopology::UnitQuad:
SetVertexBuffer(0, mUnitQuadVB, sizeof(float) * 2, 0);
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP;
break;
case MLGPrimitiveTopology::UnitTriangle:
SetVertexBuffer(0, mUnitTriangleVB, sizeof(float) * 3, 0);
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown topology");
topology = D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED;
break;
}
mCtx->IASetPrimitiveTopology(topology);
}
RefPtr<MLGBuffer>
MLGDeviceD3D11::CreateBuffer(MLGBufferType aType,
uint32_t aSize,
MLGUsage aUsage,
const void* aInitialData)
{
return MLGBufferD3D11::Create(mDevice, aType, aSize, aUsage, aInitialData);
}
RefPtr<MLGRenderTarget>
MLGDeviceD3D11::CreateRenderTarget(const gfx::IntSize& aSize, MLGRenderTargetFlags aFlags)
{
RefPtr<MLGRenderTargetD3D11> rt = new MLGRenderTargetD3D11(aSize, aFlags);
if (!rt->Initialize(mDevice)) {
return nullptr;
}
return rt;
}
void
MLGDeviceD3D11::Clear(MLGRenderTarget* aRT, const gfx::Color& aColor)
{
MLGRenderTargetD3D11* rt = aRT->AsD3D11();
FLOAT rgba[4] = { aColor.r, aColor.g, aColor.b, aColor.a };
mCtx->ClearRenderTargetView(rt->GetRenderTargetView(), rgba);
if (ID3D11DepthStencilView* dsv = rt->GetDSV()) {
mCtx->ClearDepthStencilView(dsv, D3D11_CLEAR_DEPTH, 1.0, 0);
}
}
void
MLGDeviceD3D11::ClearDepthBuffer(MLGRenderTarget* aRT)
{
MLGRenderTargetD3D11* rt = aRT->AsD3D11();
if (ID3D11DepthStencilView* dsv = rt->GetDSV()) {
mCtx->ClearDepthStencilView(dsv, D3D11_CLEAR_DEPTH, 1.0, 0);
}
}
void
MLGDeviceD3D11::ClearView(MLGRenderTarget* aRT,
const Color& aColor,
const IntRect* aRects,
size_t aNumRects)
{
MOZ_ASSERT(mCanUseClearView);
MOZ_ASSERT(mCtx1);
MLGRenderTargetD3D11* rt = aRT->AsD3D11();
FLOAT rgba[4] = { aColor.r, aColor.g, aColor.b, aColor.a };
StackArray<D3D11_RECT, 8> rects(aNumRects);
for (size_t i = 0; i < aNumRects; i++) {
rects[i] = ToD3D11Rect(aRects[i]);
}
// Batch ClearView calls since too many will crash NVIDIA drivers.
size_t remaining = aNumRects;
size_t cursor = 0;
while (remaining > 0) {
size_t amount = std::min(remaining, kMaxClearViewRects);
mCtx1->ClearView(rt->GetRenderTargetView(), rgba, rects.data() + cursor, amount);
remaining -= amount;
cursor += amount;
}
}
void
MLGDeviceD3D11::Draw(uint32_t aVertexCount, uint32_t aOffset)
{
mCtx->Draw(aVertexCount, aOffset);
}
void
MLGDeviceD3D11::DrawInstanced(uint32_t aVertexCountPerInstance, uint32_t aInstanceCount,
uint32_t aVertexOffset, uint32_t aInstanceOffset)
{
mCtx->DrawInstanced(aVertexCountPerInstance, aInstanceCount, aVertexOffset, aInstanceOffset);
}
void
MLGDeviceD3D11::SetPSTextures(uint32_t aSlot, uint32_t aNumTextures, TextureSource* const* aTextures)
{
// TextureSource guarantees that the ID3D11ShaderResourceView will be cached,
// so we don't hold a RefPtr here.
StackArray<ID3D11ShaderResourceView*, 3> views(aNumTextures);
for (size_t i = 0; i < aNumTextures; i++) {
views[i] = ResolveTextureSourceForShader(aTextures[i]);
}
mCtx->PSSetShaderResources(aSlot, aNumTextures, views.data());
}
ID3D11ShaderResourceView*
MLGDeviceD3D11::ResolveTextureSourceForShader(TextureSource* aTexture)
{
if (!aTexture) {
return nullptr;
}
if (TextureSourceD3D11* source = aTexture->AsSourceD3D11()) {
ID3D11Texture2D* texture = source->GetD3D11Texture();
if (!texture) {
gfxWarning() << "No D3D11 texture present in SetPSTextures";
return nullptr;
}
MaybeLockTexture(texture);
return source->GetShaderResourceView();
}
gfxWarning() << "Unknown texture type in SetPSTextures";
return nullptr;
}
void
MLGDeviceD3D11::SetPSTexture(uint32_t aSlot, MLGTexture* aTexture)
{
RefPtr<ID3D11ShaderResourceView> view;
if (aTexture) {
MLGTextureD3D11* texture = aTexture->AsD3D11();
view = texture->GetShaderResourceView();
}
ID3D11ShaderResourceView* viewPtr = view.get();
mCtx->PSSetShaderResources(aSlot, 1, &viewPtr);
}
void
MLGDeviceD3D11::MaybeLockTexture(ID3D11Texture2D* aTexture)
{
RefPtr<IDXGIKeyedMutex> mutex;
HRESULT hr = aTexture->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)getter_AddRefs(mutex));
if (FAILED(hr) || !mutex) {
return;
}
hr = mutex->AcquireSync(0, 10000);
if (hr == WAIT_TIMEOUT) {
gfxDevCrash(LogReason::D3DLockTimeout) << "D3D lock mutex timeout";
mLockAttemptedTextures.PutEntry(mutex);
} else if (hr == WAIT_ABANDONED) {
gfxCriticalNote << "GFX: D3D11 lock mutex abandoned";
mLockAttemptedTextures.PutEntry(mutex);
} else if (FAILED(hr)) {
gfxCriticalNote << "D3D11 lock mutex failed: " << hexa(hr);
mLockAttemptedTextures.PutEntry(mutex);
} else {
mLockedTextures.PutEntry(mutex);
}
}
void
MLGDeviceD3D11::SetPSTexturesNV12(uint32_t aSlot, TextureSource* aTexture)
{
MOZ_ASSERT(aTexture->GetFormat() == SurfaceFormat::NV12 ||
aTexture->GetFormat() == SurfaceFormat::P010 ||
aTexture->GetFormat() == SurfaceFormat::P016);
TextureSourceD3D11* source = aTexture->AsSourceD3D11();
if (!source) {
gfxWarning() << "Unknown texture type in SetPSCompoundTexture";
return;
}
ID3D11Texture2D* texture = source->GetD3D11Texture();
if (!texture) {
gfxWarning() << "TextureSourceD3D11 does not have an ID3D11Texture";
return;
}
MaybeLockTexture(texture);
const bool isNV12 = aTexture->GetFormat() == SurfaceFormat::NV12;
RefPtr<ID3D11ShaderResourceView> views[2];
D3D11_SHADER_RESOURCE_VIEW_DESC desc = CD3D11_SHADER_RESOURCE_VIEW_DESC(
D3D11_SRV_DIMENSION_TEXTURE2D,
isNV12 ? DXGI_FORMAT_R8_UNORM : DXGI_FORMAT_R16_UNORM);
HRESULT hr =
mDevice->CreateShaderResourceView(texture, &desc, getter_AddRefs(views[0]));
if (FAILED(hr) || !views[0]) {
gfxWarning() << "Could not bind an SRV for Y plane of NV12 texture: "
<< hexa(hr);
return;
}
desc.Format = isNV12 ? DXGI_FORMAT_R8G8_UNORM : DXGI_FORMAT_R16G16_UNORM;
hr =
mDevice->CreateShaderResourceView(texture, &desc, getter_AddRefs(views[1]));
if (FAILED(hr) || !views[1]) {
gfxWarning() << "Could not bind an SRV for CbCr plane of NV12 texture: " << hexa(hr);
return;
}
ID3D11ShaderResourceView* bind[2] = {
views[0],
views[1]
};
mCtx->PSSetShaderResources(aSlot, 2, bind);
}
bool
MLGDeviceD3D11::InitSyncObject()
{
MOZ_ASSERT(!mSyncObject);
MOZ_ASSERT(mDevice);
mSyncObject = SyncObjectHost::CreateSyncObjectHost(mDevice);
MOZ_ASSERT(mSyncObject);
return mSyncObject->Init();
}
void
MLGDeviceD3D11::StartDiagnostics(uint32_t aInvalidPixels)
{
mDiagnostics->Start(aInvalidPixels);
}
void
MLGDeviceD3D11::EndDiagnostics()
{
mDiagnostics->End();
}
void
MLGDeviceD3D11::GetDiagnostics(GPUStats* aStats)
{
mDiagnostics->Query(aStats);
}
bool
MLGDeviceD3D11::Synchronize()
{
MOZ_ASSERT(mSyncObject);
if (mSyncObject) {
if (!mSyncObject->Synchronize()) {
// It's timeout or other error. Handle the device-reset here.
HandleDeviceReset("SyncObject");
return false;
}
}
return true;
}
void
MLGDeviceD3D11::UnlockAllTextures()
{
for (auto iter = mLockedTextures.Iter(); !iter.Done(); iter.Next()) {
RefPtr<IDXGIKeyedMutex> mutex = iter.Get()->GetKey();
mutex->ReleaseSync(0);
}
mLockedTextures.Clear();
mLockAttemptedTextures.Clear();
}
void
MLGDeviceD3D11::SetDepthTestMode(MLGDepthTestMode aMode)
{
mCtx->OMSetDepthStencilState(mDepthStencilStates[aMode], 0xffffffff);
}
void
MLGDeviceD3D11::InsertPresentWaitQuery()
{
CD3D11_QUERY_DESC desc(D3D11_QUERY_EVENT);
HRESULT hr = mDevice->CreateQuery(&desc, getter_AddRefs(mNextWaitForPresentQuery));
if (FAILED(hr) || !mNextWaitForPresentQuery) {
gfxWarning() << "Could not create D3D11_QUERY_EVENT: " << hexa(hr);
return;
}
mCtx->End(mNextWaitForPresentQuery);
}
void
MLGDeviceD3D11::WaitForPreviousPresentQuery()
{
if (mWaitForPresentQuery) {
BOOL result;
WaitForGPUQuery(mDevice, mCtx, mWaitForPresentQuery, &result);
}
mWaitForPresentQuery = mNextWaitForPresentQuery.forget();
}
void
MLGDeviceD3D11::Flush()
{
mCtx->Flush();
}
void
MLGDeviceD3D11::EndFrame()
{
// On our Windows 8 x64 machines, we have observed a driver bug related to
// XXSetConstantBuffers1. It appears binding the same buffer to multiple
// slots, and potentially leaving slots bound for many frames (as can
// happen if we bind a high slot, like for blending), can consistently
// cause shaders to read wrong values much later. It is possible there is
// a driver bug related to aliasing and partial binding.
//
// Configuration: GeForce GT 610 (0x104a), Driver 9.18.13.3523, 3-4-2014,
// on Windows 8 x64.
//
// To alleviate this we unbind all buffers at the end of the frame.
static ID3D11Buffer* nullBuffers[6] = {
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
};
MOZ_ASSERT(MOZ_ARRAY_LENGTH(nullBuffers) >= kMaxVertexShaderConstantBuffers);
MOZ_ASSERT(MOZ_ARRAY_LENGTH(nullBuffers) >= kMaxPixelShaderConstantBuffers);
mCtx->VSSetConstantBuffers(0, kMaxVertexShaderConstantBuffers, nullBuffers);
mCtx->VSSetConstantBuffers(0, kMaxPixelShaderConstantBuffers, nullBuffers);
MLGDevice::EndFrame();
}
void
MLGDeviceD3D11::HandleDeviceReset(const char* aWhere)
{
if (!IsValid()) {
return;
}
Fail(NS_LITERAL_CSTRING("FEATURE_FAILURE_DEVICE_RESET"), nullptr);
gfxCriticalNote << "GFX: D3D11 detected a device reset in " << aWhere;
if (XRE_IsGPUProcess()) {
GPUParent::GetSingleton()->NotifyDeviceReset();
}
UnmapSharedBuffers();
mIsValid = false;
}
RefPtr<MLGTexture>
MLGDeviceD3D11::CreateTexture(const gfx::IntSize& aSize,
gfx::SurfaceFormat aFormat,
MLGUsage aUsage,
MLGTextureFlags aFlags)
{
return MLGTextureD3D11::Create(mDevice, aSize, aFormat, aUsage, aFlags);
}
RefPtr<MLGTexture>
MLGDeviceD3D11::CreateTexture(TextureSource* aSource)
{
TextureSourceD3D11* source = aSource->AsSourceD3D11();
if (!source) {
gfxWarning() << "Attempted to wrap a non-D3D11 texture";
return nullptr;
}
if (!source->GetD3D11Texture()) {
return nullptr;
}
return new MLGTextureD3D11(source->GetD3D11Texture());
}
void
MLGDeviceD3D11::CopyTexture(MLGTexture* aDest,
const gfx::IntPoint& aTarget,
MLGTexture* aSource,
const gfx::IntRect& aRect)
{
MLGTextureD3D11* dest = aDest->AsD3D11();
MLGTextureD3D11* source = aSource->AsD3D11();
// We check both the source and destination copy regions, because
// CopySubresourceRegion is documented as causing a device reset if
// the operation is out-of-bounds. And it's not lying.
IntRect sourceBounds(IntPoint(0, 0), aSource->GetSize());
if (!sourceBounds.Contains(aRect)) {
gfxWarning() << "Attempt to read out-of-bounds in CopySubresourceRegion: " <<
Stringify(sourceBounds) <<
", " <<
Stringify(aRect);
return;
}
IntRect destBounds(IntPoint(0, 0), aDest->GetSize());
if (!destBounds.Contains(IntRect(aTarget, aRect.Size()))) {
gfxWarning() << "Attempt to write out-of-bounds in CopySubresourceRegion: " <<
Stringify(destBounds) <<
", " <<
Stringify(aTarget) << ", " << Stringify(aRect.Size());
return;
}
D3D11_BOX box = RectToBox(aRect);
mCtx->CopySubresourceRegion(
dest->GetTexture(), 0,
aTarget.x, aTarget.y, 0,
source->GetTexture(), 0,
&box);
}
bool
MLGDeviceD3D11::VerifyConstantBufferOffsetting()
{
RefPtr<ID3D11VertexShader> vs;
HRESULT hr = mDevice->CreateVertexShader(
sTestConstantBuffersVS.mData,
sTestConstantBuffersVS.mLength,
nullptr,
getter_AddRefs(vs));
if (FAILED(hr)) {
gfxCriticalNote << "Failed creating vertex shader for buffer test: " << hexa(hr);
return false;
}
D3D11_INPUT_ELEMENT_DESC inputDesc[] = {
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};
RefPtr<ID3D11InputLayout> layout;
hr = mDevice->CreateInputLayout(
inputDesc,
sizeof(inputDesc) / sizeof(inputDesc[0]),
sTestConstantBuffersVS.mData,
sTestConstantBuffersVS.mLength,
getter_AddRefs(layout));
if (FAILED(hr)) {
gfxCriticalNote << "Failed creating input layout for buffer test: " << hexa(hr);
return false;
}
RefPtr<MLGRenderTarget> rt = CreateRenderTarget(IntSize(2, 2), MLGRenderTargetFlags::Default);
if (!rt) {
return false;
}
static const size_t kConstantSize = 4 * sizeof(float);
static const size_t kMinConstants = 16;
static const size_t kNumBindings = 3;
RefPtr<MLGBuffer> buffer = CreateBuffer(
MLGBufferType::Constant,
kConstantSize * kMinConstants * kNumBindings,
MLGUsage::Dynamic,
nullptr);
if (!buffer) {
return false;
}
// Populate the buffer. The shader will pick R from buffer 1, G from buffer
// 2, and B from buffer 3.
{
MLGMappedResource map;
if (!Map(buffer, MLGMapType::WRITE_DISCARD, &map)) {
return false;
}
*reinterpret_cast<Color*>(map.mData) =
Color(1.0f, 0.2f, 0.3f, 1.0f);
*reinterpret_cast<Color*>(map.mData + kConstantSize * kMinConstants) =
Color(0.4f, 0.0f, 0.5f, 1.0f);
*reinterpret_cast<Color*>(map.mData + (kConstantSize * kMinConstants) * 2) =
Color(0.6f, 0.7f, 1.0f, 1.0f);
Unmap(buffer);
}
Clear(rt, Color(0.0f, 0.0f, 0.0f, 1.0f));
SetRenderTarget(rt);
SetViewport(IntRect(0, 0, 2, 2));
SetScissorRect(Nothing());
SetBlendState(MLGBlendState::Over);
SetTopology(MLGPrimitiveTopology::UnitQuad);
SetInputLayout(layout);
SetVertexShader(vs);
SetPixelShader(PixelShaderID::ColoredQuad);
ID3D11Buffer* buffers[3] = {
buffer->AsD3D11()->GetBuffer(),
buffer->AsD3D11()->GetBuffer(),
buffer->AsD3D11()->GetBuffer()
};
UINT offsets[3] = { 0 * kMinConstants, 1 * kMinConstants, 2 * kMinConstants };
UINT counts[3] = { kMinConstants, kMinConstants, kMinConstants };
mCtx1->VSSetConstantBuffers1(0, 3, buffers, offsets, counts);
mCtx->Draw(4, 0);
// Kill bindings to resources.
SetRenderTarget(nullptr);
ID3D11Buffer* nulls[3] = { nullptr, nullptr, nullptr };
mCtx->VSSetConstantBuffers(0, 3, nulls);
RefPtr<MLGTexture> copy = CreateTexture(
IntSize(2, 2),
SurfaceFormat::B8G8R8A8,
MLGUsage::Staging,
MLGTextureFlags::None);
if (!copy) {
return false;
}
CopyTexture(copy, IntPoint(0, 0), rt->GetTexture(), IntRect(0, 0, 2, 2));
uint8_t r, g, b, a;
{
MLGMappedResource map;
if (!Map(copy, MLGMapType::READ, &map)) {
return false;
}
r = map.mData[0];
g = map.mData[1];
b = map.mData[2];
a = map.mData[3];
Unmap(copy);
}
return r == 255 &&
g == 0 &&
b == 255 &&
a == 255;
}
static D3D11_BOX
RectToBox(const gfx::IntRect& aRect)
{
D3D11_BOX box;
box.front = 0;
box.back = 1;
box.left = aRect.X();
box.top = aRect.Y();
box.right = aRect.XMost();
box.bottom = aRect.YMost();
return box;
}
} // namespace layers
} // namespace mozilla