зеркало из https://github.com/mozilla/moz-skia.git
Revise SVD code to remove arctangents.
Also added bench for timing matrix decomposition. R=reed@google.com Author: jvanverth@google.com Review URL: https://chromiumcodereview.appspot.com/23596006 git-svn-id: http://skia.googlecode.com/svn/trunk@11066 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
Родитель
e2b103fba2
Коммит
5b2e2640ed
|
@ -7,6 +7,7 @@
|
|||
*/
|
||||
#include "SkBenchmark.h"
|
||||
#include "SkMatrix.h"
|
||||
#include "SkMatrixUtils.h"
|
||||
#include "SkRandom.h"
|
||||
#include "SkString.h"
|
||||
|
||||
|
@ -345,6 +346,34 @@ class ScaleTransDoubleMatrixBench : public MatrixBench {
|
|||
typedef MatrixBench INHERITED;
|
||||
};
|
||||
|
||||
class DecomposeMatrixBench : public MatrixBench {
|
||||
public:
|
||||
DecomposeMatrixBench(void* param) : INHERITED(param, "decompose") {}
|
||||
|
||||
protected:
|
||||
virtual void onPreDraw() {
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
SkScalar rot0 = (fRandom.nextBool()) ? fRandom.nextRangeF(-180, 180) : 0.0f;
|
||||
SkScalar sx = fRandom.nextRangeF(-3000.f, 3000.f);
|
||||
SkScalar sy = (fRandom.nextBool()) ? fRandom.nextRangeF(-3000.f, 3000.f) : sx;
|
||||
SkScalar rot1 = fRandom.nextRangeF(-180, 180);
|
||||
fMatrix[i].setRotate(rot0);
|
||||
fMatrix[i].postScale(sx, sy);
|
||||
fMatrix[i].postRotate(rot1);
|
||||
}
|
||||
}
|
||||
virtual void performTest() {
|
||||
SkPoint rotation1, scale, rotation2;
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
(void) SkDecomposeUpper2x2(fMatrix[i], &rotation1, &scale, &rotation2);
|
||||
}
|
||||
}
|
||||
private:
|
||||
SkMatrix fMatrix[10];
|
||||
SkMWCRandom fRandom;
|
||||
typedef MatrixBench INHERITED;
|
||||
};
|
||||
|
||||
class InvertMapRectMatrixBench : public MatrixBench {
|
||||
public:
|
||||
InvertMapRectMatrixBench(void* param, const char* name, int flags)
|
||||
|
@ -408,6 +437,8 @@ DEF_BENCH( return new FloatConcatMatrixBench(p); )
|
|||
DEF_BENCH( return new FloatDoubleConcatMatrixBench(p); )
|
||||
DEF_BENCH( return new DoubleConcatMatrixBench(p); )
|
||||
DEF_BENCH( return new GetTypeMatrixBench(p); )
|
||||
DEF_BENCH( return new DecomposeMatrixBench(p); )
|
||||
|
||||
DEF_BENCH( return new InvertMapRectMatrixBench(p, "invert_maprect_identity", 0); )
|
||||
|
||||
DEF_BENCH(return new InvertMapRectMatrixBench(p,
|
||||
|
|
|
@ -2007,13 +2007,18 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height,
|
|||
return isrc == idst;
|
||||
}
|
||||
|
||||
// A square matrix M can be decomposed (via polar decomposition) into two matrices --
|
||||
// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T,
|
||||
// where U is another orthogonal matrix and W is a scale matrix. These can be recombined
|
||||
// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix.
|
||||
//
|
||||
// The one wrinkle is that traditionally Q may contain a reflection -- the
|
||||
// calculation has been rejiggered to put that reflection into W.
|
||||
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
||||
SkScalar* rotation0,
|
||||
SkScalar* xScale, SkScalar* yScale,
|
||||
SkScalar* rotation1) {
|
||||
SkPoint* rotation1,
|
||||
SkPoint* scale,
|
||||
SkPoint* rotation2) {
|
||||
|
||||
// borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
|
||||
// Note: he uses row vectors, so we have to do some swapping of terms
|
||||
SkScalar A = matrix[SkMatrix::kMScaleX];
|
||||
SkScalar B = matrix[SkMatrix::kMSkewX];
|
||||
SkScalar C = matrix[SkMatrix::kMSkewY];
|
||||
|
@ -2023,70 +2028,82 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
|||
return false;
|
||||
}
|
||||
|
||||
SkScalar E = SK_ScalarHalf*(A + D);
|
||||
SkScalar F = SK_ScalarHalf*(A - D);
|
||||
SkScalar G = SK_ScalarHalf*(C + B);
|
||||
SkScalar H = SK_ScalarHalf*(C - B);
|
||||
double w1, w2;
|
||||
SkScalar cos1, sin1;
|
||||
SkScalar cos2, sin2;
|
||||
|
||||
SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
|
||||
SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
|
||||
// do polar decomposition (M = Q*S)
|
||||
SkScalar cosQ, sinQ;
|
||||
double Sa, Sb, Sd;
|
||||
// if M is already symmetric (i.e., M = I*S)
|
||||
if (SkScalarNearlyEqual(B, C)) {
|
||||
cosQ = SK_Scalar1;
|
||||
sinQ = 0;
|
||||
|
||||
SkScalar xs, ys, r0, r1;
|
||||
|
||||
xs = sqrt0 + sqrt1;
|
||||
ys = sqrt0 - sqrt1;
|
||||
// can't have zero yScale, must be degenerate
|
||||
SkASSERT(!SkScalarNearlyZero(ys));
|
||||
|
||||
// uniformly scaled rotation
|
||||
if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
|
||||
SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
|
||||
r0 = SkScalarATan2(H, E);
|
||||
r1 = 0;
|
||||
// uniformly scaled reflection
|
||||
} else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
|
||||
SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
|
||||
r0 = -SkScalarATan2(G, F);
|
||||
r1 = 0;
|
||||
Sa = A;
|
||||
Sb = B;
|
||||
Sd = D;
|
||||
} else {
|
||||
SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
|
||||
SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
|
||||
cosQ = A + D;
|
||||
sinQ = C - B;
|
||||
SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ);
|
||||
cosQ *= reciplen;
|
||||
sinQ *= reciplen;
|
||||
|
||||
SkScalar arctan0 = SkScalarATan2(H, E);
|
||||
SkScalar arctan1 = SkScalarATan2(G, F);
|
||||
r0 = SK_ScalarHalf*(arctan0 - arctan1);
|
||||
r1 = SK_ScalarHalf*(arctan0 + arctan1);
|
||||
// S = Q^-1*M
|
||||
// we don't calc Sc since it's symmetric
|
||||
Sa = A*cosQ + C*sinQ;
|
||||
Sb = B*cosQ + D*sinQ;
|
||||
Sd = -B*sinQ + D*cosQ;
|
||||
}
|
||||
|
||||
// simplify the results
|
||||
const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
|
||||
if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
|
||||
SkScalar tmp = xs;
|
||||
xs = ys;
|
||||
ys = tmp;
|
||||
|
||||
r1 += r0;
|
||||
r0 = 0;
|
||||
} else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
|
||||
SkScalar tmp = xs;
|
||||
xs = ys;
|
||||
ys = tmp;
|
||||
|
||||
r0 += r1;
|
||||
r1 = 0;
|
||||
// Now we need to compute eigenvalues of S (our scale factors)
|
||||
// and eigenvectors (bases for our rotation)
|
||||
// From this, should be able to reconstruct S as U*W*U^T
|
||||
if (SkScalarNearlyZero(Sb)) {
|
||||
// already diagonalized
|
||||
cos1 = SK_Scalar1;
|
||||
sin1 = 0;
|
||||
w1 = Sa;
|
||||
w2 = Sd;
|
||||
cos2 = cosQ;
|
||||
sin2 = sinQ;
|
||||
} else {
|
||||
double diff = Sa - Sd;
|
||||
double discriminant = sqrt(diff*diff + 4.0*Sb*Sb);
|
||||
double trace = Sa + Sd;
|
||||
if (diff > 0) {
|
||||
w1 = 0.5*(trace + discriminant);
|
||||
w2 = 0.5*(trace - discriminant);
|
||||
} else {
|
||||
w1 = 0.5*(trace - discriminant);
|
||||
w2 = 0.5*(trace + discriminant);
|
||||
}
|
||||
|
||||
cos1 = Sb; sin1 = w1 - Sa;
|
||||
SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1);
|
||||
cos1 *= reciplen;
|
||||
sin1 *= reciplen;
|
||||
|
||||
// rotation 2 is composition of Q and U
|
||||
cos2 = cos1*cosQ - sin1*sinQ;
|
||||
sin2 = sin1*cosQ + cos1*sinQ;
|
||||
|
||||
// rotation 1 is U^T
|
||||
sin1 = -sin1;
|
||||
}
|
||||
|
||||
if (NULL != xScale) {
|
||||
*xScale = xs;
|
||||
}
|
||||
if (NULL != yScale) {
|
||||
*yScale = ys;
|
||||
}
|
||||
if (NULL != rotation0) {
|
||||
*rotation0 = r0;
|
||||
if (NULL != scale) {
|
||||
scale->fX = w1;
|
||||
scale->fY = w2;
|
||||
}
|
||||
if (NULL != rotation1) {
|
||||
*rotation1 = r1;
|
||||
rotation1->fX = cos1;
|
||||
rotation1->fY = sin1;
|
||||
}
|
||||
if (NULL != rotation2) {
|
||||
rotation2->fX = cos2;
|
||||
rotation2->fY = sin2;
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
|
@ -40,15 +40,15 @@ static inline bool SkTreatAsSpriteFilter(const SkMatrix& matrix,
|
|||
return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp);
|
||||
}
|
||||
|
||||
/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale,
|
||||
followed by another rotation. Returns true if successful.
|
||||
If the scale factors are uniform, then rotation1 will be 0.
|
||||
If there is a reflection, yScale will be negative.
|
||||
Returns false if the matrix is degenerate.
|
||||
/** Decomposes the upper-left 2x2 of the matrix into a rotation (represented by
|
||||
the cosine and sine of the rotation angle), followed by a non-uniform scale,
|
||||
followed by another rotation. If there is a reflection, one of the scale
|
||||
factors will be negative.
|
||||
Returns true if successful. Returns false if the matrix is degenerate.
|
||||
*/
|
||||
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
||||
SkScalar* rotation0,
|
||||
SkScalar* xScale, SkScalar* yScale,
|
||||
SkScalar* rotation1);
|
||||
SkPoint* rotation1,
|
||||
SkPoint* scale,
|
||||
SkPoint* rotation2);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -513,10 +513,10 @@ static void TestMatrix44(skiatest::Reporter* reporter) {
|
|||
|
||||
// test mixed-valued matrix inverse
|
||||
mat.reset();
|
||||
mat.setScale(1.0e-10, 3.0, 1.0e+10);
|
||||
mat.setScale(1.0e-11, 3.0, 1.0e+11);
|
||||
rot.setRotateDegreesAbout(0, 0, -1, 90);
|
||||
mat.postConcat(rot);
|
||||
mat.postTranslate(1.0e+10, 3.0, 1.0e-10);
|
||||
mat.postTranslate(1.0e+11, 3.0, 1.0e-11);
|
||||
REPORTER_ASSERT(reporter, mat.invert(NULL));
|
||||
mat.invert(&inverse);
|
||||
iden1.setConcat(mat, inverse);
|
||||
|
|
|
@ -350,11 +350,13 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
|||
static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
||||
SkScalar tolerance = SK_ScalarNearlyZero) {
|
||||
// from Bruce Dawson
|
||||
// absolute check
|
||||
SkScalar diff = SkScalarAbs(a - b);
|
||||
if (diff < tolerance) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// relative check
|
||||
a = SkScalarAbs(a);
|
||||
b = SkScalarAbs(b);
|
||||
SkScalar largest = (b > a) ? b : a;
|
||||
|
@ -366,9 +368,32 @@ static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
|||
return false;
|
||||
}
|
||||
|
||||
static bool check_matrix_recomposition(const SkMatrix& mat,
|
||||
const SkPoint& rotation1,
|
||||
const SkPoint& scale,
|
||||
const SkPoint& rotation2) {
|
||||
SkScalar c1 = rotation1.fX;
|
||||
SkScalar s1 = rotation1.fY;
|
||||
SkScalar scaleX = scale.fX;
|
||||
SkScalar scaleY = scale.fY;
|
||||
SkScalar c2 = rotation2.fX;
|
||||
SkScalar s2 = rotation2.fY;
|
||||
|
||||
// We do a relative check here because large scale factors cause problems with an absolute check
|
||||
bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c1*c2 - scaleY*s1*s2) &&
|
||||
scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s1*c2 - scaleY*c1*s2) &&
|
||||
scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c1*s2 + scaleY*s1*c2) &&
|
||||
scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s1*s2 + scaleY*c1*c2);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
||||
SkMatrix mat;
|
||||
SkScalar rotation0, scaleX, scaleY, rotation1;
|
||||
SkPoint rotation1, scale, rotation2;
|
||||
|
||||
const float kRotation0 = 15.5f;
|
||||
const float kRotation1 = -50.f;
|
||||
|
@ -377,150 +402,108 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
|||
|
||||
// identity
|
||||
mat.reset();
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
// make sure it doesn't crash if we pass in NULLs
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
|
||||
|
||||
// rotation only
|
||||
mat.setRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// uniform scale only
|
||||
mat.setScale(kScale0, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// anisotropic scale only
|
||||
mat.setScale(kScale1, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation then uniform scale
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale0, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// uniform scale then rotation
|
||||
mat.setScale(kScale0, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation then uniform scale+reflection
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(kScale1, -kScale1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// uniform scale+reflection, then rotate
|
||||
mat.setScale(kScale0, -kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation then anisotropic scale
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale1, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation then anisotropic scale
|
||||
mat.setRotate(90);
|
||||
mat.postScale(kScale1, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// anisotropic scale then rotation
|
||||
mat.setScale(kScale1, kScale0);
|
||||
mat.postRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// anisotropic scale then rotation
|
||||
mat.setScale(kScale1, kScale0);
|
||||
mat.postRotate(90);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation, uniform scale, then different rotation
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale0, kScale0);
|
||||
mat.postRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
|
||||
SkDegreesToRadians(kRotation0 + kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation, anisotropic scale, then different rotation
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(kScale1, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
// Because of the shear/skew we won't get the same results, so we need to multiply it out.
|
||||
// Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
|
||||
// calculation (in setRotate()), which adds error, so this just computes the matrix elements
|
||||
// directly.
|
||||
SkScalar c0;
|
||||
SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
||||
SkScalar c1;
|
||||
SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
||||
// We do a relative check here because large scale factors cause problems with an absolute check
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// rotation, anisotropic scale + reflection, then different rotation
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(-kScale1, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// try some random matrices
|
||||
SkMWCRandom rand;
|
||||
for (int m = 0; m < 1000; ++m) {
|
||||
SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
||||
SkScalar rot0 = rand.nextRangeF(-180, 180);
|
||||
SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
|
||||
SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
|
||||
SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
||||
SkScalar rot1 = rand.nextRangeF(-180, 180);
|
||||
mat.setRotate(rot0);
|
||||
mat.postScale(sx, sy);
|
||||
mat.postRotate(rot1);
|
||||
|
||||
if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
|
||||
SkScalar c0;
|
||||
SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
||||
SkScalar c1;
|
||||
SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
} else {
|
||||
// if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
|
||||
SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
|
||||
|
@ -531,65 +514,31 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
|||
|
||||
// translation shouldn't affect this
|
||||
mat.postTranslate(-1000.f, 1000.f);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// perspective shouldn't affect this
|
||||
mat[SkMatrix::kMPersp0] = 12.f;
|
||||
mat[SkMatrix::kMPersp1] = 4.f;
|
||||
mat[SkMatrix::kMPersp2] = 1872.f;
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
|
||||
// rotation, anisotropic scale + reflection, then different rotation
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(-kScale1, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
||||
|
||||
// degenerate matrices
|
||||
// mostly zero entries
|
||||
mat.reset();
|
||||
mat[SkMatrix::kMScaleX] = 0.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
mat.reset();
|
||||
mat[SkMatrix::kMScaleY] = 0.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
mat.reset();
|
||||
// linearly dependent entries
|
||||
mat[SkMatrix::kMScaleX] = 1.f;
|
||||
mat[SkMatrix::kMSkewX] = 2.f;
|
||||
mat[SkMatrix::kMSkewY] = 4.f;
|
||||
mat[SkMatrix::kMScaleY] = 8.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
||||
}
|
||||
|
||||
// For test_matrix_homogeneous, below.
|
||||
|
|
Загрузка…
Ссылка в новой задаче