Fast Neural Machine Translation in C++ - development repository
Перейти к файлу
kdavis-mozilla 0518e69544 Switched to training-basics-sentencepiece 2020-05-08 06:47:03 +02:00
.github Add templates for GitHub issues and pull requests 2020-03-16 20:10:18 -07:00
cmake Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
contrib weird mode change back 2019-04-29 19:01:29 -07:00
doc Added more references 2016-10-06 10:25:53 -05:00
examples@c51b2c790f Moved from marian-nmt to Mozilla regression-tests 2020-04-24 10:52:10 +02:00
regression-tests@7302ddaf86 Moved from marian-nmt to Mozilla regression-tests 2020-04-24 10:52:10 +02:00
scripts python3 shebang from #620 (#621) 2020-04-16 11:15:42 +01:00
src Revert "Added a more principaled init of the sigaction" 2020-04-24 10:58:37 +02:00
training@39fb92aace Added submodule training 2020-05-06 10:43:21 +02:00
vs Merged PR 11831: Change the weight matrix quantization to use 7-bit min/max quantization to avoid overflow 2020-03-25 02:52:17 +00:00
.clang-format Update clang-format 2018-10-19 13:40:42 +01:00
.compute Switched to training-basics-sentencepiece 2020-05-08 06:47:03 +02:00
.gitattributes revisited fillBatches() and optimized it a little; 2018-10-08 13:29:16 -07:00
.gitignore Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
.gitmodules Added submodule training 2020-05-06 10:43:21 +02:00
.taskcluster.yml Limited to linux tests 2020-04-24 11:03:10 +02:00
CHANGELOG.md python3 shebang from #620 (#621) 2020-04-16 11:15:42 +01:00
CMakeLists.txt Merged PR 11929: Move around code to make later comparison with FP16 code easier 2020-03-14 00:07:37 +00:00
CMakeSettings.json Keep only Release and Debug targets with Ninja 2018-09-19 14:58:10 +02:00
CONTRIBUTING.md Add templates for GitHub issues and pull requests 2020-03-16 20:10:18 -07:00
Doxyfile.in Fix latex generation in doxygen. 2019-02-16 22:48:10 +00:00
LICENSE.md Update LICENSE.md 2017-02-27 01:16:42 +00:00
README.md Update README.md 2020-04-24 10:55:16 +02:00
VERSION update changelog and version 2020-04-13 17:31:06 -07:00

README.md

Marian

Task Status Latest release License: MIT Twitter

Marian is an efficient Neural Machine Translation framework written in pure C++ with minimal dependencies.

Named in honour of Marian Rejewski, a Polish mathematician and cryptologist.

Main features:

  • Efficient pure C++ implementation
  • Fast multi-GPU training and GPU/CPU translation
  • State-of-the-art NMT architectures: deep RNN and transformer
  • Permissive open source license (MIT)
  • more detail...

If you use this, please cite:

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, Alexandra Birch (2018). Marian: Fast Neural Machine Translation in C++ (http://www.aclweb.org/anthology/P18-4020)

@InProceedings{mariannmt,
    title     = {Marian: Fast Neural Machine Translation in {C++}},
    author    = {Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and
                 Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and
                 Neckermann, Tom and Seide, Frank and Germann, Ulrich and
                 Fikri Aji, Alham and Bogoychev, Nikolay and
                 Martins, Andr\'{e} F. T. and Birch, Alexandra},
    booktitle = {Proceedings of ACL 2018, System Demonstrations},
    pages     = {116--121},
    publisher = {Association for Computational Linguistics},
    year      = {2018},
    month     = {July},
    address   = {Melbourne, Australia},
    url       = {http://www.aclweb.org/anthology/P18-4020}
}

Amun

The handwritten decoder for RNN models compatible with Marian and Nematus has been superseded by the Marian decoder. The code is available in a separate repository: https://github.com/marian-nmt/amun

Website

More information on https://marian-nmt.github.io

Acknowledgements

The development of Marian received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreements 688139 (SUMMA; 2016-2019), 645487 (Modern MT; 2015-2017), 644333 (TraMOOC; 2015-2017), 644402 (HiML; 2015-2017), 825303 (Bergamot; 2019-2021), the Amazon Academic Research Awards program, the World Intellectual Property Organization, and is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract #FA8650-17-C-9117.

This software contains source code provided by NVIDIA Corporation.