ruby/numeric.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

6431 строка
156 KiB
C
Исходник Обычный вид История

/**********************************************************************
numeric.c -
$Author$
created at: Fri Aug 13 18:33:09 JST 1993
* encoding.c: provide basic features for M17N. * parse.y: encoding aware parsing. * parse.y (pragma_encoding): encoding specification pragma. * parse.y (rb_intern3): encoding specified symbols. * string.c (rb_str_length): length based on characters. for older behavior, bytesize method added. * string.c (rb_str_index_m): index based on characters. rindex as well. * string.c (succ_char): encoding aware succeeding string. * string.c (rb_str_reverse): reverse based on characters. * string.c (rb_str_inspect): encoding aware string description. * string.c (rb_str_upcase_bang): encoding aware case conversion. downcase, capitalize, swapcase as well. * string.c (rb_str_tr_bang): tr based on characters. delete, squeeze, tr_s, count as well. * string.c (rb_str_split_m): split based on characters. * string.c (rb_str_each_line): encoding aware each_line. * string.c (rb_str_each_char): added. iteration based on characters. * string.c (rb_str_strip_bang): encoding aware whitespace stripping. lstrip, rstrip as well. * string.c (rb_str_justify): encoding aware justifying (ljust, rjust, center). * string.c (str_encoding): get encoding attribute from a string. * re.c (rb_reg_initialize): encoding aware regular expression * sprintf.c (rb_str_format): formatting (i.e. length count) based on characters. * io.c (rb_io_getc): getc to return one-character string. for older behavior, getbyte method added. * ext/stringio/stringio.c (strio_getc): ditto. * io.c (rb_io_ungetc): allow pushing arbitrary string at the current reading point. * ext/stringio/stringio.c (strio_ungetc): ditto. * ext/strscan/strscan.c: encoding support. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13261 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-08-25 07:29:39 +04:00
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/internal/config.h"
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/compilers.h"
#include "internal/complex.h"
#include "internal/enumerator.h"
#include "internal/gc.h"
#include "internal/hash.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/rational.h"
#include "internal/string.h"
#include "internal/util.h"
#include "internal/variable.h"
#include "ruby/encoding.h"
#include "ruby/util.h"
#include "builtin.h"
/* use IEEE 64bit values if not defined */
#ifndef FLT_RADIX
#define FLT_RADIX 2
#endif
#ifndef DBL_MIN
#define DBL_MIN 2.2250738585072014e-308
#endif
#ifndef DBL_MAX
#define DBL_MAX 1.7976931348623157e+308
#endif
#ifndef DBL_MIN_EXP
#define DBL_MIN_EXP (-1021)
#endif
#ifndef DBL_MAX_EXP
#define DBL_MAX_EXP 1024
#endif
#ifndef DBL_MIN_10_EXP
#define DBL_MIN_10_EXP (-307)
#endif
#ifndef DBL_MAX_10_EXP
#define DBL_MAX_10_EXP 308
#endif
#ifndef DBL_DIG
#define DBL_DIG 15
#endif
#ifndef DBL_MANT_DIG
#define DBL_MANT_DIG 53
#endif
#ifndef DBL_EPSILON
#define DBL_EPSILON 2.2204460492503131e-16
#endif
#ifndef USE_RB_INFINITY
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
#else
const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
#endif
#ifndef USE_RB_NAN
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
#else
const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
#endif
#ifndef HAVE_ROUND
double
round(double x)
{
double f;
if (x > 0.0) {
f = floor(x);
x = f + (x - f >= 0.5);
}
else if (x < 0.0) {
f = ceil(x);
x = f - (f - x >= 0.5);
}
return x;
}
#endif
static double
round_half_up(double x, double s)
{
double f, xs = x * s;
f = round(xs);
if (s == 1.0) return f;
if (x > 0) {
if ((double)((f + 0.5) / s) <= x) f += 1;
x = f;
}
else {
if ((double)((f - 0.5) / s) >= x) f -= 1;
x = f;
}
return x;
}
static double
round_half_down(double x, double s)
{
double f, xs = x * s;
f = round(xs);
if (x > 0) {
if ((double)((f - 0.5) / s) >= x) f -= 1;
x = f;
}
else {
if ((double)((f + 0.5) / s) <= x) f += 1;
x = f;
}
return x;
}
static double
round_half_even(double x, double s)
{
double f, d, xs = x * s;
if (x > 0.0) {
f = floor(xs);
d = xs - f;
if (d > 0.5)
d = 1.0;
else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
d = fmod(f, 2.0);
else
d = 0.0;
x = f + d;
}
else if (x < 0.0) {
f = ceil(xs);
d = f - xs;
if (d > 0.5)
d = 1.0;
else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
d = fmod(-f, 2.0);
else
d = 0.0;
x = f - d;
}
return x;
}
static VALUE fix_lshift(long, unsigned long);
static VALUE fix_rshift(long, unsigned long);
static VALUE int_pow(long x, unsigned long y);
static VALUE rb_int_floor(VALUE num, int ndigits);
static VALUE rb_int_ceil(VALUE num, int ndigits);
static VALUE flo_to_i(VALUE num);
static int float_round_overflow(int ndigits, int binexp);
static int float_round_underflow(int ndigits, int binexp);
2019-08-03 02:37:08 +03:00
static ID id_coerce;
#define id_div idDiv
#define id_divmod idDivmod
#define id_to_i idTo_i
#define id_eq idEq
#define id_cmp idCmp
VALUE rb_cNumeric;
VALUE rb_cFloat;
VALUE rb_cInteger;
VALUE rb_eZeroDivError;
VALUE rb_eFloatDomainError;
static ID id_to, id_by;
void
rb_num_zerodiv(void)
{
rb_raise(rb_eZeroDivError, "divided by 0");
}
enum ruby_num_rounding_mode
rb_num_get_rounding_option(VALUE opts)
{
static ID round_kwds[1];
VALUE rounding;
VALUE str;
const char *s;
if (!NIL_P(opts)) {
if (!round_kwds[0]) {
round_kwds[0] = rb_intern_const("half");
}
if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
if (SYMBOL_P(rounding)) {
str = rb_sym2str(rounding);
}
else if (NIL_P(rounding)) {
goto noopt;
}
else if (!RB_TYPE_P(str = rounding, T_STRING)) {
str = rb_check_string_type(rounding);
if (NIL_P(str)) goto invalid;
}
2020-01-27 10:12:15 +03:00
rb_must_asciicompat(str);
s = RSTRING_PTR(str);
switch (RSTRING_LEN(str)) {
case 2:
if (rb_memcicmp(s, "up", 2) == 0)
return RUBY_NUM_ROUND_HALF_UP;
break;
case 4:
if (rb_memcicmp(s, "even", 4) == 0)
return RUBY_NUM_ROUND_HALF_EVEN;
if (strncasecmp(s, "down", 4) == 0)
return RUBY_NUM_ROUND_HALF_DOWN;
break;
}
invalid:
rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
}
noopt:
return RUBY_NUM_ROUND_DEFAULT;
}
/* experimental API */
int
rb_num_to_uint(VALUE val, unsigned int *ret)
{
#define NUMERR_TYPE 1
#define NUMERR_NEGATIVE 2
#define NUMERR_TOOLARGE 3
if (FIXNUM_P(val)) {
long v = FIX2LONG(val);
#if SIZEOF_INT < SIZEOF_LONG
if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
#endif
if (v < 0) return NUMERR_NEGATIVE;
*ret = (unsigned int)v;
return 0;
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(val)) {
if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
#if SIZEOF_INT < SIZEOF_LONG
/* long is 64bit */
return NUMERR_TOOLARGE;
#else
/* long is 32bit */
if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
*ret = (unsigned int)rb_big2ulong((VALUE)val);
return 0;
#endif
}
return NUMERR_TYPE;
}
#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
static inline int
int_pos_p(VALUE num)
{
if (FIXNUM_P(num)) {
return FIXNUM_POSITIVE_P(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return BIGNUM_POSITIVE_P(num);
}
rb_raise(rb_eTypeError, "not an Integer");
}
static inline int
int_neg_p(VALUE num)
{
if (FIXNUM_P(num)) {
return FIXNUM_NEGATIVE_P(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return BIGNUM_NEGATIVE_P(num);
}
rb_raise(rb_eTypeError, "not an Integer");
}
int
rb_int_positive_p(VALUE num)
{
return int_pos_p(num);
}
int
rb_int_negative_p(VALUE num)
{
return int_neg_p(num);
}
int
rb_num_negative_p(VALUE num)
{
return rb_num_negative_int_p(num);
}
static VALUE
num_funcall_op_0(VALUE x, VALUE arg, int recursive)
{
ID func = (ID)arg;
if (recursive) {
const char *name = rb_id2name(func);
if (ISALNUM(name[0])) {
rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
x, ID2SYM(func));
}
else if (name[0] && name[1] == '@' && !name[2]) {
rb_name_error(func, "%c%"PRIsVALUE,
name[0], x);
}
else {
rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
ID2SYM(func), x);
}
}
return rb_funcallv(x, func, 0, 0);
}
static VALUE
num_funcall0(VALUE x, ID func)
{
return rb_exec_recursive(num_funcall_op_0, x, (VALUE)func);
}
NORETURN(static void num_funcall_op_1_recursion(VALUE x, ID func, VALUE y));
static void
num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)
{
const char *name = rb_id2name(func);
if (ISALNUM(name[0])) {
rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
x, ID2SYM(func), y);
}
else {
rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
x, ID2SYM(func), y);
}
}
static VALUE
num_funcall_op_1(VALUE y, VALUE arg, int recursive)
{
ID func = (ID)((VALUE *)arg)[0];
VALUE x = ((VALUE *)arg)[1];
if (recursive) {
num_funcall_op_1_recursion(x, func, y);
}
return rb_funcall(x, func, 1, y);
}
static VALUE
num_funcall1(VALUE x, ID func, VALUE y)
{
VALUE args[2];
args[0] = (VALUE)func;
args[1] = x;
return rb_exec_recursive_paired(num_funcall_op_1, y, x, (VALUE)args);
}
/*
* call-seq:
* coerce(other) -> array
*
* Returns a 2-element array containing two numeric elements,
* formed from the two operands +self+ and +other+,
* of a common compatible type.
*
* Of the Core and Standard Library classes,
* Integer, Rational, and Complex use this implementation.
*
* Examples:
*
* i = 2 # => 2
* i.coerce(3) # => [3, 2]
* i.coerce(3.0) # => [3.0, 2.0]
* i.coerce(Rational(1, 2)) # => [0.5, 2.0]
* i.coerce(Complex(3, 4)) # Raises RangeError.
*
* r = Rational(5, 2) # => (5/2)
* r.coerce(2) # => [(2/1), (5/2)]
* r.coerce(2.0) # => [2.0, 2.5]
* r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
* r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)]
*
* c = Complex(2, 3) # => (2+3i)
* c.coerce(2) # => [(2+0i), (2+3i)]
* c.coerce(2.0) # => [(2.0+0i), (2+3i)]
* c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
* c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)]
*
* Raises an exception if any type conversion fails.
*
*/
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
NORETURN(static void coerce_failed(VALUE x, VALUE y));
static void
coerce_failed(VALUE x, VALUE y)
{
if (SPECIAL_CONST_P(y) || SYMBOL_P(y) || RB_FLOAT_TYPE_P(y)) {
y = rb_inspect(y);
}
else {
y = rb_obj_class(y);
}
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
y, rb_obj_class(x));
}
static int
do_coerce(VALUE *x, VALUE *y, int err)
{
VALUE ary = rb_check_funcall(*y, id_coerce, 1, x);
if (ary == Qundef) {
if (err) {
coerce_failed(*x, *y);
}
return FALSE;
}
if (!err && NIL_P(ary)) {
return FALSE;
}
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
rb_raise(rb_eTypeError, "coerce must return [x, y]");
}
*x = RARRAY_AREF(ary, 0);
*y = RARRAY_AREF(ary, 1);
return TRUE;
}
VALUE
rb_num_coerce_bin(VALUE x, VALUE y, ID func)
{
do_coerce(&x, &y, TRUE);
return rb_funcall(x, func, 1, y);
}
VALUE
rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
{
if (do_coerce(&x, &y, FALSE))
return rb_funcall(x, func, 1, y);
return Qnil;
}
static VALUE
ensure_cmp(VALUE c, VALUE x, VALUE y)
{
if (NIL_P(c)) rb_cmperr(x, y);
return c;
}
VALUE
rb_num_coerce_relop(VALUE x, VALUE y, ID func)
{
VALUE x0 = x, y0 = y;
if (!do_coerce(&x, &y, FALSE)) {
rb_cmperr(x0, y0);
UNREACHABLE_RETURN(Qnil);
}
return ensure_cmp(rb_funcall(x, func, 1, y), x0, y0);
}
2020-05-10 18:24:14 +03:00
NORETURN(static VALUE num_sadded(VALUE x, VALUE name));
/*
* :nodoc:
*
* Trap attempts to add methods to Numeric objects. Always raises a TypeError.
*
* Numerics should be values; singleton_methods should not be added to them.
*/
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
rb_id2str(mid),
rb_obj_class(x));
2012-04-14 04:36:26 +04:00
UNREACHABLE_RETURN(Qnil);
}
#if 0
/*
* call-seq:
* clone(freeze: true) -> self
*
* Returns +self+.
*
* Raises an exception if the value for +freeze+ is neither +true+ nor +nil+.
*
* Related: Numeric#dup.
*
*/
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
return rb_immutable_obj_clone(argc, argv, x);
}
#else
# define num_clone rb_immutable_obj_clone
#endif
2012-04-14 04:36:26 +04:00
#if 0
/*
* call-seq:
* dup -> self
*
* Returns +self+.
*
* Related: Numeric#clone.
*
*/
static VALUE
num_dup(VALUE x)
{
return x;
}
#else
# define num_dup num_uplus
#endif
/*
* call-seq:
* +self -> self
*
* Returns +self+.
*
*/
static VALUE
num_uplus(VALUE num)
{
return num;
}
/*
* call-seq:
* i -> complex
*
* Returns <tt>Complex(0, self)</tt>:
*
* 2.i # => (0+2i)
* -2.i # => (0-2i)
* 2.0.i # => (0+2.0i)
* Rational(1, 2).i # => (0+(1/2)*i)
* Complex(3, 4).i # Raises NoMethodError.
*
*/
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
/*
* call-seq:
* -self -> numeric
*
* Unary Minus---Returns the receiver, negated.
*/
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return num_funcall1(zero, '-', num);
}
/*
* call-seq:
* fdiv(other) -> float
*
* Returns the quotient <tt>self/other</tt> as a float,
* using method +/+ in the derived class of +self+.
* (\Numeric itself does not define method +/+.)
*
* Of the Core and Standard Library classes,
* only BigDecimal uses this implementation.
*
*/
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
/*
* call-seq:
* div(other) -> integer
*
* Returns the quotient <tt>self/other</tt> as an integer (via +floor+),
* using method +/+ in the derived class of +self+.
* (\Numeric itself does not define method +/+.)
*
* Of the Core and Standard Library classes,
* Only Float and Rational use this implementation.
*
*/
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}
/*
* call-seq:
2021-10-12 16:06:05 +03:00
* self % other -> real_numeric
*
2021-10-12 16:06:05 +03:00
* Returns +self+ modulo +other+ as a real number.
*
2021-10-12 16:06:05 +03:00
* Of the Core and Standard Library classes,
* only Rational uses this implementation.
*
* For \Rational +r+ and real number +n+, these expressions are equivalent:
*
2022-05-27 14:18:54 +03:00
* r % n
* r-n*(r/n).floor
* r.divmod(n)[1]
*
* See Numeric#divmod.
2021-10-12 16:06:05 +03:00
*
* Examples:
*
* r = Rational(1, 2) # => (1/2)
* r2 = Rational(2, 3) # => (2/3)
* r % r2 # => (1/2)
* r % 2 # => (1/2)
* r % 2.0 # => 0.5
*
* r = Rational(301,100) # => (301/100)
* r2 = Rational(7,5) # => (7/5)
* r % r2 # => (21/100)
* r % -r2 # => (-119/100)
* (-r) % r2 # => (119/100)
* (-r) %-r2 # => (-21/100)
*
* Numeric#modulo is an alias for Numeric#%.
*
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
VALUE q = num_funcall1(x, id_div, y);
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1, q));
}
/*
* call-seq:
* remainder(other) -> real_number
*
* Returns the remainder after dividing +self+ by +other+.
*
* Of the Core and Standard Library classes,
* only Float and Rational use this implementation.
*
* Examples:
*
* 11.0.remainder(4) # => 3.0
* 11.0.remainder(-4) # => 3.0
* -11.0.remainder(4) # => -3.0
* -11.0.remainder(-4) # => -3.0
*
* 12.0.remainder(4) # => 0.0
* 12.0.remainder(-4) # => 0.0
* -12.0.remainder(4) # => -0.0
* -12.0.remainder(-4) # => -0.0
*
* 13.0.remainder(4.0) # => 1.0
* 13.0.remainder(Rational(4, 1)) # => 1.0
*
* Rational(13, 1).remainder(4) # => (1/1)
* Rational(13, 1).remainder(-4) # => (1/1)
* Rational(-13, 1).remainder(4) # => (-1/1)
* Rational(-13, 1).remainder(-4) # => (-1/1)
*
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
((rb_num_negative_int_p(x) &&
rb_num_positive_int_p(y)) ||
(rb_num_positive_int_p(x) &&
rb_num_negative_int_p(y)))) {
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(y)) {
if (isinf(RFLOAT_VALUE(y))) {
return x;
}
}
return rb_funcall(z, '-', 1, y);
}
return z;
}
/*
* call-seq:
* divmod(other) -> array
*
* Returns a 2-element array <tt>[q, r]</tt>, where
*
* q = (self/other).floor # Quotient
* r = self % other # Remainder
*
* Of the Core and Standard Library classes,
* only Rational uses this implementation.
*
* Examples:
*
* Rational(11, 1).divmod(4) # => [2, (3/1)]
* Rational(11, 1).divmod(-4) # => [-3, (-1/1)]
* Rational(-11, 1).divmod(4) # => [-3, (1/1)]
* Rational(-11, 1).divmod(-4) # => [2, (-3/1)]
*
* Rational(12, 1).divmod(4) # => [3, (0/1)]
* Rational(12, 1).divmod(-4) # => [-3, (0/1)]
* Rational(-12, 1).divmod(4) # => [-3, (0/1)]
* Rational(-12, 1).divmod(-4) # => [3, (0/1)]
*
* Rational(13, 1).divmod(4.0) # => [3, 1.0]
* Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
*/
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
/*
* call-seq:
* abs -> numeric
*
* Returns the absolute value of +self+.
*
* 12.abs #=> 12
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*
* Numeric#magnitude is an alias for Numeric#abs.
*
*/
static VALUE
num_abs(VALUE num)
{
if (rb_num_negative_int_p(num)) {
return num_funcall0(num, idUMinus);
}
return num;
}
/*
* call-seq:
* zero? -> true or false
*
* Returns +true+ if +zero+ has a zero value, +false+ otherwise.
*
* Of the Core and Standard Library classes,
* only Rational and Complex use this implementation.
*
*/
static VALUE
num_zero_p(VALUE num)
{
2021-05-24 03:41:03 +03:00
return rb_equal(num, INT2FIX(0));
}
static bool
int_zero_p(VALUE num)
{
if (FIXNUM_P(num)) {
return FIXNUM_ZERO_P(num);
}
2021-09-15 02:11:05 +03:00
assert(RB_BIGNUM_TYPE_P(num));
return rb_bigzero_p(num);
}
VALUE
rb_int_zero_p(VALUE num)
{
return RBOOL(int_zero_p(num));
}
/*
* call-seq:
* nonzero? -> self or nil
*
* Returns +self+ if +self+ is not a zero value, +nil+ otherwise;
* uses method <tt>zero?</tt> for the evaluation.
*
* The returned +self+ allows the method to be chained:
*
* a = %w[z Bb bB bb BB a aA Aa AA A]
* a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
* # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
*
* Of the Core and Standard Library classes,
* Integer, Float, Rational, and Complex use this implementation.
*
*/
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
return Qnil;
}
return num;
}
/*
* call-seq:
* to_int -> integer
*
* Returns +self+ as an integer;
* converts using method +to_i+ in the derived class.
*
* Of the Core and Standard Library classes,
* only Rational and Complex use this implementation.
*
* Examples:
*
* Rational(1, 2).to_int # => 0
* Rational(2, 1).to_int # => 2
* Complex(2, 0).to_int # => 2
* Complex(2, 1) # Raises RangeError (non-zero imaginary part)
*
*/
static VALUE
num_to_int(VALUE num)
{
return num_funcall0(num, id_to_i);
}
/*
* call-seq:
* positive? -> true or false
*
* Returns +true+ if +self+ is greater than 0, +false+ otherwise.
*
*/
static VALUE
num_positive_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cInteger))
2021-08-02 06:06:44 +03:00
return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
if (method_basic_p(rb_cInteger))
2021-08-02 06:06:44 +03:00
return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
}
return rb_num_compare_with_zero(num, mid);
}
/*
* call-seq:
* negative? -> true or false
*
* Returns +true+ if +self+ is less than 0, +false+ otherwise.
*
*/
static VALUE
num_negative_p(VALUE num)
{
2021-08-02 06:06:44 +03:00
return RBOOL(rb_num_negative_int_p(num));
}
/********************************************************************
*
* Document-class: Float
*
* A \Float object represents a sometimes-inexact real number using the native
* architecture's double-precision floating point representation.
*
* Floating point has a different arithmetic and is an inexact number.
* So you should know its esoteric system. See following:
*
* - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
* - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
2020-07-28 13:51:07 +03:00
* - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
*
* You can create a \Float object explicitly with:
*
* - A {floating-point literal}[rdoc-ref:syntax/literals.rdoc@Float+Literals].
*
* You can convert certain objects to Floats with:
*
2022-02-07 19:18:56 +03:00
* - \Method #Float.
*
* == What's Here
*
* First, what's elsewhere. \Class \Float:
*
* - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
*
* Here, class \Float provides methods for:
*
* - {Querying}[rdoc-ref:Float@Querying]
* - {Comparing}[rdoc-ref:Float@Comparing]
* - {Converting}[rdoc-ref:Float@Converting]
*
* === Querying
*
* - #finite?: Returns whether +self+ is finite.
* - #hash: Returns the integer hash code for +self+.
* - #infinite?: Returns whether +self+ is infinite.
* - #nan?: Returns whether +self+ is a NaN (not-a-number).
*
* === Comparing
*
* - #<: Returns whether +self+ is less than the given value.
* - #<=: Returns whether +self+ is less than or equal to the given value.
* - #<=>: Returns a number indicating whether +self+ is less than, equal
* to, or greater than the given value.
* - #== (aliased as #=== and #eql?): Returns whether +self+ is equal to
* the given value.
* - #>: Returns whether +self+ is greater than the given value.
* - #>=: Returns whether +self+ is greater than or equal to the given value.
*
* === Converting
*
* - #% (aliased as #modulo): Returns +self+ modulo the given value.
* - #*: Returns the product of +self+ and the given value.
* - #**: Returns the value of +self+ raised to the power of the given value.
* - #+: Returns the sum of +self+ and the given value.
* - #-: Returns the difference of +self+ and the given value.
* - #/: Returns the quotient of +self+ and the given value.
* - #ceil: Returns the smallest number greater than or equal to +self+.
* - #coerce: Returns a 2-element array containing the given value converted to a \Float
and +self+
* - #divmod: Returns a 2-element array containing the quotient and remainder
* results of dividing +self+ by the given value.
* - #fdiv: Returns the Float result of dividing +self+ by the given value.
* - #floor: Returns the greatest number smaller than or equal to +self+.
* - #next_float: Returns the next-larger representable \Float.
* - #prev_float: Returns the next-smaller representable \Float.
* - #quo: Returns the quotient from dividing +self+ by the given value.
* - #round: Returns +self+ rounded to the nearest value, to a given precision.
* - #to_i (aliased as #to_int): Returns +self+ truncated to an Integer.
* - #to_s (aliased as #inspect): Returns a string containing the place-value
* representation of +self+ in the given radix.
* - #truncate: Returns +self+ truncated to a given precision.
*
*/
VALUE
rb_float_new_in_heap(double d)
{
* gc.c: support RGENGC. [ruby-trunk - Feature #8339] See this ticet about RGENGC. * gc.c: Add several flags: * RGENGC_DEBUG: if >0, then prints debug information. * RGENGC_CHECK_MODE: if >0, add assertions. * RGENGC_PROFILE: if >0, add profiling features. check GC.stat and GC::Profiler. * include/ruby/ruby.h: disable RGENGC by default (USE_RGENGC == 0). * array.c: add write barriers for T_ARRAY and generate sunny objects. * include/ruby/ruby.h (RARRAY_PTR_USE): added. Use this macro if you want to access raw pointers. If you modify the contents which pointer pointed, then you need to care write barrier. * bignum.c, marshal.c, random.c: generate T_BIGNUM sunny objects. * complex.c, include/ruby/ruby.h: add write barriers for T_COMPLEX and generate sunny objects. * rational.c (nurat_s_new_internal), include/ruby/ruby.h: add write barriers for T_RATIONAL and generate sunny objects. * internal.h: add write barriers for RBasic::klass. * numeric.c (rb_float_new_in_heap): generate sunny T_FLOAT objects. * object.c (rb_class_allocate_instance), range.c: generate sunny T_OBJECT objects. * string.c: add write barriers for T_STRING and generate sunny objects. * variable.c: add write barriers for ivars. * vm_insnhelper.c (vm_setivar): ditto. * include/ruby/ruby.h, debug.c: use two flags FL_WB_PROTECTED and FL_OLDGEN. * node.h (NODE_FL_CREF_PUSHED_BY_EVAL, NODE_FL_CREF_OMOD_SHARED): move flag bits. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40703 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 22:07:47 +04:00
NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
#if SIZEOF_DOUBLE <= SIZEOF_VALUE
flt->float_value = d;
#else
2021-10-26 17:39:43 +03:00
union {
double d;
rb_float_value_type v;
} u = {d};
flt->float_value = u.v;
#endif
OBJ_FREEZE((VALUE)flt);
return (VALUE)flt;
}
/*
* call-seq:
* to_s -> string
*
* Returns a string containing a representation of +self+;
* depending of the value of +self+, the string representation
* may contain:
*
* - A fixed-point number.
* - A number in "scientific notation" (containing an exponent).
* - 'Infinity'.
* - '-Infinity'.
* - 'NaN' (indicating not-a-number).
*
* 3.14.to_s # => "3.14"
* (10.1**50).to_s # => "1.644631821843879e+50"
* (10.1**500).to_s # => "Infinity"
* (-10.1**500).to_s # => "-Infinity"
* (0.0/0.0).to_s # => "NaN"
*
*/
static VALUE
flo_to_s(VALUE flt)
{
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value)) {
static const char minf[] = "-Infinity";
const int pos = (value > 0); /* skip "-" */
return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
}
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
goto exp;
}
return s;
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
return s;
}
/*
* call-seq:
* coerce(other) -> array
*
* Returns a 2-element array containing +other+ converted to a \Float
* and +self+:
*
* f = 3.14 # => 3.14
* f.coerce(2) # => [2.0, 3.14]
* f.coerce(2.0) # => [2.0, 3.14]
* f.coerce(Rational(1, 2)) # => [0.5, 3.14]
* f.coerce(Complex(1, 0)) # => [1.0, 3.14]
*
* Raises an exception if a type conversion fails.
*
*/
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
MJIT_FUNC_EXPORTED VALUE
rb_float_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
/*
* call-seq:
* self + other -> numeric
*
* Returns a new \Float which is the sum of +self+ and +other+:
*
* f = 3.14
* f + 1 # => 4.140000000000001
* f + 1.0 # => 4.140000000000001
* f + Rational(1, 1) # => 4.140000000000001
* f + Complex(1, 0) # => (4.140000000000001+0i)
*
*/
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
VALUE
rb_float_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
/*
* call-seq:
* self - other -> numeric
*
* Returns a new \Float which is the difference of +self+ and +other+:
*
* f = 3.14
* f - 1 # => 2.14
* f - 1.0 # => 2.14
* f - Rational(1, 1) # => 2.14
* f - Complex(1, 0) # => (2.14+0i)
*
*/
VALUE
rb_float_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
/*
* call-seq:
* self * other -> numeric
*
* Returns a new \Float which is the product of +self+ and +other+:
*
* f = 3.14
* f * 2 # => 6.28
* f * 2.0 # => 6.28
* f * Rational(1, 2) # => 1.57
* f * Complex(2, 0) # => (6.28+0.0i)
*/
complex.c: Optimize Complex#* and Complex#** Optimize f_mul for the core numeric class components. This change improves the computation time of Complex#* and Complex#**. ``` $ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby generating known_errors.inc known_errors.inc unchanged /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 6.558M 13.012M i/s - 1.000M times in 0.152480s 0.076850s complex_float_div 576.821k 567.969k i/s - 1.000M times in 1.733640s 1.760660s complex_float_mul 1.690M 2.628M i/s - 1.000M times in 0.591786s 0.380579s complex_float_new 1.350M 1.268M i/s - 1.000M times in 0.740669s 0.788762s complex_float_power 1.571M 1.835M i/s - 1.000M times in 0.636507s 0.544909s complex_float_sub 8.635M 8.779M i/s - 1.000M times in 0.115814s 0.113906s Comparison: complex_float_add built-ruby: 13012361.7 i/s compare-ruby: 6558237.1 i/s - 1.98x slower complex_float_div compare-ruby: 576821.0 i/s built-ruby: 567968.8 i/s - 1.02x slower complex_float_mul built-ruby: 2627575.4 i/s compare-ruby: 1689800.0 i/s - 1.55x slower complex_float_new compare-ruby: 1350130.8 i/s built-ruby: 1267809.6 i/s - 1.06x slower complex_float_power built-ruby: 1835168.8 i/s compare-ruby: 1571074.6 i/s - 1.17x slower complex_float_sub built-ruby: 8779168.8 i/s compare-ruby: 8634534.7 i/s - 1.02x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66697 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-03 09:19:17 +03:00
VALUE
rb_float_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
static double
double_div_double(double x, double y)
{
if (LIKELY(y != 0.0)) {
return x / y;
}
else if (x == 0.0) {
return nan("");
}
else {
double z = signbit(y) ? -1.0 : 1.0;
return x * z * HUGE_VAL;
}
}
MJIT_FUNC_EXPORTED VALUE
rb_flo_div_flo(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
double den = RFLOAT_VALUE(y);
double ret = double_div_double(num, den);
return DBL2NUM(ret);
}
/*
* call-seq:
* self / other -> numeric
*
* Returns a new \Float which is the result of dividing +self+ by +other+:
*
* f = 3.14
* f / 2 # => 1.57
* f / 2.0 # => 1.57
* f / Rational(2, 1) # => 1.57
* f / Complex(2, 0) # => (1.57+0.0i)
*
*/
2019-08-10 08:30:34 +03:00
VALUE
rb_float_div(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
double den;
double ret;
if (FIXNUM_P(y)) {
den = FIX2LONG(y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
den = rb_big2dbl(y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
den = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '/');
}
ret = double_div_double(num, den);
return DBL2NUM(ret);
}
/*
* call-seq:
* quo(other) -> numeric
*
* Returns the quotient from dividing +self+ by +other+:
*
* f = 3.14
* f.quo(2) # => 1.57
* f.quo(-2) # => -1.57
* f.quo(Rational(2, 1)) # => 1.57
* f.quo(Complex(2, 0)) # => (1.57+0.0i)
*
* Float#fdiv is an alias for Float#quo.
*
*/
static VALUE
flo_quo(VALUE x, VALUE y)
{
return num_funcall1(x, '/', y);
}
static void
flodivmod(double x, double y, double *divp, double *modp)
{
double div, mod;
if (isnan(y)) {
/* y is NaN so all results are NaN */
if (modp) *modp = y;
if (divp) *divp = y;
return;
}
if (y == 0.0) rb_num_zerodiv();
if ((x == 0.0) || (isinf(y) && !isinf(x)))
mod = x;
else {
#ifdef HAVE_FMOD
mod = fmod(x, y);
#else
double z;
modf(x/y, &z);
* eval.c (block_pass): should not downgrade safe level. * ext/dbm/extconf.rb: allow specifying dbm-type explicitly. * ext/dbm/extconf.rb: avoid gdbm if possible, because it leaks memory, whereas gdbm.so doesn't. potential incompatibility. * string.c (rb_str_insert): new method. * parse.y (yylex): lex_state after RESCUE_MOD should be EXPR_BEG. * array.c (rb_ary_insert): new method. * array.c (rb_ary_update): new utility function. * io.c (set_outfile): should check if closed before assignment. * eval.c (rb_eval): should preserve value of ruby_errinfo. * eval.c (rb_thread_schedule): infinite sleep should not cause dead lock. * array.c (rb_ary_flatten_bang): proper recursive detection. * eval.c (yield_under): need not to prohibit at safe level 4. * pack.c (pack_pack): p/P packs nil into NULL. * pack.c (pack_unpack): p/P unpacks NULL into nil. * pack.c (pack_pack): size check for P template. * ruby.c (set_arg0): wrong predicate when new $0 value is bigger than original space. * gc.c (id2ref): should use NUM2ULONG() * object.c (rb_mod_const_get): check whether name is a class variable name. * object.c (rb_mod_const_set): ditto. * object.c (rb_mod_const_defined): ditto. * marshal.c (w_float): precision changed to "%.16g" * eval.c (rb_call0): wrong retry behavior. * numeric.c (fix_aref): a bug on long>int architecture. * eval.c (rb_eval_string_wrap): should restore ruby_wrapper. * regex.c (re_compile_pattern): char class at either edge of range should be invalid. * eval.c (handle_rescue): use === to compare exception match. * error.c (syserr_eqq): comparison between SytemCallErrors should based on their error numbers. * eval.c (safe_getter): should use INT2NUM(). * bignum.c (rb_big2long): 2**31 cannot fit in 31 bit long. * regex.c (calculate_must_string): wrong length calculation. * eval.c (rb_thread_start_0): fixed memory leak. * parse.y (none): should clear cmdarg_stack too. * io.c (rb_fopen): use setvbuf() to avoid recursive malloc() on some platforms. * file.c (rb_stat_dev): device functions should honor stat field types (except long long such as dev_t). * eval.c (rb_mod_nesting): should not push nil for nesting array. * eval.c (rb_mod_s_constants): should not search array by rb_mod_const_at() for nil (happens for singleton class). * class.c (rb_singleton_class_attached): should modify iv_tbl by itself, no longer use rb_iv_set() to avoid freeze check error. * variable.c (rb_const_get): error message "uninitialized constant Foo at Bar::Baz" instead of "uninitialized constantBar::Baz::Foo". * eval.c (rb_mod_included): new hook called from rb_mod_include(). * io.c (opt_i_set): should strdup() inplace_edit string. * eval.c (exec_under): need to push cref too. * eval.c (rb_f_missing): raise NameError for "undefined local variable or method". * error.c (Init_Exception): new exception NoMethodError. NameError moved under ScriptError again. * eval.c (rb_f_missing): use NoMethodError instead of NameError. * file.c (Init_File): should redifine "new" class method. * eval.c (PUSH_CREF): sharing cref node was problematic. maintain runtime cref list instead. * eval.c (rb_eval): copy defn node before registering. * eval.c (rb_load): clear ruby_cref before loading. * variable.c (rb_const_get): no recursion to show full class path for modules. * eval.c (rb_set_safe_level): should set safe level in curr_thread as well. * eval.c (safe_setter): ditto. * object.c (rb_obj_is_instance_of): nil belongs to false, not true. * time.c (make_time_t): proper (I hope) daylight saving time handling for both US and Europe. I HATE DST! * eval.c (rb_thread_wait_for): non blocked signal interrupt should stop the interval. * eval.c (proc_eq): class check aded. * eval.c (proc_eq): typo fixed ("return" was ommitted). * error.c (Init_Exception): move NameError under StandardError. * class.c (rb_mod_clone): should copy method bodies too. * bignum.c (bigdivrem): should trim trailing zero bdigits of remainder, even if dd == 0. * file.c (check3rdbyte): safe string check moved here. * time.c (make_time_t): remove HAVE_TM_ZONE code since it sometimes reports wrong time. * time.c (make_time_t): remove unnecessary range check for platforms where negative time_t is available. * process.c (proc_waitall): should push Process::Status instead of Finuxm status. * process.c (waitall_each): should add all entries in pid_tbl. these changes are inspired by Koji Arai. Thanks. * process.c (proc_wait): should not iterate if pid_tbl is 0. * process.c (proc_waitall): ditto. * numeric.c (flodivmod): a bug in no fmod case. * process.c (pst_wifsignaled): should apply WIFSIGNALED for status (int), not st (VALUE). * io.c (Init_IO): value of $/ and $\ are no longer restricted to strings. type checks are done on demand. * class.c (rb_include_module): module inclusion should be check taints. * ruby.h (STR2CSTR): replace to StringType() and StringTypePtr(). * ruby.h (rb_str2cstr): ditto. * eval.c (rb_load): should not copy topleve local variables. It cause variable/method ambiguity. Thanks to L. Peter Deutsch. * class.c (rb_include_module): freeze check at first. * eval.c (rb_attr): sprintf() and rb_intern() moved into conditional body. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1356 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2001-05-02 08:22:21 +04:00
mod = x - z * y;
#endif
}
if (isinf(x) && !isinf(y))
div = x;
else {
div = (x - mod) / y;
if (modp && divp) div = round(div);
}
if (y*mod < 0) {
mod += y;
div -= 1.0;
}
if (modp) *modp = mod;
if (divp) *divp = div;
}
/*
* Returns the modulo of division of x by y.
* An error will be raised if y == 0.
*/
mjit_compile.c: merge initial JIT compiler which has been developed by Takashi Kokubun <takashikkbn@gmail> as YARV-MJIT. Many of its bugs are fixed by wanabe <s.wanabe@gmail.com>. This JIT compiler is designed to be a safe migration path to introduce JIT compiler to MRI. So this commit does not include any bytecode changes or dynamic instruction modifications, which are done in original MJIT. This commit even strips off some aggressive optimizations from YARV-MJIT, and thus it's slower than YARV-MJIT too. But it's still fairly faster than Ruby 2.5 in some benchmarks (attached below). Note that this JIT compiler passes `make test`, `make test-all`, `make test-spec` without JIT, and even with JIT. Not only it's perfectly safe with JIT disabled because it does not replace VM instructions unlike MJIT, but also with JIT enabled it stably runs Ruby applications including Rails applications. I'm expecting this version as just "initial" JIT compiler. I have many optimization ideas which are skipped for initial merging, and you may easily replace this JIT compiler with a faster one by just replacing mjit_compile.c. `mjit_compile` interface is designed for the purpose. common.mk: update dependencies for mjit_compile.c. internal.h: declare `rb_vm_insn_addr2insn` for MJIT. vm.c: exclude some definitions if `-DMJIT_HEADER` is provided to compiler. This avoids to include some functions which take a long time to compile, e.g. vm_exec_core. Some of the purpose is achieved in transform_mjit_header.rb (see `IGNORED_FUNCTIONS`) but others are manually resolved for now. Load mjit_helper.h for MJIT header. mjit_helper.h: New. This is a file used only by JIT-ed code. I'll refactor `mjit_call_cfunc` later. vm_eval.c: add some #ifdef switches to skip compiling some functions like Init_vm_eval. win32/mkexports.rb: export thread/ec functions, which are used by MJIT. include/ruby/defines.h: add MJIT_FUNC_EXPORTED macro alis to clarify that a function is exported only for MJIT. array.c: export a function used by MJIT. bignum.c: ditto. class.c: ditto. compile.c: ditto. error.c: ditto. gc.c: ditto. hash.c: ditto. iseq.c: ditto. numeric.c: ditto. object.c: ditto. proc.c: ditto. re.c: ditto. st.c: ditto. string.c: ditto. thread.c: ditto. variable.c: ditto. vm_backtrace.c: ditto. vm_insnhelper.c: ditto. vm_method.c: ditto. I would like to improve maintainability of function exports, but I believe this way is acceptable as initial merging if we clarify the new exports are for MJIT (so that we can use them as TODO list to fix) and add unit tests to detect unresolved symbols. I'll add unit tests of JIT compilations in succeeding commits. Author: Takashi Kokubun <takashikkbn@gmail.com> Contributor: wanabe <s.wanabe@gmail.com> Part of [Feature #14235] --- * Known issues * Code generated by gcc is faster than clang. The benchmark may be worse in macOS. Following benchmark result is provided by gcc w/ Linux. * Performance is decreased when Google Chrome is running * JIT can work on MinGW, but it doesn't improve performance at least in short running benchmark. * Currently it doesn't perform well with Rails. We'll try to fix this before release. --- * Benchmark reslts Benchmarked with: Intel 4.0GHz i7-4790K with 16GB memory under x86-64 Ubuntu 8 Cores - 2.0.0-p0: Ruby 2.0.0-p0 - r62186: Ruby trunk (early 2.6.0), before MJIT changes - JIT off: On this commit, but without `--jit` option - JIT on: On this commit, and with `--jit` option ** Optcarrot fps Benchmark: https://github.com/mame/optcarrot | |2.0.0-p0 |r62186 |JIT off |JIT on | |:--------|:--------|:--------|:--------|:--------| |fps |37.32 |51.46 |51.31 |58.88 | |vs 2.0.0 |1.00x |1.38x |1.37x |1.58x | ** MJIT benchmarks Benchmark: https://github.com/benchmark-driver/mjit-benchmarks (Original: https://github.com/vnmakarov/ruby/tree/rtl_mjit_branch/MJIT-benchmarks) | |2.0.0-p0 |r62186 |JIT off |JIT on | |:----------|:--------|:--------|:--------|:--------| |aread |1.00 |1.09 |1.07 |2.19 | |aref |1.00 |1.13 |1.11 |2.22 | |aset |1.00 |1.50 |1.45 |2.64 | |awrite |1.00 |1.17 |1.13 |2.20 | |call |1.00 |1.29 |1.26 |2.02 | |const2 |1.00 |1.10 |1.10 |2.19 | |const |1.00 |1.11 |1.10 |2.19 | |fannk |1.00 |1.04 |1.02 |1.00 | |fib |1.00 |1.32 |1.31 |1.84 | |ivread |1.00 |1.13 |1.12 |2.43 | |ivwrite |1.00 |1.23 |1.21 |2.40 | |mandelbrot |1.00 |1.13 |1.16 |1.28 | |meteor |1.00 |2.97 |2.92 |3.17 | |nbody |1.00 |1.17 |1.15 |1.49 | |nest-ntimes|1.00 |1.22 |1.20 |1.39 | |nest-while |1.00 |1.10 |1.10 |1.37 | |norm |1.00 |1.18 |1.16 |1.24 | |nsvb |1.00 |1.16 |1.16 |1.17 | |red-black |1.00 |1.02 |0.99 |1.12 | |sieve |1.00 |1.30 |1.28 |1.62 | |trees |1.00 |1.14 |1.13 |1.19 | |while |1.00 |1.12 |1.11 |2.41 | ** Discourse's script/bench.rb Benchmark: https://github.com/discourse/discourse/blob/v1.8.7/script/bench.rb NOTE: Rails performance was somehow a little degraded with JIT for now. We should fix this. (At least I know opt_aref is performing badly in JIT and I have an idea to fix it. Please wait for the fix.) *** JIT off Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 17 75: 18 90: 22 99: 29 home_admin: 50: 21 75: 21 90: 27 99: 40 topic_admin: 50: 17 75: 18 90: 22 99: 32 categories: 50: 35 75: 41 90: 43 99: 77 home: 50: 39 75: 46 90: 49 99: 95 topic: 50: 46 75: 52 90: 56 99: 101 *** JIT on Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 19 75: 21 90: 25 99: 33 home_admin: 50: 24 75: 26 90: 30 99: 35 topic_admin: 50: 19 75: 20 90: 25 99: 30 categories: 50: 40 75: 44 90: 48 99: 76 home: 50: 42 75: 48 90: 51 99: 89 topic: 50: 49 75: 55 90: 58 99: 99 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62197 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 14:22:28 +03:00
MJIT_FUNC_EXPORTED double
ruby_float_mod(double x, double y)
{
double mod;
flodivmod(x, y, 0, &mod);
return mod;
}
/*
* call-seq:
* self % other -> float
*
* Returns +self+ modulo +other+ as a float.
*
* For float +f+ and real number +r+, these expressions are equivalent:
*
* f % r
* f-r*(f/r).floor
* f.divmod(r)[1]
*
* See Numeric#divmod.
*
* Examples:
*
* 10.0 % 2 # => 0.0
* 10.0 % 3 # => 1.0
* 10.0 % 4 # => 2.0
*
* 10.0 % -2 # => 0.0
* 10.0 % -3 # => -2.0
* 10.0 % -4 # => -2.0
*
* 10.0 % 4.0 # => 2.0
* 10.0 % Rational(4, 1) # => 2.0
*
* Float#modulo is an alias for Float#%.
*
*/
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (FIXNUM_P(y)) {
fy = (double)FIX2LONG(y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
fy = rb_big2dbl(y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
static VALUE
dbl2ival(double d)
{
if (FIXABLE(d)) {
return LONG2FIX((long)d);
}
return rb_dbl2big(d);
}
/*
* call-seq:
* divmod(other) -> array
*
* Returns a 2-element array <tt>[q, r]</tt>, where
*
* q = (self/other).floor # Quotient
* r = self % other # Remainder
*
* Examples:
*
* 11.0.divmod(4) # => [2, 3.0]
* 11.0.divmod(-4) # => [-3, -1.0]
* -11.0.divmod(4) # => [-3, 1.0]
* -11.0.divmod(-4) # => [2, -3.0]
*
* 12.0.divmod(4) # => [3, 0.0]
* 12.0.divmod(-4) # => [-3, 0.0]
* -12.0.divmod(4) # => [-3, -0.0]
* -12.0.divmod(-4) # => [3, -0.0]
*
* 13.0.divmod(4.0) # => [3, 1.0]
* 13.0.divmod(Rational(4, 1)) # => [3, 1.0]
*
*/
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
if (FIXNUM_P(y)) {
fy = (double)FIX2LONG(y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
fy = rb_big2dbl(y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
/*
* call-seq:
* self ** other -> numeric
*
* Raises +self+ to the power of +other+:
*
* f = 3.14
* f ** 2 # => 9.8596
* f ** -2 # => 0.1014239928597509
* f ** 2.1 # => 11.054834900588839
* f ** Rational(2, 1) # => 9.8596
* f ** Complex(2, 0) # => (9.8596+0i)
*
*/
VALUE
rb_float_pow(VALUE x, VALUE y)
{
double dx, dy;
if (y == INT2FIX(2)) {
dx = RFLOAT_VALUE(x);
return DBL2NUM(dx * dx);
}
else if (FIXNUM_P(y)) {
dx = RFLOAT_VALUE(x);
dy = (double)FIX2LONG(y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
dx = RFLOAT_VALUE(x);
dy = rb_big2dbl(y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
}
else {
return rb_num_coerce_bin(x, y, idPow);
}
return DBL2NUM(pow(dx, dy));
}
/*
* call-seq:
* eql?(other) -> true or false
*
* Returns +true+ if +self+ and +other+ are the same type and have equal values.
*
* Of the Core and Standard Library classes,
* only Integer, Rational, and Complex use this implementation.
*
* Examples:
*
* 1.eql?(1) # => true
* 1.eql?(1.0) # => false
* 1.eql?(Rational(1, 1)) # => false
* 1.eql?(Complex(1, 0)) # => false
*
* \Method +eql?+ is different from +==+ in that +eql?+ requires matching types,
* while +==+ does not.
*
*/
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eql(x, y);
}
return rb_equal(x, y);
}
/*
* call-seq:
* self <=> other -> zero or nil
*
* Returns zero if +self+ is the same as +other+, +nil+ otherwise.
*
* No subclass in the Ruby Core or Standard Library uses this implementation.
*
*/
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
static VALUE
num_equal(VALUE x, VALUE y)
{
VALUE result;
if (x == y) return Qtrue;
result = num_funcall1(y, id_eq, x);
2021-08-02 06:06:44 +03:00
return RBOOL(RTEST(result));
}
/*
* call-seq:
* self == other -> true or false
*
* Returns +true+ if +other+ has the same value as +self+, +false+ otherwise:
*
* 2.0 == 2 # => true
* 2.0 == 2.0 # => true
* 2.0 == Rational(2, 1) # => true
* 2.0 == Complex(2, 0) # => true
*
* <tt>Float::NAN == Float::NAN</tt> returns an implementation-dependent value.
*
* Related: Float#eql? (requires +other+ to be a \Float).
*
*/
mjit_compile.c: merge initial JIT compiler which has been developed by Takashi Kokubun <takashikkbn@gmail> as YARV-MJIT. Many of its bugs are fixed by wanabe <s.wanabe@gmail.com>. This JIT compiler is designed to be a safe migration path to introduce JIT compiler to MRI. So this commit does not include any bytecode changes or dynamic instruction modifications, which are done in original MJIT. This commit even strips off some aggressive optimizations from YARV-MJIT, and thus it's slower than YARV-MJIT too. But it's still fairly faster than Ruby 2.5 in some benchmarks (attached below). Note that this JIT compiler passes `make test`, `make test-all`, `make test-spec` without JIT, and even with JIT. Not only it's perfectly safe with JIT disabled because it does not replace VM instructions unlike MJIT, but also with JIT enabled it stably runs Ruby applications including Rails applications. I'm expecting this version as just "initial" JIT compiler. I have many optimization ideas which are skipped for initial merging, and you may easily replace this JIT compiler with a faster one by just replacing mjit_compile.c. `mjit_compile` interface is designed for the purpose. common.mk: update dependencies for mjit_compile.c. internal.h: declare `rb_vm_insn_addr2insn` for MJIT. vm.c: exclude some definitions if `-DMJIT_HEADER` is provided to compiler. This avoids to include some functions which take a long time to compile, e.g. vm_exec_core. Some of the purpose is achieved in transform_mjit_header.rb (see `IGNORED_FUNCTIONS`) but others are manually resolved for now. Load mjit_helper.h for MJIT header. mjit_helper.h: New. This is a file used only by JIT-ed code. I'll refactor `mjit_call_cfunc` later. vm_eval.c: add some #ifdef switches to skip compiling some functions like Init_vm_eval. win32/mkexports.rb: export thread/ec functions, which are used by MJIT. include/ruby/defines.h: add MJIT_FUNC_EXPORTED macro alis to clarify that a function is exported only for MJIT. array.c: export a function used by MJIT. bignum.c: ditto. class.c: ditto. compile.c: ditto. error.c: ditto. gc.c: ditto. hash.c: ditto. iseq.c: ditto. numeric.c: ditto. object.c: ditto. proc.c: ditto. re.c: ditto. st.c: ditto. string.c: ditto. thread.c: ditto. variable.c: ditto. vm_backtrace.c: ditto. vm_insnhelper.c: ditto. vm_method.c: ditto. I would like to improve maintainability of function exports, but I believe this way is acceptable as initial merging if we clarify the new exports are for MJIT (so that we can use them as TODO list to fix) and add unit tests to detect unresolved symbols. I'll add unit tests of JIT compilations in succeeding commits. Author: Takashi Kokubun <takashikkbn@gmail.com> Contributor: wanabe <s.wanabe@gmail.com> Part of [Feature #14235] --- * Known issues * Code generated by gcc is faster than clang. The benchmark may be worse in macOS. Following benchmark result is provided by gcc w/ Linux. * Performance is decreased when Google Chrome is running * JIT can work on MinGW, but it doesn't improve performance at least in short running benchmark. * Currently it doesn't perform well with Rails. We'll try to fix this before release. --- * Benchmark reslts Benchmarked with: Intel 4.0GHz i7-4790K with 16GB memory under x86-64 Ubuntu 8 Cores - 2.0.0-p0: Ruby 2.0.0-p0 - r62186: Ruby trunk (early 2.6.0), before MJIT changes - JIT off: On this commit, but without `--jit` option - JIT on: On this commit, and with `--jit` option ** Optcarrot fps Benchmark: https://github.com/mame/optcarrot | |2.0.0-p0 |r62186 |JIT off |JIT on | |:--------|:--------|:--------|:--------|:--------| |fps |37.32 |51.46 |51.31 |58.88 | |vs 2.0.0 |1.00x |1.38x |1.37x |1.58x | ** MJIT benchmarks Benchmark: https://github.com/benchmark-driver/mjit-benchmarks (Original: https://github.com/vnmakarov/ruby/tree/rtl_mjit_branch/MJIT-benchmarks) | |2.0.0-p0 |r62186 |JIT off |JIT on | |:----------|:--------|:--------|:--------|:--------| |aread |1.00 |1.09 |1.07 |2.19 | |aref |1.00 |1.13 |1.11 |2.22 | |aset |1.00 |1.50 |1.45 |2.64 | |awrite |1.00 |1.17 |1.13 |2.20 | |call |1.00 |1.29 |1.26 |2.02 | |const2 |1.00 |1.10 |1.10 |2.19 | |const |1.00 |1.11 |1.10 |2.19 | |fannk |1.00 |1.04 |1.02 |1.00 | |fib |1.00 |1.32 |1.31 |1.84 | |ivread |1.00 |1.13 |1.12 |2.43 | |ivwrite |1.00 |1.23 |1.21 |2.40 | |mandelbrot |1.00 |1.13 |1.16 |1.28 | |meteor |1.00 |2.97 |2.92 |3.17 | |nbody |1.00 |1.17 |1.15 |1.49 | |nest-ntimes|1.00 |1.22 |1.20 |1.39 | |nest-while |1.00 |1.10 |1.10 |1.37 | |norm |1.00 |1.18 |1.16 |1.24 | |nsvb |1.00 |1.16 |1.16 |1.17 | |red-black |1.00 |1.02 |0.99 |1.12 | |sieve |1.00 |1.30 |1.28 |1.62 | |trees |1.00 |1.14 |1.13 |1.19 | |while |1.00 |1.12 |1.11 |2.41 | ** Discourse's script/bench.rb Benchmark: https://github.com/discourse/discourse/blob/v1.8.7/script/bench.rb NOTE: Rails performance was somehow a little degraded with JIT for now. We should fix this. (At least I know opt_aref is performing badly in JIT and I have an idea to fix it. Please wait for the fix.) *** JIT off Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 17 75: 18 90: 22 99: 29 home_admin: 50: 21 75: 21 90: 27 99: 40 topic_admin: 50: 17 75: 18 90: 22 99: 32 categories: 50: 35 75: 41 90: 43 99: 77 home: 50: 39 75: 46 90: 49 99: 95 topic: 50: 46 75: 52 90: 56 99: 101 *** JIT on Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 19 75: 21 90: 25 99: 33 home_admin: 50: 24 75: 26 90: 30 99: 35 topic_admin: 50: 19 75: 20 90: 25 99: 30 categories: 50: 40 75: 44 90: 48 99: 76 home: 50: 42 75: 48 90: 51 99: 89 topic: 50: 49 75: 55 90: 58 99: 99 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62197 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 14:22:28 +03:00
MJIT_FUNC_EXPORTED VALUE
rb_float_equal(VALUE x, VALUE y)
{
volatile double a, b;
if (RB_INTEGER_TYPE_P(y)) {
return rb_integer_float_eq(y, x);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a == b);
}
#define flo_eq rb_float_equal
static VALUE rb_dbl_hash(double d);
/*
* call-seq:
* hash -> integer
*
* Returns the integer hash value for +self+.
*
* See also Object#hash.
*/
static VALUE
flo_hash(VALUE num)
{
return rb_dbl_hash(RFLOAT_VALUE(num));
}
static VALUE
rb_dbl_hash(double d)
{
return ST2FIX(rb_dbl_long_hash(d));
}
VALUE
rb_dbl_cmp(double a, double b)
{
if (isnan(a) || isnan(b)) return Qnil;
if (a == b) return INT2FIX(0);
if (a > b) return INT2FIX(1);
if (a < b) return INT2FIX(-1);
return Qnil;
}
/*
* call-seq:
* self <=> other -> -1, 0, +1, or nil
*
* Returns a value that depends on the numeric relation
* between +self+ and +other+:
*
* - -1, if +self+ is less than +other+.
* - 0, if +self+ is equal to +other+.
* - 1, if +self+ is greater than +other+.
* - +nil+, if the two values are incommensurate.
*
* Examples:
*
* 2.0 <=> 2 # => 0
2.0 <=> 2.0 # => 0
2.0 <=> Rational(2, 1) # => 0
2.0 <=> Complex(2, 0) # => 0
2.0 <=> 1.9 # => 1
2.0 <=> 2.1 # => -1
2.0 <=> 'foo' # => nil
*
* This is the basis for the tests in the Comparable module.
*
* <tt>Float::NAN <=> Float::NAN</tt> returns an implementation-dependent value.
*
*/
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return LONG2FIX(-FIX2LONG(rel));
return rel;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
mjit_compile.c: merge initial JIT compiler which has been developed by Takashi Kokubun <takashikkbn@gmail> as YARV-MJIT. Many of its bugs are fixed by wanabe <s.wanabe@gmail.com>. This JIT compiler is designed to be a safe migration path to introduce JIT compiler to MRI. So this commit does not include any bytecode changes or dynamic instruction modifications, which are done in original MJIT. This commit even strips off some aggressive optimizations from YARV-MJIT, and thus it's slower than YARV-MJIT too. But it's still fairly faster than Ruby 2.5 in some benchmarks (attached below). Note that this JIT compiler passes `make test`, `make test-all`, `make test-spec` without JIT, and even with JIT. Not only it's perfectly safe with JIT disabled because it does not replace VM instructions unlike MJIT, but also with JIT enabled it stably runs Ruby applications including Rails applications. I'm expecting this version as just "initial" JIT compiler. I have many optimization ideas which are skipped for initial merging, and you may easily replace this JIT compiler with a faster one by just replacing mjit_compile.c. `mjit_compile` interface is designed for the purpose. common.mk: update dependencies for mjit_compile.c. internal.h: declare `rb_vm_insn_addr2insn` for MJIT. vm.c: exclude some definitions if `-DMJIT_HEADER` is provided to compiler. This avoids to include some functions which take a long time to compile, e.g. vm_exec_core. Some of the purpose is achieved in transform_mjit_header.rb (see `IGNORED_FUNCTIONS`) but others are manually resolved for now. Load mjit_helper.h for MJIT header. mjit_helper.h: New. This is a file used only by JIT-ed code. I'll refactor `mjit_call_cfunc` later. vm_eval.c: add some #ifdef switches to skip compiling some functions like Init_vm_eval. win32/mkexports.rb: export thread/ec functions, which are used by MJIT. include/ruby/defines.h: add MJIT_FUNC_EXPORTED macro alis to clarify that a function is exported only for MJIT. array.c: export a function used by MJIT. bignum.c: ditto. class.c: ditto. compile.c: ditto. error.c: ditto. gc.c: ditto. hash.c: ditto. iseq.c: ditto. numeric.c: ditto. object.c: ditto. proc.c: ditto. re.c: ditto. st.c: ditto. string.c: ditto. thread.c: ditto. variable.c: ditto. vm_backtrace.c: ditto. vm_insnhelper.c: ditto. vm_method.c: ditto. I would like to improve maintainability of function exports, but I believe this way is acceptable as initial merging if we clarify the new exports are for MJIT (so that we can use them as TODO list to fix) and add unit tests to detect unresolved symbols. I'll add unit tests of JIT compilations in succeeding commits. Author: Takashi Kokubun <takashikkbn@gmail.com> Contributor: wanabe <s.wanabe@gmail.com> Part of [Feature #14235] --- * Known issues * Code generated by gcc is faster than clang. The benchmark may be worse in macOS. Following benchmark result is provided by gcc w/ Linux. * Performance is decreased when Google Chrome is running * JIT can work on MinGW, but it doesn't improve performance at least in short running benchmark. * Currently it doesn't perform well with Rails. We'll try to fix this before release. --- * Benchmark reslts Benchmarked with: Intel 4.0GHz i7-4790K with 16GB memory under x86-64 Ubuntu 8 Cores - 2.0.0-p0: Ruby 2.0.0-p0 - r62186: Ruby trunk (early 2.6.0), before MJIT changes - JIT off: On this commit, but without `--jit` option - JIT on: On this commit, and with `--jit` option ** Optcarrot fps Benchmark: https://github.com/mame/optcarrot | |2.0.0-p0 |r62186 |JIT off |JIT on | |:--------|:--------|:--------|:--------|:--------| |fps |37.32 |51.46 |51.31 |58.88 | |vs 2.0.0 |1.00x |1.38x |1.37x |1.58x | ** MJIT benchmarks Benchmark: https://github.com/benchmark-driver/mjit-benchmarks (Original: https://github.com/vnmakarov/ruby/tree/rtl_mjit_branch/MJIT-benchmarks) | |2.0.0-p0 |r62186 |JIT off |JIT on | |:----------|:--------|:--------|:--------|:--------| |aread |1.00 |1.09 |1.07 |2.19 | |aref |1.00 |1.13 |1.11 |2.22 | |aset |1.00 |1.50 |1.45 |2.64 | |awrite |1.00 |1.17 |1.13 |2.20 | |call |1.00 |1.29 |1.26 |2.02 | |const2 |1.00 |1.10 |1.10 |2.19 | |const |1.00 |1.11 |1.10 |2.19 | |fannk |1.00 |1.04 |1.02 |1.00 | |fib |1.00 |1.32 |1.31 |1.84 | |ivread |1.00 |1.13 |1.12 |2.43 | |ivwrite |1.00 |1.23 |1.21 |2.40 | |mandelbrot |1.00 |1.13 |1.16 |1.28 | |meteor |1.00 |2.97 |2.92 |3.17 | |nbody |1.00 |1.17 |1.15 |1.49 | |nest-ntimes|1.00 |1.22 |1.20 |1.39 | |nest-while |1.00 |1.10 |1.10 |1.37 | |norm |1.00 |1.18 |1.16 |1.24 | |nsvb |1.00 |1.16 |1.16 |1.17 | |red-black |1.00 |1.02 |0.99 |1.12 | |sieve |1.00 |1.30 |1.28 |1.62 | |trees |1.00 |1.14 |1.13 |1.19 | |while |1.00 |1.12 |1.11 |2.41 | ** Discourse's script/bench.rb Benchmark: https://github.com/discourse/discourse/blob/v1.8.7/script/bench.rb NOTE: Rails performance was somehow a little degraded with JIT for now. We should fix this. (At least I know opt_aref is performing badly in JIT and I have an idea to fix it. Please wait for the fix.) *** JIT off Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 17 75: 18 90: 22 99: 29 home_admin: 50: 21 75: 21 90: 27 99: 40 topic_admin: 50: 17 75: 18 90: 22 99: 32 categories: 50: 35 75: 41 90: 43 99: 77 home: 50: 39 75: 46 90: 49 99: 95 topic: 50: 46 75: 52 90: 56 99: 101 *** JIT on Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 19 75: 21 90: 25 99: 33 home_admin: 50: 24 75: 26 90: 30 99: 35 topic_admin: 50: 19 75: 20 90: 25 99: 30 categories: 50: 40 75: 44 90: 48 99: 76 home: 50: 42 75: 48 90: 51 99: 89 topic: 50: 49 75: 55 90: 58 99: 99 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62197 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 14:22:28 +03:00
MJIT_FUNC_EXPORTED int
rb_float_cmp(VALUE x, VALUE y)
{
return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y));
}
/*
* call-seq:
* self > other -> true or false
*
* Returns +true+ if +self+ is numerically greater than +other+:
*
* 2.0 > 1 # => true
* 2.0 > 1.0 # => true
* 2.0 > Rational(1, 2) # => true
* 2.0 > 2.0 # => false
*
* <tt>Float::NAN > Float::NAN</tt> returns an implementation-dependent value.
*
*/
VALUE
rb_float_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
2021-08-02 06:06:44 +03:00
return RBOOL(-FIX2LONG(rel) > 0);
return Qfalse;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '>');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a > b);
}
/*
* call-seq:
* self >= other -> true or false
*
* Returns +true+ if +self+ is numerically greater than or equal to +other+:
*
* 2.0 >= 1 # => true
* 2.0 >= 1.0 # => true
* 2.0 >= Rational(1, 2) # => true
* 2.0 >= 2.0 # => true
* 2.0 >= 2.1 # => false
*
* <tt>Float::NAN >= Float::NAN</tt> returns an implementation-dependent value.
*
*/
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
2021-09-03 14:50:12 +03:00
if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
2021-08-02 06:06:44 +03:00
return RBOOL(-FIX2LONG(rel) >= 0);
return Qfalse;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a >= b);
}
/*
* call-seq:
* self < other -> true or false
*
* Returns +true+ if +self+ is numerically less than +other+:
*
* 2.0 < 3 # => true
* 2.0 < 3.0 # => true
* 2.0 < Rational(3, 1) # => true
* 2.0 < 2.0 # => false
*
* <tt>Float::NAN < Float::NAN</tt> returns an implementation-dependent value.
*
*/
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
2021-08-02 06:06:44 +03:00
return RBOOL(-FIX2LONG(rel) < 0);
return Qfalse;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '<');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a < b);
}
/*
* call-seq:
* self <= other -> true or false
*
* Returns +true+ if +self+ is numerically less than or equal to +other+:
*
* 2.0 <= 3 # => true
* 2.0 <= 3.0 # => true
* 2.0 <= Rational(3, 1) # => true
* 2.0 <= 2.0 # => true
* 2.0 <= 1.0 # => false
*
* <tt>Float::NAN <= Float::NAN</tt> returns an implementation-dependent value.
*
*/
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
2021-08-02 06:06:44 +03:00
return RBOOL(-FIX2LONG(rel) <= 0);
return Qfalse;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a <= b);
}
/*
* call-seq:
* eql?(other) -> true or false
*
* Returns +true+ if +other+ is a \Float with the same value as +self+,
* +false+ otherwise:
*
* 2.0.eql?(2.0) # => true
* 2.0.eql?(1.0) # => false
* 2.0.eql?(1) # => false
* 2.0.eql?(Rational(2, 1)) # => false
* 2.0.eql?(Complex(2, 0)) # => false
*
* <tt>Float::NAN.eql?(Float::NAN)</tt> returns an implementation-dependent value.
*
* Related: Float#== (performs type conversions).
*/
MJIT_FUNC_EXPORTED VALUE
rb_float_eql(VALUE x, VALUE y)
{
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(y)) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
if (isnan(a) || isnan(b)) return Qfalse;
#endif
2021-09-15 02:11:05 +03:00
return RBOOL(a == b);
}
return Qfalse;
}
#define flo_eql rb_float_eql
MJIT_FUNC_EXPORTED VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
/*
* call-seq:
* nan? -> true or false
*
* Returns +true+ if +self+ is a NaN, +false+ otherwise.
*
* f = -1.0 #=> -1.0
* f.nan? #=> false
* f = 0.0/0.0 #=> NaN
* f.nan? #=> true
*/
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
2021-08-02 06:06:44 +03:00
return RBOOL(isnan(value));
}
/*
* call-seq:
* infinite? -> -1, 1, or nil
*
* Returns:
*
* - 1, if +self+ is <tt>Infinity</tt>.
* - -1 if +self+ is <tt>-Infinity</tt>.
* - +nil+, otherwise.
*
* Examples:
*
* f = 1.0/0.0 # => Infinity
* f.infinite? # => 1
* f = -1.0/0.0 # => -Infinity
* f.infinite? # => -1
* f = 1.0 # => 1.0
* f.infinite? # => nil
* f = 0.0/0.0 # => NaN
* f.infinite? # => nil
*
*/
VALUE
rb_flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
/*
* call-seq:
* finite? -> true or false
*
* Returns +true+ if +self+ is not +Infinity+, +-Infinity+, or +NaN+,
* +false+ otherwise:
*
* f = 2.0 # => 2.0
* f.finite? # => true
* f = 1.0/0.0 # => Infinity
* f.finite? # => false
* f = -1.0/0.0 # => -Infinity
* f.finite? # => false
* f = 0.0/0.0 # => NaN
* f.finite? # => false
*
*/
VALUE
rb_flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return RBOOL(isfinite(value));
}
2020-11-16 07:22:47 +03:00
static VALUE
2020-11-17 16:53:41 +03:00
flo_nextafter(VALUE flo, double value)
2020-11-16 07:22:47 +03:00
{
double x, y;
x = NUM2DBL(flo);
2020-11-17 12:41:21 +03:00
y = nextafter(x, value);
2020-11-16 07:22:47 +03:00
return DBL2NUM(y);
}
/*
* call-seq:
* next_float -> float
*
* Returns the next-larger representable \Float.
*
* These examples show the internally stored values (64-bit hexadecimal)
* for each \Float +f+ and for the corresponding <tt>f.next_float</tt>:
*
* f = 0.0 # 0x0000000000000000
* f.next_float # 0x0000000000000001
*
* f = 0.01 # 0x3f847ae147ae147b
* f.next_float # 0x3f847ae147ae147c
*
* In the remaining examples here, the output is shown in the usual way
* (result +to_s+):
*
* 0.01.next_float # => 0.010000000000000002
* 1.0.next_float # => 1.0000000000000002
* 100.0.next_float # => 100.00000000000001
*
* f = 0.01
* (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
*
* Output:
*
* 0 0x1.47ae147ae147bp-7 0.01
* 1 0x1.47ae147ae147cp-7 0.010000000000000002
* 2 0x1.47ae147ae147dp-7 0.010000000000000004
* 3 0x1.47ae147ae147ep-7 0.010000000000000005
*
* f = 0.0; 100.times { f += 0.1 }
* f # => 9.99999999999998 # should be 10.0 in the ideal world.
* 10-f # => 1.9539925233402755e-14 # the floating point error.
* 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
* (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp.
* (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above.
* "%a" % 10 # => "0x1.4p+3"
* "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
*
* Related: Float#prev_float
*
*/
static VALUE
flo_next_float(VALUE vx)
{
2020-11-17 16:53:41 +03:00
return flo_nextafter(vx, HUGE_VAL);
}
/*
* call-seq:
* float.prev_float -> float
*
* Returns the next-smaller representable \Float.
*
* These examples show the internally stored values (64-bit hexadecimal)
* for each \Float +f+ and for the corresponding <tt>f.pev_float</tt>:
*
* f = 5e-324 # 0x0000000000000001
* f.prev_float # 0x0000000000000000
*
* f = 0.01 # 0x3f847ae147ae147b
* f.prev_float # 0x3f847ae147ae147a
*
* In the remaining examples here, the output is shown in the usual way
* (result +to_s+):
*
* 0.01.prev_float # => 0.009999999999999998
* 1.0.prev_float # => 0.9999999999999999
* 100.0.prev_float # => 99.99999999999999
*
* f = 0.01
* (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
*
* Output:
*
* 0 0x1.47ae147ae147bp-7 0.01
* 1 0x1.47ae147ae147ap-7 0.009999999999999998
* 2 0x1.47ae147ae1479p-7 0.009999999999999997
* 3 0x1.47ae147ae1478p-7 0.009999999999999995
*
* Related: Float#next_float.
*
*/
static VALUE
flo_prev_float(VALUE vx)
{
2020-11-17 16:53:41 +03:00
return flo_nextafter(vx, -HUGE_VAL);
}
VALUE
rb_float_floor(VALUE num, int ndigits)
{
double number;
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits > 0) {
int binexp;
double f, mul, res;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (number > 0.0 && float_round_underflow(ndigits, binexp))
return DBL2NUM(0.0);
f = pow(10, ndigits);
mul = floor(number * f);
res = (mul + 1) / f;
if (res > number)
res = mul / f;
return DBL2NUM(res);
}
else {
num = dbl2ival(floor(number));
if (ndigits < 0) num = rb_int_floor(num, ndigits);
return num;
}
}
static int
flo_ndigits(int argc, VALUE *argv)
{
if (rb_check_arity(argc, 0, 1)) {
return NUM2INT(argv[0]);
}
return 0;
}
/*
* call-seq:
* floor(ndigits = 0) -> float or integer
*
* Returns the largest number less than or equal to +self+ with
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is positive, returns a float with +ndigits+
* digits after the decimal point (as available):
*
* f = 12345.6789
* f.floor(1) # => 12345.6
* f.floor(3) # => 12345.678
* f = -12345.6789
* f.floor(1) # => -12345.7
* f.floor(3) # => -12345.679
*
* When +ndigits+ is non-positive, returns an integer with at least
* <code>ndigits.abs</code> trailing zeros:
*
* f = 12345.6789
* f.floor(0) # => 12345
* f.floor(-3) # => 12000
* f = -12345.6789
* f.floor(0) # => -12346
* f.floor(-3) # => -13000
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
* (0.3 / 0.1).floor #=> 2 (!)
*
* Related: Float#ceil.
*
*/
2021-10-03 11:16:58 +03:00
static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
int ndigits = flo_ndigits(argc, argv);
return rb_float_floor(num, ndigits);
}
/*
* call-seq:
* ceil(ndigits = 0) -> float or integer
*
* Returns the smallest number greater than or equal to +self+ with
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is positive, returns a float with +ndigits+
* digits after the decimal point (as available):
*
* f = 12345.6789
* f.ceil(1) # => 12345.7
* f.ceil(3) # => 12345.679
* f = -12345.6789
* f.ceil(1) # => -12345.6
* f.ceil(3) # => -12345.678
*
* When +ndigits+ is non-positive, returns an integer with at least
* <code>ndigits.abs</code> trailing zeros:
*
* f = 12345.6789
* f.ceil(0) # => 12346
* f.ceil(-3) # => 13000
* f = -12345.6789
* f.ceil(0) # => -12345
* f.ceil(-3) # => -12000
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
* (2.1 / 0.7).ceil #=> 4 (!)
*
* Related: Float#floor.
*
*/
static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
2021-10-03 11:16:58 +03:00
int ndigits = flo_ndigits(argc, argv);
2019-08-02 05:25:41 +03:00
return rb_float_ceil(num, ndigits);
}
VALUE
rb_float_ceil(VALUE num, int ndigits)
{
double number, f;
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits > 0) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (number < 0.0 && float_round_underflow(ndigits, binexp))
return DBL2NUM(0.0);
f = pow(10, ndigits);
f = ceil(number * f) / f;
return DBL2NUM(f);
}
else {
num = dbl2ival(ceil(number));
if (ndigits < 0) num = rb_int_ceil(num, ndigits);
return num;
}
}
static int
int_round_zero_p(VALUE num, int ndigits)
{
long bytes;
/* If 10**N / 2 > num, then return 0 */
/* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
if (FIXNUM_P(num)) {
bytes = sizeof(long);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
bytes = rb_big_size(num);
}
else {
bytes = NUM2LONG(rb_funcall(num, idSize, 0));
}
return (-0.415241 * ndigits - 0.125 > bytes);
}
static SIGNED_VALUE
int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y)
{
SIGNED_VALUE z = +(x + y / 2) / y;
if ((z * y - x) * 2 == y) {
z &= ~1;
}
return z * y;
}
static SIGNED_VALUE
int_round_half_up(SIGNED_VALUE x, SIGNED_VALUE y)
{
return (x + y / 2) / y * y;
}
static SIGNED_VALUE
int_round_half_down(SIGNED_VALUE x, SIGNED_VALUE y)
{
return (x + y / 2 - 1) / y * y;
}
static int
int_half_p_half_even(VALUE num, VALUE n, VALUE f)
{
return (int)rb_int_odd_p(rb_int_idiv(n, f));
}
static int
int_half_p_half_up(VALUE num, VALUE n, VALUE f)
{
return int_pos_p(num);
}
static int
int_half_p_half_down(VALUE num, VALUE n, VALUE f)
{
return int_neg_p(num);
}
/*
* Assumes num is an Integer, ndigits <= 0
*/
static VALUE
rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
{
VALUE n, f, h, r;
if (int_round_zero_p(num, ndigits)) {
return INT2FIX(0);
}
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
if (neg) x = -x;
x = ROUND_CALL(mode, int_round, (x, y));
if (neg) x = -x;
return LONG2NUM(x);
}
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(f)) {
/* then int_pow overflow */
return INT2FIX(0);
}
h = rb_int_idiv(f, INT2FIX(2));
r = rb_int_modulo(num, f);
n = rb_int_minus(num, r);
r = rb_int_cmp(r, h);
if (FIXNUM_POSITIVE_P(r) ||
(FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
n = rb_int_plus(n, f);
}
return n;
}
static VALUE
rb_int_floor(VALUE num, int ndigits)
{
VALUE f;
if (int_round_zero_p(num, ndigits))
return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
if (neg) x = -x + y - 1;
x = x / y * y;
if (neg) x = -x;
return LONG2NUM(x);
}
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(f)) {
/* then int_pow overflow */
return INT2FIX(0);
}
return rb_int_minus(num, rb_int_modulo(num, f));
}
static VALUE
rb_int_ceil(VALUE num, int ndigits)
{
VALUE f;
if (int_round_zero_p(num, ndigits))
return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
if (neg) x = -x;
else x += y - 1;
x = (x / y) * y;
if (neg) x = -x;
return LONG2NUM(x);
}
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(f)) {
/* then int_pow overflow */
return INT2FIX(0);
}
return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
}
VALUE
rb_int_truncate(VALUE num, int ndigits)
{
VALUE f;
VALUE m;
if (int_round_zero_p(num, ndigits))
return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
int neg = x < 0;
if (neg) x = -x;
x = x / y * y;
if (neg) x = -x;
return LONG2NUM(x);
}
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(f)) {
/* then int_pow overflow */
return INT2FIX(0);
}
m = rb_int_modulo(num, f);
if (int_neg_p(num)) {
return rb_int_plus(num, rb_int_minus(f, m));
}
else {
return rb_int_minus(num, m);
}
}
/*
* call-seq:
* round(ndigits = 0, half: :up]) -> integer or float
*
* Returns +self+ rounded to the nearest value with
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is non-negative, returns a float with +ndigits+
* after the decimal point (as available):
*
* f = 12345.6789
* f.round(1) # => 12345.7
* f.round(3) # => 12345.679
* f = -12345.6789
* f.round(1) # => -12345.7
* f.round(3) # => -12345.679
*
* When +ndigits+ is negative, returns an integer
* with at least <tt>ndigits.abs</tt> trailing zeros:
*
* f = 12345.6789
* f.round(0) # => 12346
* f.round(-3) # => 12000
* f = -12345.6789
* f.round(0) # => -12346
* f.round(-3) # => -12000
*
* If keyword argument +half+ is given,
* and +self+ is equidistant from the two candidate values,
* the rounding is according to the given +half+ value:
*
* - +:up+ or +nil+: round away from zero:
*
* 2.5.round(half: :up) # => 3
* 3.5.round(half: :up) # => 4
* (-2.5).round(half: :up) # => -3
*
* - +:down+: round toward zero:
*
* 2.5.round(half: :down) # => 2
* 3.5.round(half: :down) # => 3
* (-2.5).round(half: :down) # => -2
*
* - +:even+: round toward the candidate whose last nonzero digit is even:
*
* 2.5.round(half: :even) # => 2
* 3.5.round(half: :even) # => 4
* (-2.5).round(half: :even) # => -2
*
* Raises and exception if the value for +half+ is invalid.
*
* Related: Float#truncate.
*
*/
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
double number, f, x;
VALUE nd, opt;
int ndigits = 0;
enum ruby_num_rounding_mode mode;
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
ndigits = NUM2INT(nd);
}
mode = rb_num_get_rounding_option(opt);
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits < 0) {
return rb_int_round(flo_to_i(num), ndigits, mode);
}
if (ndigits == 0) {
x = ROUND_CALL(mode, round, (number, 1.0));
return dbl2ival(x);
}
if (isfinite(number)) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
if (ndigits > 14) {
/* In this case, pow(10, ndigits) may not be accurate. */
return rb_flo_round_by_rational(argc, argv, num);
}
f = pow(10, ndigits);
x = ROUND_CALL(mode, round, (number, f));
return DBL2NUM(x / f);
}
return num;
}
static int
float_round_overflow(int ndigits, int binexp)
{
enum {float_dig = DBL_DIG+2};
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
Recall that up to float_dig digits can be needed to represent a double,
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
will be an integer and thus the result is the original number.
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
2 ** (binexp-1) <= |number| < 2 ** binexp
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
If binexp >= 0, and since log_2(10) = 3.322259:
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
floor(binexp/4) <= exp <= ceil(binexp/3)
If binexp <= 0, swap the /4 and the /3
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) {
return TRUE;
}
return FALSE;
}
static int
float_round_underflow(int ndigits, int binexp)
{
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
return TRUE;
}
return FALSE;
}
/*
* call-seq:
* to_i -> integer
*
* Returns +self+ truncated to an Integer.
*
* 1.2.to_i # => 1
* (-1.2).to_i # => -1
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
* (0.3 / 0.1).to_i # => 2 (!)
*
* Float#to_int is an alias for Float#to_i.
*/
static VALUE
flo_to_i(VALUE num)
{
double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
/*
* call-seq:
* truncate(ndigits = 0) -> float or integer
*
* Returns +self+ truncated (toward zero) to
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is positive, returns a float with +ndigits+ digits
* after the decimal point (as available):
*
* f = 12345.6789
* f.truncate(1) # => 12345.6
* f.truncate(3) # => 12345.678
* f = -12345.6789
* f.truncate(1) # => -12345.6
* f.truncate(3) # => -12345.678
*
* When +ndigits+ is negative, returns an integer
* with at least <tt>ndigits.abs</tt> trailing zeros:
*
* f = 12345.6789
* f.truncate(0) # => 12345
* f.truncate(-3) # => 12000
* f = -12345.6789
* f.truncate(0) # => -12345
* f.truncate(-3) # => -12000
*
* Note that the limited precision of floating-point arithmetic
* may lead to surprising results:
*
* (0.3 / 0.1).truncate #=> 2 (!)
*
* Related: Float#round.
*
*/
static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
if (signbit(RFLOAT_VALUE(num)))
return flo_ceil(argc, argv, num);
else
return flo_floor(argc, argv, num);
}
/*
* call-seq:
* floor(digits = 0) -> integer or float
*
* Returns the largest number that is less than or equal to +self+ with
* a precision of +digits+ decimal digits.
*
* \Numeric implements this by converting +self+ to a Float and
* invoking Float#floor.
*/
static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
return flo_floor(argc, argv, rb_Float(num));
}
/*
* call-seq:
* ceil(digits = 0) -> integer or float
*
* Returns the smallest number that is greater than or equal to +self+ with
* a precision of +digits+ decimal digits.
*
* \Numeric implements this by converting +self+ to a Float and
* invoking Float#ceil.
*/
static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
return flo_ceil(argc, argv, rb_Float(num));
}
/*
* call-seq:
* round(digits = 0) -> integer or float
*
* Returns +self+ rounded to the nearest value with
* a precision of +digits+ decimal digits.
*
* \Numeric implements this by converting +self+ to a Float and
* invoking Float#round.
*/
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
/*
* call-seq:
* truncate(digits = 0) -> integer or float
*
* Returns +self+ truncated (toward zero) to
* a precision of +digits+ decimal digits.
*
* \Numeric implements this by converting +self+ to a Float and
* invoking Float#truncate.
*/
static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
return flo_truncate(argc, argv, rb_Float(num));
}
double
ruby_float_step_size(double beg, double end, double unit, int excl)
{
const double epsilon = DBL_EPSILON;
double d, n, err;
if (unit == 0) {
return HUGE_VAL;
}
if (isinf(unit)) {
return unit > 0 ? beg <= end : beg >= end;
}
n= (end - beg)/unit;
err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
if (err>0.5) err=0.5;
if (excl) {
if (n<=0) return 0;
if (n<1)
n = 0;
else
n = floor(n - err);
d = +((n + 1) * unit) + beg;
if (beg < end) {
if (d < end)
n++;
}
else if (beg > end) {
if (d > end)
n++;
}
}
else {
if (n<0) return 0;
n = floor(n + err);
d = +((n + 1) * unit) + beg;
if (beg < end) {
if (d <= end)
n++;
}
else if (beg > end) {
if (d >= end)
n++;
}
}
return n+1;
}
int
ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless)
{
2021-09-11 03:56:59 +03:00
if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
double unit = NUM2DBL(step);
double beg = NUM2DBL(from);
double end = (allow_endless && NIL_P(to)) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(to);
double n = ruby_float_step_size(beg, end, unit, excl);
long i;
2022-07-21 19:23:58 +03:00
if (isinf(unit)) {
/* if unit is infinity, i*unit+beg is NaN */
if (n) rb_yield(DBL2NUM(beg));
}
else if (unit == 0) {
VALUE val = DBL2NUM(beg);
for (;;)
rb_yield(val);
}
else {
for (i=0; i<n; i++) {
double d = i*unit+beg;
if (unit >= 0 ? end < d : d < end) d = end;
rb_yield(DBL2NUM(d));
}
}
return TRUE;
}
return FALSE;
}
VALUE
ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
{
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long delta, diff;
2022-07-21 19:23:58 +03:00
diff = FIX2LONG(step);
if (diff == 0) {
return DBL2NUM(HUGE_VAL);
}
delta = FIX2LONG(to) - FIX2LONG(from);
if (diff < 0) {
diff = -diff;
delta = -delta;
}
if (excl) {
delta--;
}
if (delta < 0) {
return INT2FIX(0);
}
return ULONG2NUM(delta / diff + 1UL);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
if (isinf(n)) return DBL2NUM(n);
if (POSFIXABLE(n)) return LONG2FIX((long)n);
return rb_dbl2big(n);
}
else {
VALUE result;
ID cmp = '>';
switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
case 0: return DBL2NUM(HUGE_VAL);
case -1: cmp = '<'; break;
}
if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
result = rb_funcall(result, '+', 1, INT2FIX(1));
}
return result;
}
}
static int
num_step_negative_p(VALUE num)
{
const ID mid = '<';
VALUE zero = INT2FIX(0);
VALUE r;
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cInteger))
return (SIGNED_VALUE)num < 0;
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
if (method_basic_p(rb_cInteger))
return BIGNUM_NEGATIVE_P(num);
}
r = rb_check_funcall(num, '>', 1, &zero);
if (r == Qundef) {
coerce_failed(num, INT2FIX(0));
}
return !RTEST(r);
}
static int
num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE *by)
{
VALUE hash;
argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
if (!NIL_P(hash)) {
ID keys[2];
VALUE values[2];
keys[0] = id_to;
keys[1] = id_by;
rb_get_kwargs(hash, keys, 0, 2, values);
if (values[0] != Qundef) {
if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
*to = values[0];
}
if (values[1] != Qundef) {
if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
*by = values[1];
}
}
return argc;
}
static int
num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step)
{
int desc;
if (by != Qundef) {
*step = by;
}
else {
/* compatibility */
if (argc > 1 && NIL_P(*step)) {
rb_raise(rb_eTypeError, "step must be numeric");
}
}
if (!allow_zero_step && rb_equal(*step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if (NIL_P(*step)) {
*step = INT2FIX(1);
}
desc = num_step_negative_p(*step);
if (fix_nil && NIL_P(*to)) {
*to = desc ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
}
return desc;
}
static int
num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, int fix_nil, int allow_zero_step)
{
VALUE by = Qundef;
argc = num_step_extract_args(argc, argv, to, step, &by);
return num_step_check_fix_args(argc, to, step, by, fix_nil, allow_zero_step);
}
static VALUE
num_step_size(VALUE from, VALUE args, VALUE eobj)
{
VALUE to, step;
int argc = args ? RARRAY_LENINT(args) : 0;
const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0;
num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
return ruby_num_interval_step_size(from, to, step, FALSE);
}
/*
* call-seq:
* step(to = nil, by = 1) {|n| ... } -> self
* step(to = nil, by = 1) -> enumerator
* step(to = nil, by: 1) {|n| ... } -> self
* step(to = nil, by: 1) -> enumerator
* step(by: 1, to: ) {|n| ... } -> self
* step(by: 1, to: ) -> enumerator
* step(by: , to: nil) {|n| ... } -> self
* step(by: , to: nil) -> enumerator
*
* Generates a sequence of numbers; with a block given, traverses the sequence.
*
* Of the Core and Standard Library classes,
* Integer, Float, and Rational use this implementation.
*
* A quick example:
*
* squares = []
* 1.step(by: 2, to: 10) {|i| squares.push(i*i) }
* squares # => [1, 9, 25, 49, 81]
*
* The generated sequence:
*
* - Begins with +self+.
* - Continues at intervals of +step+ (which may not be zero).
* - Ends with the last number that is within or equal to +limit+;
* that is, less than or equal to +limit+ if +step+ is positive,
* greater than or equal to +limit+ if +step+ is negative.
* If +limit+ is not given, the sequence is of infinite length.
*
* If a block is given, calls the block with each number in the sequence;
* returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence.
*
* <b>Keyword Arguments</b>
*
* With keyword arguments +by+ and +to+,
* their values (or defaults) determine the step and limit:
*
* # Both keywords given.
* squares = []
* 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
* squares # => [16, 36, 64, 100]
* cubes = []
* 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
* cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
* squares = []
* 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
* squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
*
* squares = []
* Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
* squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
*
* # Only keyword to given.
* squares = []
* 4.step(to: 10) {|i| squares.push(i*i) } # => 4
* squares # => [16, 25, 36, 49, 64, 81, 100]
* # Only by given.
*
* # Only keyword by given
* squares = []
* 4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
* squares # => [16, 36, 64, 100, 144]
*
* # No block given.
* e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
* e.class # => Enumerator::ArithmeticSequence
*
* <b>Positional Arguments</b>
*
* With optional positional arguments +limit+ and +step+,
* their values (or defaults) determine the step and limit:
*
* squares = []
* 4.step(10, 2) {|i| squares.push(i*i) } # => 4
* squares # => [16, 36, 64, 100]
* squares = []
* 4.step(10) {|i| squares.push(i*i) }
* squares # => [16, 25, 36, 49, 64, 81, 100]
* squares = []
* 4.step {|i| squares.push(i*i); break if i > 10 } # => nil
* squares # => [16, 25, 36, 49, 64, 81, 100, 121]
*
* <b>Implementation Notes</b>
*
* If all the arguments are integers, the loop operates using an integer
* counter.
*
* If any of the arguments are floating point numbers, all are converted
* to floats, and the loop is executed
* <i>floor(n + n*Float::EPSILON) + 1</i> times,
* where <i>n = (limit - self)/step</i>.
*
*/
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
if (!rb_block_given_p()) {
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
if (by != Qundef) {
step = by;
}
if (NIL_P(step)) {
step = INT2FIX(1);
}
else if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
rb_obj_is_kind_of(step, rb_cNumeric)) {
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
num_step_size, from, to, step, FALSE);
}
return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
inf = 1;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(to)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
2022-07-21 19:23:58 +03:00
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
2022-07-21 19:23:58 +03:00
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
static char *
out_of_range_float(char (*pbuf)[24], VALUE val)
{
char *const buf = *pbuf;
char *s;
snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val));
if ((s = strchr(buf, ' ')) != 0) *s = '\0';
return buf;
}
#define FLOAT_OUT_OF_RANGE(val, type) do { \
char buf[24]; \
rb_raise(rb_eRangeError, "float %s out of range of "type, \
out_of_range_float(&buf, (val))); \
} while (0)
#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
#define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1))
#define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1))
#define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
(LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \
LONG_MIN <= (n): \
LONG_MIN_MINUS_ONE < (n))
long
rb_num2long(VALUE val)
{
again:
if (NIL_P(val)) {
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
}
if (FIXNUM_P(val)) return FIX2LONG(val);
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(val)) {
if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
&& LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
return (long)RFLOAT_VALUE(val);
}
else {
FLOAT_OUT_OF_RANGE(val, "integer");
}
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(val)) {
return rb_big2long(val);
}
else {
val = rb_to_int(val);
goto again;
}
}
static unsigned long
rb_num2ulong_internal(VALUE val, int *wrap_p)
{
again:
if (NIL_P(val)) {
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
}
if (FIXNUM_P(val)) {
long l = FIX2LONG(val); /* this is FIX2LONG, intended */
if (wrap_p)
*wrap_p = l < 0;
return (unsigned long)l;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(val)) {
double d = RFLOAT_VALUE(val);
if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
if (wrap_p)
*wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */
if (0 <= d)
return (unsigned long)d;
return (unsigned long)(long)d;
}
else {
FLOAT_OUT_OF_RANGE(val, "integer");
}
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(val)) {
{
unsigned long ul = rb_big2ulong(val);
if (wrap_p)
*wrap_p = BIGNUM_NEGATIVE_P(val);
return ul;
}
}
else {
val = rb_to_int(val);
goto again;
}
}
unsigned long
rb_num2ulong(VALUE val)
{
return rb_num2ulong_internal(val, NULL);
}
void
rb_out_of_int(SIGNED_VALUE num)
{
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
num, num < 0 ? "small" : "big");
}
#if SIZEOF_INT < SIZEOF_LONG
static void
check_int(long num)
{
if ((long)(int)num != num) {
rb_out_of_int(num);
}
}
static void
check_uint(unsigned long num, int sign)
{
if (sign) {
/* minus */
if (num < (unsigned long)INT_MIN)
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
}
else {
/* plus */
if (UINT_MAX < num)
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
}
}
long
rb_num2int(VALUE val)
{
long num = rb_num2long(val);
check_int(num);
return num;
}
long
rb_fix2int(VALUE val)
{
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
check_int(num);
return num;
}
unsigned long
rb_num2uint(VALUE val)
{
int wrap;
unsigned long num = rb_num2ulong_internal(val, &wrap);
check_uint(num, wrap);
return num;
}
unsigned long
rb_fix2uint(VALUE val)
{
unsigned long num;
if (!FIXNUM_P(val)) {
return rb_num2uint(val);
}
num = FIX2ULONG(val);
check_uint(num, FIXNUM_NEGATIVE_P(val));
return num;
}
#else
long
rb_num2int(VALUE val)
{
return rb_num2long(val);
}
long
rb_fix2int(VALUE val)
{
return FIX2INT(val);
}
unsigned long
rb_num2uint(VALUE val)
{
return rb_num2ulong(val);
}
unsigned long
rb_fix2uint(VALUE val)
{
return RB_FIX2ULONG(val);
}
#endif
NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
static void
rb_out_of_short(SIGNED_VALUE num)
{
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
num, num < 0 ? "small" : "big");
}
static void
check_short(long num)
{
if ((long)(short)num != num) {
rb_out_of_short(num);
}
}
static void
check_ushort(unsigned long num, int sign)
{
if (sign) {
/* minus */
if (num < (unsigned long)SHRT_MIN)
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
}
else {
/* plus */
if (USHRT_MAX < num)
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
}
}
short
rb_num2short(VALUE val)
{
long num = rb_num2long(val);
check_short(num);
return num;
}
short
rb_fix2short(VALUE val)
{
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
check_short(num);
return num;
}
unsigned short
rb_num2ushort(VALUE val)
{
int wrap;
unsigned long num = rb_num2ulong_internal(val, &wrap);
check_ushort(num, wrap);
return num;
}
unsigned short
rb_fix2ushort(VALUE val)
{
unsigned long num;
if (!FIXNUM_P(val)) {
return rb_num2ushort(val);
}
num = FIX2ULONG(val);
check_ushort(num, FIXNUM_NEGATIVE_P(val));
return num;
}
VALUE
rb_num2fix(VALUE val)
{
long v;
if (FIXNUM_P(val)) return val;
v = rb_num2long(val);
if (!FIXABLE(v))
rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
return LONG2FIX(v);
}
#if HAVE_LONG_LONG
#define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1)
#define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1))
#define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1))
#ifndef ULLONG_MAX
#define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1)
#endif
#define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
(LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \
LLONG_MIN <= (n): \
LLONG_MIN_MINUS_ONE < (n))
LONG_LONG
rb_num2ll(VALUE val)
{
if (NIL_P(val)) {
rb_raise(rb_eTypeError, "no implicit conversion from nil");
}
if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(val)) {
double d = RFLOAT_VALUE(val);
if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
return (LONG_LONG)d;
}
else {
FLOAT_OUT_OF_RANGE(val, "long long");
}
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(val)) {
return rb_big2ll(val);
}
else if (RB_TYPE_P(val, T_STRING)) {
rb_raise(rb_eTypeError, "no implicit conversion from string");
}
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
rb_raise(rb_eTypeError, "no implicit conversion from boolean");
}
2012-04-14 04:36:26 +04:00
val = rb_to_int(val);
return NUM2LL(val);
}
unsigned LONG_LONG
rb_num2ull(VALUE val)
{
if (NIL_P(val)) {
rb_raise(rb_eTypeError, "no implicit conversion from nil");
}
else if (FIXNUM_P(val)) {
return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(val)) {
double d = RFLOAT_VALUE(val);
if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
if (0 <= d)
return (unsigned LONG_LONG)d;
return (unsigned LONG_LONG)(LONG_LONG)d;
}
else {
FLOAT_OUT_OF_RANGE(val, "unsigned long long");
}
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(val)) {
return rb_big2ull(val);
}
else if (RB_TYPE_P(val, T_STRING)) {
rb_raise(rb_eTypeError, "no implicit conversion from string");
}
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
rb_raise(rb_eTypeError, "no implicit conversion from boolean");
}
2012-04-14 04:36:26 +04:00
val = rb_to_int(val);
return NUM2ULL(val);
}
#endif /* HAVE_LONG_LONG */
/********************************************************************
*
* Document-class: Integer
*
* An \Integer object represents an integer value.
*
* You can create an \Integer object explicitly with:
*
* - An {integer literal}[rdoc-ref:syntax/literals.rdoc@Integer+Literals].
*
* You can convert certain objects to Integers with:
*
2022-02-07 19:18:56 +03:00
* - \Method #Integer.
*
* An attempt to add a singleton method to an instance of this class
* causes an exception to be raised.
*
* == What's Here
*
* First, what's elsewhere. \Class \Integer:
*
* - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
*
* Here, class \Integer provides methods for:
*
* - {Querying}[rdoc-ref:Integer@Querying]
* - {Comparing}[rdoc-ref:Integer@Comparing]
* - {Converting}[rdoc-ref:Integer@Converting]
* - {Other}[rdoc-ref:Integer@Other]
*
* === Querying
*
* - #allbits?: Returns whether all bits in +self+ are set.
* - #anybits?: Returns whether any bits in +self+ are set.
* - #nobits?: Returns whether no bits in +self+ are set.
*
* === Comparing
*
* - #<: Returns whether +self+ is less than the given value.
* - #<=: Returns whether +self+ is less than or equal to the given value.
* - #<=>: Returns a number indicating whether +self+ is less than, equal
* to, or greater than the given value.
* - #== (aliased as #===): Returns whether +self+ is equal to the given
* value.
* - #>: Returns whether +self+ is greater than the given value.
* - #>=: Returns whether +self+ is greater than or equal to the given value.
*
* === Converting
*
* - ::sqrt: Returns the integer square root of the given value.
* - ::try_convert: Returns the given value converted to an \Integer.
* - #% (aliased as #modulo): Returns +self+ modulo the given value.
* - #&: Returns the bitwise AND of +self+ and the given value.
* - #*: Returns the product of +self+ and the given value.
* - #**: Returns the value of +self+ raised to the power of the given value.
* - #+: Returns the sum of +self+ and the given value.
* - #-: Returns the difference of +self+ and the given value.
* - #/: Returns the quotient of +self+ and the given value.
* - #<<: Returns the value of +self+ after a leftward bit-shift.
* - #>>: Returns the value of +self+ after a rightward bit-shift.
* - #[]: Returns a slice of bits from +self+.
* - #^: Returns the bitwise EXCLUSIVE OR of +self+ and the given value.
* - #ceil: Returns the smallest number greater than or equal to +self+.
* - #chr: Returns a 1-character string containing the character
* represented by the value of +self+.
* - #digits: Returns an array of integers representing the base-radix digits
* of +self+.
* - #div: Returns the integer result of dividing +self+ by the given value.
* - #divmod: Returns a 2-element array containing the quotient and remainder
* results of dividing +self+ by the given value.
* - #fdiv: Returns the Float result of dividing +self+ by the given value.
* - #floor: Returns the greatest number smaller than or equal to +self+.
* - #pow: Returns the modular exponentiation of +self+.
* - #pred: Returns the integer predecessor of +self+.
* - #remainder: Returns the remainder after dividing +self+ by the given value.
* - #round: Returns +self+ rounded to the nearest value with the given precision.
* - #succ (aliased as #next): Returns the integer successor of +self+.
* - #to_f: Returns +self+ converted to a Float.
* - #to_s (aliased as #inspect): Returns a string containing the place-value
* representation of +self+ in the given radix.
* - #truncate: Returns +self+ truncated to the given precision.
* - #|: Returns the bitwise OR of +self+ and the given value.
*
* === Other
*
* - #downto: Calls the given block with each integer value from +self+
* down to the given value.
* - #times: Calls the given block +self+ times with each integer
* in <tt>(0..self-1)</tt>.
* - #upto: Calls the given block with each integer value from +self+
* up to the given value.
*
*/
VALUE
rb_int_odd_p(VALUE num)
{
if (FIXNUM_P(num)) {
2021-08-02 06:06:44 +03:00
return RBOOL(num & 2);
}
else {
2021-09-03 14:50:12 +03:00
assert(RB_BIGNUM_TYPE_P(num));
return rb_big_odd_p(num);
}
}
static VALUE
int_even_p(VALUE num)
{
if (FIXNUM_P(num)) {
2021-08-02 06:06:44 +03:00
return RBOOL((num & 2) == 0);
}
else {
2021-09-03 14:50:12 +03:00
assert(RB_BIGNUM_TYPE_P(num));
return rb_big_even_p(num);
}
}
VALUE
rb_int_even_p(VALUE num)
{
return int_even_p(num);
}
/*
* call-seq:
* allbits?(mask) -> true or false
*
* Returns +true+ if all bits that are set (=1) in +mask+
* are also set in +self+; returns +false+ otherwise.
*
* Example values:
*
* 0b1010101 self
* 0b1010100 mask
* 0b1010100 self & mask
* true self.allbits?(mask)
*
* 0b1010100 self
* 0b1010101 mask
* 0b1010100 self & mask
* false self.allbits?(mask)
*
* Related: Integer#anybits?, Integer#nobits?.
*
*/
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return rb_int_equal(rb_int_and(num, mask), mask);
}
/*
* call-seq:
* anybits?(mask) -> true or false
*
* Returns +true+ if any bit that is set (=1) in +mask+
* is also set in +self+; returns +false+ otherwise.
*
* Example values:
*
* 0b10000010 self
* 0b11111111 mask
* 0b10000010 self & mask
* true self.anybits?(mask)
*
* 0b00000000 self
* 0b11111111 mask
* 0b00000000 self & mask
* false self.anybits?(mask)
*
* Related: Integer#allbits?, Integer#nobits?.
*
*/
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
2022-01-01 09:41:00 +03:00
return RBOOL(!int_zero_p(rb_int_and(num, mask)));
}
/*
* call-seq:
* nobits?(mask) -> true or false
*
* Returns +true+ if no bit that is set (=1) in +mask+
* is also set in +self+; returns +false+ otherwise.
*
* Example values:
*
* 0b11110000 self
* 0b00001111 mask
* 0b00000000 self & mask
* true self.nobits?(mask)
*
* 0b00000001 self
* 0b11111111 mask
* 0b00000001 self & mask
* false self.nobits?(mask)
*
* Related: Integer#allbits?, Integer#anybits?.
*
*/
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return RBOOL(int_zero_p(rb_int_and(num, mask)));
}
/*
* call-seq:
* succ -> next_integer
*
* Returns the successor integer of +self+ (equivalent to <tt>self + 1</tt>):
*
* 1.succ #=> 2
* -1.succ #=> 0
*
* Integer#next is an alias for Integer#succ.
*
* Related: Integer#pred (predecessor value).
*/
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_plus(num, INT2FIX(1));
}
return num_funcall1(num, '+', INT2FIX(1));
}
#define int_succ rb_int_succ
/*
* call-seq:
* pred -> next_integer
*
* Returns the predecessor of +self+ (equivalent to <tt>self - 1</tt>):
*
* 1.pred #=> 0
* -1.pred #=> -2
*
* Related: Integer#succ (successor value).
*
*/
static VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_minus(num, INT2FIX(1));
}
return num_funcall1(num, '-', INT2FIX(1));
}
#define int_pred rb_int_pred
VALUE
rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
{
int n;
VALUE str;
switch (n = rb_enc_codelen(code, enc)) {
case ONIGERR_INVALID_CODE_POINT_VALUE:
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
break;
case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
case 0:
rb_raise(rb_eRangeError, "%u out of char range", code);
break;
}
str = rb_enc_str_new(0, n, enc);
rb_enc_mbcput(code, RSTRING_PTR(str), enc);
if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
}
return str;
}
/* call-seq:
* chr -> string
* chr(encoding) -> string
*
* Returns a 1-character string containing the character
* represented by the value of +self+, according to the given +encoding+.
*
* 65.chr # => "A"
* 0.chr # => "\x00"
* 255.chr # => "\xFF"
* string = 255.chr(Encoding::UTF_8)
* string.encoding # => Encoding::UTF_8
*
* Raises an exception if +self+ is negative.
*
* Related: Integer#ord.
*
*/
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%u out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
2019-07-14 11:16:35 +03:00
rb_error_arity(argc, 0, 1);
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
/*
* Fixnum
*/
static VALUE
fix_uminus(VALUE num)
{
return LONG2NUM(-FIX2LONG(num));
}
VALUE
rb_int_uminus(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_uminus(num);
}
else {
2021-09-03 14:50:12 +03:00
assert(RB_BIGNUM_TYPE_P(num));
return rb_big_uminus(num);
}
}
VALUE
rb_fix2str(VALUE x, int base)
{
char buf[SIZEOF_VALUE*CHAR_BIT + 1], *const e = buf + sizeof buf, *b = e;
long val = FIX2LONG(x);
unsigned long u;
int neg = 0;
if (base < 2 || 36 < base) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
#if SIZEOF_LONG < SIZEOF_VOIDP
# if SIZEOF_VOIDP == SIZEOF_LONG_LONG
if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) ||
(val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
rb_bug("Unnormalized Fixnum value %p", (void *)x);
}
# else
/* should do something like above code, but currently ruby does not know */
/* such platforms */
# endif
#endif
if (val == 0) {
return rb_usascii_str_new2("0");
}
if (val < 0) {
u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
neg = 1;
}
else {
u = val;
}
do {
*--b = ruby_digitmap[(int)(u % base)];
} while (u /= base);
if (neg) {
*--b = '-';
}
return rb_usascii_str_new(b, e - b);
}
static VALUE rb_fix_to_s_static[10];
MJIT_FUNC_EXPORTED VALUE
rb_fix_to_s(VALUE x)
{
long i = FIX2LONG(x);
if (i >= 0 && i < 10) {
return rb_fix_to_s_static[i];
}
return rb_fix2str(x, 10);
}
/*
* call-seq:
* to_s(base = 10) -> string
*
* Returns a string containing the place-value representation of +self+
* in radix +base+ (in 2..36).
*
* 12345.to_s # => "12345"
* 12345.to_s(2) # => "11000000111001"
* 12345.to_s(8) # => "30071"
* 12345.to_s(10) # => "12345"
* 12345.to_s(16) # => "3039"
* 12345.to_s(36) # => "9ix"
* 78546939656932.to_s(36) # => "rubyrules"
*
* Raises an exception if +base+ is out of range.
*
* Integer#inspect is an alias for Integer#to_s.
*
*/
MJIT_FUNC_EXPORTED VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
base = NUM2INT(argv[0]);
else
base = 10;
return rb_int2str(x, base);
}
VALUE
rb_int2str(VALUE x, int base)
{
if (FIXNUM_P(x)) {
return rb_fix2str(x, base);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big2str(x, base);
}
return rb_any_to_s(x);
}
static VALUE
fix_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return rb_fix_plus_fix(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_plus(y, x);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
}
else if (RB_TYPE_P(y, T_COMPLEX)) {
return rb_complex_plus(y, x);
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
VALUE
rb_fix_plus(VALUE x, VALUE y)
{
return fix_plus(x, y);
}
/*
* call-seq:
* self + numeric -> numeric_result
*
* Performs addition:
*
* 2 + 2 # => 4
* -2 + 2 # => 0
* -2 + -2 # => -4
* 2 + 2.0 # => 4.0
* 2 + Rational(2, 1) # => (4/1)
* 2 + Complex(2, 0) # => (4+0i)
*
*/
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_plus(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
static VALUE
fix_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return rb_fix_minus_fix(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
x = rb_int2big(FIX2LONG(x));
return rb_big_minus(x, y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
/*
* call-seq:
* self - numeric -> numeric_result
*
* Performs subtraction:
*
* 4 - 2 # => 2
* -4 - 2 # => -6
* -4 - -2 # => -2
* 4 - 2.0 # => 2.0
* 4 - Rational(2, 1) # => (2/1)
* 4 - Complex(2, 0) # => (2+0i)
*
*/
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_minus(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
#define SQRT_LONG_MAX HALF_LONG_MSB
/*tests if N*N would overflow*/
#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
static VALUE
fix_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return rb_fix_mul_fix(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
switch (x) {
case INT2FIX(0): return x;
case INT2FIX(1): return y;
}
return rb_big_mul(y, x);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
}
else if (RB_TYPE_P(y, T_COMPLEX)) {
return rb_complex_mul(y, x);
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
/*
* call-seq:
* self * numeric -> numeric_result
*
* Performs multiplication:
*
* 4 * 2 # => 8
* 4 * -2 # => -8
* -4 * 2 # => -8
* 4 * 2.0 # => 8.0
* 4 * Rational(1, 3) # => (4/3)
* 4 * Complex(2, 0) # => (8+0i)
*/
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mul(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
static double
fix_fdiv_double(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
return double_div_double(FIX2LONG(x), FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y));
}
else {
2019-08-03 02:37:08 +03:00
return NUM2DBL(rb_num_coerce_bin(x, y, idFdiv));
}
}
double
rb_int_fdiv_double(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
VALUE gcd = rb_gcd(x, y);
if (!FIXNUM_ZERO_P(gcd)) {
x = rb_int_idiv(x, gcd);
y = rb_int_idiv(y, gcd);
}
}
if (FIXNUM_P(x)) {
return fix_fdiv_double(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_fdiv_double(x, y);
}
else {
return nan("");
}
}
/*
* call-seq:
* fdiv(numeric) -> float
*
* Returns the Float result of dividing +self+ by +numeric+:
*
* 4.fdiv(2) # => 2.0
* 4.fdiv(-2) # => -2.0
* -4.fdiv(2) # => -2.0
* 4.fdiv(2.0) # => 2.0
* 4.fdiv(Rational(3, 4)) # => 5.333333333333333
*
* Raises an exception if +numeric+ cannot be converted to a Float.
*
*/
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
return DBL2NUM(rb_int_fdiv_double(x, y));
}
return Qnil;
}
static VALUE
fix_divide(VALUE x, VALUE y, ID op)
{
if (FIXNUM_P(y)) {
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
return rb_fix_div_fix(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
x = rb_int2big(FIX2LONG(x));
return rb_big_div(x, y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
if (op == '/') {
double d = FIX2LONG(x);
return rb_flo_div_flo(DBL2NUM(d), y);
}
else {
VALUE v;
if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
v = fix_divide(x, y, '/');
return flo_floor(0, 0, v);
}
}
else {
if (RB_TYPE_P(y, T_RATIONAL) &&
op == '/' && FIX2LONG(x) == 1)
return rb_rational_reciprocal(y);
return rb_num_coerce_bin(x, y, op);
}
}
static VALUE
fix_div(VALUE x, VALUE y)
{
return fix_divide(x, y, '/');
}
/*
* call-seq:
* self / numeric -> numeric_result
*
* Performs division; for integer +numeric+, truncates the result to an integer:
*
* 4 / 3 # => 1
* 4 / -3 # => -2
* -4 / 3 # => -2
* -4 / -3 # => 1
*
* For other +numeric+, returns non-integer result:
*
* 4 / 3.0 # => 1.3333333333333333
* 4 / Rational(3, 1) # => (4/3)
* 4 / Complex(3, 0) # => ((4/3)+0i)
*
*/
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_div(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_div(x, y);
}
return Qnil;
}
static VALUE
fix_idiv(VALUE x, VALUE y)
{
return fix_divide(x, y, id_div);
}
/*
* call-seq:
* div(numeric) -> integer
*
* Performs integer division; returns the integer result of dividing +self+
* by +numeric+:
*
* 4.div(3) # => 1
* 4.div(-3) # => -2
* -4.div(3) # => -2
* -4.div(-3) # => 1
* 4.div(3.0) # => 1
* 4.div(Rational(3, 1)) # => 1
*
* Raises an exception if +numeric+ does not have method +div+.
*
*/
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_idiv(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_idiv(x, y);
}
return num_div(x, y);
}
static VALUE
fix_mod(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
return rb_fix_mod_fix(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
x = rb_int2big(FIX2LONG(x));
return rb_big_modulo(x, y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
}
else {
return rb_num_coerce_bin(x, y, '%');
}
}
/*
* call-seq:
* self % other -> real_number
*
* Returns +self+ modulo +other+ as a real number.
*
* For integer +n+ and real number +r+, these expressions are equivalent:
*
* n % r
* n-r*(n/r).floor
* n.divmod(r)[1]
*
* See Numeric#divmod.
*
* Examples:
*
* 10 % 2 # => 0
* 10 % 3 # => 1
* 10 % 4 # => 2
*
* 10 % -2 # => 0
* 10 % -3 # => -2
* 10 % -4 # => -2
*
* 10 % 3.0 # => 1.0
* 10 % Rational(3, 1) # => (1/1)
*
* Integer#modulo is an alias for Integer#%.
*
*/
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
/*
* call-seq:
* remainder(other) -> real_number
*
* Returns the remainder after dividing +self+ by +other+.
*
* Examples:
*
* 11.remainder(4) # => 3
* 11.remainder(-4) # => 3
* -11.remainder(4) # => -3
* -11.remainder(-4) # => -3
*
* 12.remainder(4) # => 0
* 12.remainder(-4) # => 0
* -12.remainder(4) # => 0
* -12.remainder(-4) # => 0
*
* 13.remainder(4.0) # => 1.0
* 13.remainder(Rational(4, 1)) # => (1/1)
*
*/
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return num_remainder(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_remainder(x, y);
}
return Qnil;
}
static VALUE
fix_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
VALUE div, mod;
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
rb_fix_divmod_fix(x, y, &div, &mod);
return rb_assoc_new(div, mod);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
x = rb_int2big(FIX2LONG(x));
return rb_big_divmod(x, y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
{
double div, mod;
volatile VALUE a, b;
flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
}
/*
* call-seq:
* divmod(other) -> array
*
* Returns a 2-element array <tt>[q, r]</tt>, where
*
* q = (self/other).floor # Quotient
* r = self % other # Remainder
*
* Examples:
*
* 11.divmod(4) # => [2, 3]
* 11.divmod(-4) # => [-3, -1]
* -11.divmod(4) # => [-3, 1]
* -11.divmod(-4) # => [2, -3]
*
* 12.divmod(4) # => [3, 0]
* 12.divmod(-4) # => [-3, 0]
* -12.divmod(4) # => [-3, 0]
* -12.divmod(-4) # => [3, 0]
*
* 13.divmod(4.0) # => [3, 1.0]
* 13.divmod(Rational(4, 1)) # => [3, (1/1)]
*
*/
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_divmod(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_divmod(x, y);
}
return Qnil;
}
/*
* call-seq:
* self ** numeric -> numeric_result
*
* Raises +self+ to the power of +numeric+:
*
* 2 ** 3 # => 8
* 2 ** -3 # => (1/8)
* -2 ** 3 # => -8
* -2 ** -3 # => (-1/8)
* 2 ** 3.3 # => 9.849155306759329
* 2 ** Rational(3, 1) # => (8/1)
* 2 ** Complex(3, 0) # => (8+0i)
*
*/
static VALUE
int_pow(long x, unsigned long y)
{
int neg = x < 0;
long z = 1;
if (y == 0) return INT2FIX(1);
if (y == 1) return LONG2NUM(x);
if (neg) x = -x;
if (y & 1)
z = x;
else
neg = 0;
y &= ~1;
do {
while (y % 2 == 0) {
if (!FIT_SQRT_LONG(x)) {
goto bignum;
}
x = x * x;
y >>= 1;
}
{
if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
goto bignum;
}
z = x * z;
}
} while (--y);
if (neg) z = -z;
return LONG2NUM(z);
VALUE v;
bignum:
v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
if (RB_FLOAT_TYPE_P(v)) /* infinity due to overflow */
return v;
if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
return v;
}
VALUE
rb_int_positive_pow(long x, unsigned long y)
{
return int_pow(x, y);
}
static VALUE
fix_pow_inverted(VALUE x, VALUE minusb)
{
if (x == INT2FIX(0)) {
rb_num_zerodiv();
UNREACHABLE_RETURN(Qundef);
}
else {
VALUE y = rb_int_pow(x, minusb);
if (RB_FLOAT_TYPE_P(y)) {
double d = pow((double)FIX2LONG(x), RFLOAT_VALUE(y));
return DBL2NUM(1.0 / d);
}
else {
return rb_rational_raw(INT2FIX(1), y);
}
}
}
static VALUE
fix_pow(VALUE x, VALUE y)
{
long a = FIX2LONG(x);
if (FIXNUM_P(y)) {
long b = FIX2LONG(y);
if (a == 1) return INT2FIX(1);
if (a == -1) return INT2FIX(b % 2 ? -1 : 1);
if (b < 0) return fix_pow_inverted(x, fix_uminus(y));
if (b == 0) return INT2FIX(1);
if (b == 1) return x;
if (a == 0) return INT2FIX(0);
return int_pow(a, b);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
if (a == 1) return INT2FIX(1);
if (a == -1) return INT2FIX(int_even_p(y) ? 1 : -1);
if (BIGNUM_NEGATIVE_P(y)) return fix_pow_inverted(x, rb_big_uminus(y));
if (a == 0) return INT2FIX(0);
x = rb_int2big(FIX2LONG(x));
return rb_big_pow(x, y);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
double dy = RFLOAT_VALUE(y);
if (dy == 0.0) return DBL2NUM(1.0);
if (a == 0) {
return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
}
if (a == 1) return DBL2NUM(1.0);
if (a < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy);
return DBL2NUM(pow((double)a, dy));
}
else {
return rb_num_coerce_bin(x, y, idPow);
}
}
/*
* call-seq:
* self ** numeric -> numeric_result
*
* Raises +self+ to the power of +numeric+:
*
* 2 ** 3 # => 8
* 2 ** -3 # => (1/8)
* -2 ** 3 # => -8
* -2 ** -3 # => (-1/8)
* 2 ** 3.3 # => 9.849155306759329
* 2 ** Rational(3, 1) # => (8/1)
* 2 ** Complex(3, 0) # => (8+0i)
*
*/
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_pow(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_pow(x, y);
}
return Qnil;
}
VALUE
rb_num_pow(VALUE x, VALUE y)
{
VALUE z = rb_int_pow(x, y);
if (!NIL_P(z)) return z;
if (RB_FLOAT_TYPE_P(x)) return rb_float_pow(x, y);
if (SPECIAL_CONST_P(x)) return Qnil;
switch (BUILTIN_TYPE(x)) {
case T_COMPLEX:
return rb_complex_pow(x, y);
case T_RATIONAL:
return rb_rational_pow(x, y);
2020-04-08 09:13:37 +03:00
default:
break;
}
return Qnil;
}
static VALUE
fix_equal(VALUE x, VALUE y)
{
if (x == y) return Qtrue;
if (FIXNUM_P(y)) return Qfalse;
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_eq(y, x);
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return rb_integer_float_eq(x, y);
}
else {
return num_equal(x, y);
}
}
/*
* call-seq:
* self == other -> true or false
*
* Returns +true+ if +self+ is numerically equal to +other+; +false+ otherwise.
*
* 1 == 2 #=> false
* 1 == 1.0 #=> true
*
* Related: Integer#eql? (requires +other+ to be an \Integer).
*
* Integer#=== is an alias for Integer#==.
*
*/
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eq(x, y);
}
return Qnil;
}
static VALUE
fix_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
if (FIXNUM_P(y)) {
if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
return INT2FIX(-1);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
VALUE cmp = rb_big_cmp(y, x);
switch (cmp) {
case INT2FIX(+1): return INT2FIX(-1);
case INT2FIX(-1): return INT2FIX(+1);
}
return cmp;
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
return rb_integer_float_cmp(x, y);
}
else {
return rb_num_coerce_cmp(x, y, id_cmp);
}
}
/*
* call-seq:
* self <=> other -> -1, 0, +1, or nil
*
* Returns:
*
* - -1, if +self+ is less than +other+.
* - 0, if +self+ is equal to +other+.
* - 1, if +self+ is greater then +other+.
* - +nil+, if +self+ and +other+ are incomparable.
*
* Examples:
*
* 1 <=> 2 # => -1
* 1 <=> 1 # => 0
* 1 <=> 0 # => 1
* 1 <=> 'foo' # => nil
*
* 1 <=> 1.0 # => 0
* 1 <=> Rational(1, 1) # => 0
* 1 <=> Complex(1, 0) # => 0
*
* This method is the basis for comparisons in module Comparable.
*
*/
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_cmp(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_cmp(x, y);
}
else {
rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
}
}
static VALUE
fix_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
2021-09-15 02:11:05 +03:00
return RBOOL(FIX2LONG(x) > FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_big_cmp(y, x) == INT2FIX(-1));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(1));
}
else {
return rb_num_coerce_relop(x, y, '>');
}
}
/*
* call-seq:
* self > other -> true or false
*
* Returns +true+ if the value of +self+ is greater than that of +other+:
*
* 1 > 0 # => true
* 1 > 1 # => false
* 1 > 2 # => false
* 1 > 0.5 # => true
* 1 > Rational(1, 2) # => true
*
* Raises an exception if the comparison cannot be made.
*
*/
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_gt(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_gt(x, y);
}
return Qnil;
}
static VALUE
fix_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
2021-09-15 02:11:05 +03:00
return RBOOL(FIX2LONG(x) >= FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_big_cmp(y, x) != INT2FIX(+1));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(x, y);
2021-08-02 06:06:44 +03:00
return RBOOL(rel == INT2FIX(1) || rel == INT2FIX(0));
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
}
/*
* call-seq:
* self >= real -> true or false
*
* Returns +true+ if the value of +self+ is greater than or equal to
* that of +other+:
*
* 1 >= 0 # => true
* 1 >= 1 # => true
* 1 >= 2 # => false
* 1 >= 0.5 # => true
* 1 >= Rational(1, 2) # => true
*
* Raises an exception if the comparison cannot be made.
*
*/
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_ge(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_ge(x, y);
}
return Qnil;
}
static VALUE
fix_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
2021-09-15 02:11:05 +03:00
return RBOOL(FIX2LONG(x) < FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_big_cmp(y, x) == INT2FIX(+1));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(-1));
}
else {
return rb_num_coerce_relop(x, y, '<');
}
}
/*
* call-seq:
* self < other -> true or false
*
* Returns +true+ if the value of +self+ is less than that of +other+:
*
* 1 < 0 # => false
* 1 < 1 # => false
* 1 < 2 # => true
* 1 < 0.5 # => false
* 1 < Rational(1, 2) # => false
*
* Raises an exception if the comparison cannot be made.
*
*/
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_lt(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lt(x, y);
}
return Qnil;
}
static VALUE
fix_le(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
2021-09-15 02:11:05 +03:00
return RBOOL(FIX2LONG(x) <= FIX2LONG(y));
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(y)) {
2021-08-02 06:06:44 +03:00
return RBOOL(rb_big_cmp(y, x) != INT2FIX(-1));
}
2021-09-11 03:56:59 +03:00
else if (RB_FLOAT_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(x, y);
2021-08-02 06:06:44 +03:00
return RBOOL(rel == INT2FIX(-1) || rel == INT2FIX(0));
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
}
/*
* call-seq:
* self <= real -> true or false
*
* Returns +true+ if the value of +self+ is less than or equal to
* that of +other+:
*
* 1 <= 0 # => false
* 1 <= 1 # => true
* 1 <= 2 # => true
* 1 <= 0.5 # => false
* 1 <= Rational(1, 2) # => false
*
* Raises an exception if the comparison cannot be made.
*
*/
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_le(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_le(x, y);
}
return Qnil;
}
static VALUE
fix_comp(VALUE num)
{
return ~num | FIXNUM_FLAG;
}
VALUE
rb_int_comp(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_comp(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_comp(num);
}
return Qnil;
}
static VALUE
num_funcall_bit_1(VALUE y, VALUE arg, int recursive)
{
ID func = (ID)((VALUE *)arg)[0];
VALUE x = ((VALUE *)arg)[1];
if (recursive) {
num_funcall_op_1_recursion(x, func, y);
}
return rb_check_funcall(x, func, 1, &y);
}
VALUE
rb_num_coerce_bit(VALUE x, VALUE y, ID func)
{
VALUE ret, args[3];
args[0] = (VALUE)func;
args[1] = x;
args[2] = y;
do_coerce(&args[1], &args[2], TRUE);
ret = rb_exec_recursive_paired(num_funcall_bit_1,
args[2], args[1], (VALUE)args);
if (ret == Qundef) {
/* show the original object, not coerced object */
coerce_failed(x, y);
}
return ret;
}
static VALUE
fix_and(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
long val = FIX2LONG(x) & FIX2LONG(y);
return LONG2NUM(val);
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_and(y, x);
}
return rb_num_coerce_bit(x, y, '&');
}
/*
* call-seq:
* self & other -> integer
*
* Bitwise AND; each bit in the result is 1 if both corresponding bits
* in +self+ and +other+ are 1, 0 otherwise:
*
* "%04b" % (0b0101 & 0b0110) # => "0100"
*
* Raises an exception if +other+ is not an \Integer.
*
* Related: Integer#| (bitwise OR), Integer#^ (bitwise EXCLUSIVE OR).
*
*/
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_and(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_and(x, y);
}
return Qnil;
}
static VALUE
fix_or(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
long val = FIX2LONG(x) | FIX2LONG(y);
return LONG2NUM(val);
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_or(y, x);
}
return rb_num_coerce_bit(x, y, '|');
}
/*
* call-seq:
* self | other -> integer
*
* Bitwise OR; each bit in the result is 1 if either corresponding bit
* in +self+ or +other+ is 1, 0 otherwise:
*
* "%04b" % (0b0101 | 0b0110) # => "0111"
*
* Raises an exception if +other+ is not an \Integer.
*
* Related: Integer#& (bitwise AND), Integer#^ (bitwise EXCLUSIVE OR).
*
*/
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_or(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_or(x, y);
}
return Qnil;
}
static VALUE
fix_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
long val = FIX2LONG(x) ^ FIX2LONG(y);
return LONG2NUM(val);
}
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_xor(y, x);
}
return rb_num_coerce_bit(x, y, '^');
}
/*
* call-seq:
* self ^ other -> integer
*
* Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits
* in +self+ and +other+ are different, 0 otherwise:
*
* "%04b" % (0b0101 ^ 0b0110) # => "0011"
*
* Raises an exception if +other+ is not an \Integer.
*
* Related: Integer#& (bitwise AND), Integer#| (bitwise OR).
*
*/
static VALUE
int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_xor(x, y);
}
return Qnil;
}
static VALUE
rb_fix_lshift(VALUE x, VALUE y)
{
long val, width;
val = NUM2LONG(x);
if (!val) return (rb_to_int(y), INT2FIX(0));
if (!FIXNUM_P(y))
return rb_big_lshift(rb_int2big(val), y);
width = FIX2LONG(y);
if (width < 0)
return fix_rshift(val, (unsigned long)-width);
return fix_lshift(val, width);
}
static VALUE
fix_lshift(long val, unsigned long width)
{
if (width > (SIZEOF_LONG*CHAR_BIT-1)
|| ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
}
val = val << width;
return LONG2NUM(val);
}
/*
* call-seq:
* self << count -> integer
*
* Returns +self+ with bits shifted +count+ positions to the left,
* or to the right if +count+ is negative:
*
* n = 0b11110000
* "%08b" % (n << 1) # => "111100000"
* "%08b" % (n << 3) # => "11110000000"
* "%08b" % (n << -1) # => "01111000"
* "%08b" % (n << -3) # => "00011110"
*
* Related: Integer#>>.
*
*/
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_lshift(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lshift(x, y);
}
return Qnil;
}
static VALUE
rb_fix_rshift(VALUE x, VALUE y)
{
long i, val;
val = FIX2LONG(x);
if (!val) return (rb_to_int(y), INT2FIX(0));
if (!FIXNUM_P(y))
return rb_big_rshift(rb_int2big(val), y);
i = FIX2LONG(y);
if (i == 0) return x;
if (i < 0)
return fix_lshift(val, (unsigned long)-i);
return fix_rshift(val, i);
}
static VALUE
fix_rshift(long val, unsigned long i)
{
if (i >= sizeof(long)*CHAR_BIT-1) {
if (val < 0) return INT2FIX(-1);
return INT2FIX(0);
}
val = RSHIFT(val, i);
return LONG2FIX(val);
}
/*
* call-seq:
* self >> count -> integer
*
* Returns +self+ with bits shifted +count+ positions to the right,
* or to the left if +count+ is negative:
*
* n = 0b11110000
* "%08b" % (n >> 1) # => "01111000"
* "%08b" % (n >> 3) # => "00011110"
* "%08b" % (n >> -1) # => "111100000"
* "%08b" % (n >> -3) # => "11110000000"
*
* Related: Integer#<<.
*
*/
static VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_rshift(x, y);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_rshift(x, y);
}
return Qnil;
}
MJIT_FUNC_EXPORTED VALUE
rb_fix_aref(VALUE fix, VALUE idx)
{
* eval.c (block_pass): should not downgrade safe level. * ext/dbm/extconf.rb: allow specifying dbm-type explicitly. * ext/dbm/extconf.rb: avoid gdbm if possible, because it leaks memory, whereas gdbm.so doesn't. potential incompatibility. * string.c (rb_str_insert): new method. * parse.y (yylex): lex_state after RESCUE_MOD should be EXPR_BEG. * array.c (rb_ary_insert): new method. * array.c (rb_ary_update): new utility function. * io.c (set_outfile): should check if closed before assignment. * eval.c (rb_eval): should preserve value of ruby_errinfo. * eval.c (rb_thread_schedule): infinite sleep should not cause dead lock. * array.c (rb_ary_flatten_bang): proper recursive detection. * eval.c (yield_under): need not to prohibit at safe level 4. * pack.c (pack_pack): p/P packs nil into NULL. * pack.c (pack_unpack): p/P unpacks NULL into nil. * pack.c (pack_pack): size check for P template. * ruby.c (set_arg0): wrong predicate when new $0 value is bigger than original space. * gc.c (id2ref): should use NUM2ULONG() * object.c (rb_mod_const_get): check whether name is a class variable name. * object.c (rb_mod_const_set): ditto. * object.c (rb_mod_const_defined): ditto. * marshal.c (w_float): precision changed to "%.16g" * eval.c (rb_call0): wrong retry behavior. * numeric.c (fix_aref): a bug on long>int architecture. * eval.c (rb_eval_string_wrap): should restore ruby_wrapper. * regex.c (re_compile_pattern): char class at either edge of range should be invalid. * eval.c (handle_rescue): use === to compare exception match. * error.c (syserr_eqq): comparison between SytemCallErrors should based on their error numbers. * eval.c (safe_getter): should use INT2NUM(). * bignum.c (rb_big2long): 2**31 cannot fit in 31 bit long. * regex.c (calculate_must_string): wrong length calculation. * eval.c (rb_thread_start_0): fixed memory leak. * parse.y (none): should clear cmdarg_stack too. * io.c (rb_fopen): use setvbuf() to avoid recursive malloc() on some platforms. * file.c (rb_stat_dev): device functions should honor stat field types (except long long such as dev_t). * eval.c (rb_mod_nesting): should not push nil for nesting array. * eval.c (rb_mod_s_constants): should not search array by rb_mod_const_at() for nil (happens for singleton class). * class.c (rb_singleton_class_attached): should modify iv_tbl by itself, no longer use rb_iv_set() to avoid freeze check error. * variable.c (rb_const_get): error message "uninitialized constant Foo at Bar::Baz" instead of "uninitialized constantBar::Baz::Foo". * eval.c (rb_mod_included): new hook called from rb_mod_include(). * io.c (opt_i_set): should strdup() inplace_edit string. * eval.c (exec_under): need to push cref too. * eval.c (rb_f_missing): raise NameError for "undefined local variable or method". * error.c (Init_Exception): new exception NoMethodError. NameError moved under ScriptError again. * eval.c (rb_f_missing): use NoMethodError instead of NameError. * file.c (Init_File): should redifine "new" class method. * eval.c (PUSH_CREF): sharing cref node was problematic. maintain runtime cref list instead. * eval.c (rb_eval): copy defn node before registering. * eval.c (rb_load): clear ruby_cref before loading. * variable.c (rb_const_get): no recursion to show full class path for modules. * eval.c (rb_set_safe_level): should set safe level in curr_thread as well. * eval.c (safe_setter): ditto. * object.c (rb_obj_is_instance_of): nil belongs to false, not true. * time.c (make_time_t): proper (I hope) daylight saving time handling for both US and Europe. I HATE DST! * eval.c (rb_thread_wait_for): non blocked signal interrupt should stop the interval. * eval.c (proc_eq): class check aded. * eval.c (proc_eq): typo fixed ("return" was ommitted). * error.c (Init_Exception): move NameError under StandardError. * class.c (rb_mod_clone): should copy method bodies too. * bignum.c (bigdivrem): should trim trailing zero bdigits of remainder, even if dd == 0. * file.c (check3rdbyte): safe string check moved here. * time.c (make_time_t): remove HAVE_TM_ZONE code since it sometimes reports wrong time. * time.c (make_time_t): remove unnecessary range check for platforms where negative time_t is available. * process.c (proc_waitall): should push Process::Status instead of Finuxm status. * process.c (waitall_each): should add all entries in pid_tbl. these changes are inspired by Koji Arai. Thanks. * process.c (proc_wait): should not iterate if pid_tbl is 0. * process.c (proc_waitall): ditto. * numeric.c (flodivmod): a bug in no fmod case. * process.c (pst_wifsignaled): should apply WIFSIGNALED for status (int), not st (VALUE). * io.c (Init_IO): value of $/ and $\ are no longer restricted to strings. type checks are done on demand. * class.c (rb_include_module): module inclusion should be check taints. * ruby.h (STR2CSTR): replace to StringType() and StringTypePtr(). * ruby.h (rb_str2cstr): ditto. * eval.c (rb_load): should not copy topleve local variables. It cause variable/method ambiguity. Thanks to L. Peter Deutsch. * class.c (rb_include_module): freeze check at first. * eval.c (rb_attr): sprintf() and rb_intern() moved into conditional body. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1356 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2001-05-02 08:22:21 +04:00
long val = FIX2LONG(fix);
long i;
idx = rb_to_int(idx);
if (!FIXNUM_P(idx)) {
idx = rb_big_norm(idx);
if (!FIXNUM_P(idx)) {
if (!BIGNUM_SIGN(idx) || val >= 0)
return INT2FIX(0);
return INT2FIX(1);
}
}
i = FIX2LONG(idx);
if (i < 0) return INT2FIX(0);
if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
if (val < 0) return INT2FIX(1);
return INT2FIX(0);
* eval.c (block_pass): should not downgrade safe level. * ext/dbm/extconf.rb: allow specifying dbm-type explicitly. * ext/dbm/extconf.rb: avoid gdbm if possible, because it leaks memory, whereas gdbm.so doesn't. potential incompatibility. * string.c (rb_str_insert): new method. * parse.y (yylex): lex_state after RESCUE_MOD should be EXPR_BEG. * array.c (rb_ary_insert): new method. * array.c (rb_ary_update): new utility function. * io.c (set_outfile): should check if closed before assignment. * eval.c (rb_eval): should preserve value of ruby_errinfo. * eval.c (rb_thread_schedule): infinite sleep should not cause dead lock. * array.c (rb_ary_flatten_bang): proper recursive detection. * eval.c (yield_under): need not to prohibit at safe level 4. * pack.c (pack_pack): p/P packs nil into NULL. * pack.c (pack_unpack): p/P unpacks NULL into nil. * pack.c (pack_pack): size check for P template. * ruby.c (set_arg0): wrong predicate when new $0 value is bigger than original space. * gc.c (id2ref): should use NUM2ULONG() * object.c (rb_mod_const_get): check whether name is a class variable name. * object.c (rb_mod_const_set): ditto. * object.c (rb_mod_const_defined): ditto. * marshal.c (w_float): precision changed to "%.16g" * eval.c (rb_call0): wrong retry behavior. * numeric.c (fix_aref): a bug on long>int architecture. * eval.c (rb_eval_string_wrap): should restore ruby_wrapper. * regex.c (re_compile_pattern): char class at either edge of range should be invalid. * eval.c (handle_rescue): use === to compare exception match. * error.c (syserr_eqq): comparison between SytemCallErrors should based on their error numbers. * eval.c (safe_getter): should use INT2NUM(). * bignum.c (rb_big2long): 2**31 cannot fit in 31 bit long. * regex.c (calculate_must_string): wrong length calculation. * eval.c (rb_thread_start_0): fixed memory leak. * parse.y (none): should clear cmdarg_stack too. * io.c (rb_fopen): use setvbuf() to avoid recursive malloc() on some platforms. * file.c (rb_stat_dev): device functions should honor stat field types (except long long such as dev_t). * eval.c (rb_mod_nesting): should not push nil for nesting array. * eval.c (rb_mod_s_constants): should not search array by rb_mod_const_at() for nil (happens for singleton class). * class.c (rb_singleton_class_attached): should modify iv_tbl by itself, no longer use rb_iv_set() to avoid freeze check error. * variable.c (rb_const_get): error message "uninitialized constant Foo at Bar::Baz" instead of "uninitialized constantBar::Baz::Foo". * eval.c (rb_mod_included): new hook called from rb_mod_include(). * io.c (opt_i_set): should strdup() inplace_edit string. * eval.c (exec_under): need to push cref too. * eval.c (rb_f_missing): raise NameError for "undefined local variable or method". * error.c (Init_Exception): new exception NoMethodError. NameError moved under ScriptError again. * eval.c (rb_f_missing): use NoMethodError instead of NameError. * file.c (Init_File): should redifine "new" class method. * eval.c (PUSH_CREF): sharing cref node was problematic. maintain runtime cref list instead. * eval.c (rb_eval): copy defn node before registering. * eval.c (rb_load): clear ruby_cref before loading. * variable.c (rb_const_get): no recursion to show full class path for modules. * eval.c (rb_set_safe_level): should set safe level in curr_thread as well. * eval.c (safe_setter): ditto. * object.c (rb_obj_is_instance_of): nil belongs to false, not true. * time.c (make_time_t): proper (I hope) daylight saving time handling for both US and Europe. I HATE DST! * eval.c (rb_thread_wait_for): non blocked signal interrupt should stop the interval. * eval.c (proc_eq): class check aded. * eval.c (proc_eq): typo fixed ("return" was ommitted). * error.c (Init_Exception): move NameError under StandardError. * class.c (rb_mod_clone): should copy method bodies too. * bignum.c (bigdivrem): should trim trailing zero bdigits of remainder, even if dd == 0. * file.c (check3rdbyte): safe string check moved here. * time.c (make_time_t): remove HAVE_TM_ZONE code since it sometimes reports wrong time. * time.c (make_time_t): remove unnecessary range check for platforms where negative time_t is available. * process.c (proc_waitall): should push Process::Status instead of Finuxm status. * process.c (waitall_each): should add all entries in pid_tbl. these changes are inspired by Koji Arai. Thanks. * process.c (proc_wait): should not iterate if pid_tbl is 0. * process.c (proc_waitall): ditto. * numeric.c (flodivmod): a bug in no fmod case. * process.c (pst_wifsignaled): should apply WIFSIGNALED for status (int), not st (VALUE). * io.c (Init_IO): value of $/ and $\ are no longer restricted to strings. type checks are done on demand. * class.c (rb_include_module): module inclusion should be check taints. * ruby.h (STR2CSTR): replace to StringType() and StringTypePtr(). * ruby.h (rb_str2cstr): ditto. * eval.c (rb_load): should not copy topleve local variables. It cause variable/method ambiguity. Thanks to L. Peter Deutsch. * class.c (rb_include_module): freeze check at first. * eval.c (rb_attr): sprintf() and rb_intern() moved into conditional body. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1356 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2001-05-02 08:22:21 +04:00
}
if (val & (1L<<i))
return INT2FIX(1);
return INT2FIX(0);
}
/* copied from "r_less" in range.c */
/* compares _a_ and _b_ and returns:
* < 0: a < b
* = 0: a = b
* > 0: a > b or non-comparable
*/
static int
compare_indexes(VALUE a, VALUE b)
{
VALUE r = rb_funcall(a, id_cmp, 1, b);
if (NIL_P(r))
2019-04-28 17:42:46 +03:00
return INT_MAX;
return rb_cmpint(r, a, b);
}
static VALUE
2019-07-19 00:15:47 +03:00
generate_mask(VALUE len)
{
return rb_int_minus(rb_int_lshift(INT2FIX(1), len), INT2FIX(1));
}
static VALUE
int_aref1(VALUE num, VALUE arg)
{
VALUE orig_num = num, beg, end;
int excl;
if (rb_range_values(arg, &beg, &end, &excl)) {
if (NIL_P(beg)) {
/* beginless range */
if (!RTEST(num_negative_p(end))) {
if (!excl) end = rb_int_plus(end, INT2FIX(1));
VALUE mask = generate_mask(end);
if (int_zero_p(rb_int_and(num, mask))) {
return INT2FIX(0);
}
else {
rb_raise(rb_eArgError, "The beginless range for Integer#[] results in infinity");
}
}
else {
return INT2FIX(0);
}
}
num = rb_int_rshift(num, beg);
int cmp = compare_indexes(beg, end);
if (!NIL_P(end) && cmp < 0) {
VALUE len = rb_int_minus(end, beg);
if (!excl) len = rb_int_plus(len, INT2FIX(1));
VALUE mask = generate_mask(len);
num = rb_int_and(num, mask);
}
else if (cmp == 0) {
if (excl) return INT2FIX(0);
num = orig_num;
arg = beg;
goto one_bit;
}
return num;
}
one_bit:
if (FIXNUM_P(num)) {
return rb_fix_aref(num, arg);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
2019-04-28 17:42:46 +03:00
return rb_big_aref(num, arg);
}
return Qnil;
}
static VALUE
int_aref2(VALUE num, VALUE beg, VALUE len)
{
num = rb_int_rshift(num, beg);
VALUE mask = generate_mask(len);
num = rb_int_and(num, mask);
return num;
}
/*
* call-seq:
* self[offset] -> 0 or 1
* self[offset, size] -> integer
* self[range] -> integer
*
* Returns a slice of bits from +self+.
*
* With argument +offset+, returns the bit at the given offset,
* where offset 0 refers to the least significant bit:
*
* n = 0b10 # => 2
* n[0] # => 0
* n[1] # => 1
* n[2] # => 0
* n[3] # => 0
*
* In principle, <code>n[i]</code> is equivalent to <code>(n >> i) & 1</code>.
* Thus, negative index always returns zero:
*
* 255[-1] # => 0
*
* With arguments +offset+ and +size+, returns +size+ bits from +self+,
* beginning at +offset+ and including bits of greater significance:
*
* n = 0b111000 # => 56
* "%010b" % n[0, 10] # => "0000111000"
* "%010b" % n[4, 10] # => "0000000011"
*
* With argument +range+, returns <tt>range.size</tt> bits from +self+,
* beginning at <tt>range.begin</tt> and including bits of greater significance:
*
* n = 0b111000 # => 56
* "%010b" % n[0..9] # => "0000111000"
* "%010b" % n[4..9] # => "0000000011"
*
* Raises an exception if the slice cannot be constructed.
*/
static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 2) {
2019-04-28 17:42:46 +03:00
return int_aref2(num, argv[0], argv[1]);
}
return int_aref1(num, argv[0]);
return Qnil;
}
/*
* call-seq:
* to_f -> float
*
* Converts +self+ to a Float:
*
* 1.to_f # => 1.0
* -1.to_f # => -1.0
*
* If the value of +self+ does not fit in a \Float,
* the result is infinity:
*
* (10**400).to_f # => Infinity
* (-10**400).to_f # => -Infinity
*
*/
static VALUE
int_to_f(VALUE num)
{
double val;
if (FIXNUM_P(num)) {
val = (double)FIX2LONG(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
val = rb_big2dbl(num);
}
else {
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
static VALUE
fix_abs(VALUE fix)
{
long i = FIX2LONG(fix);
if (i < 0) i = -i;
return LONG2NUM(i);
}
VALUE
rb_int_abs(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_abs(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_abs(num);
}
return Qnil;
}
static VALUE
fix_size(VALUE fix)
{
return INT2FIX(sizeof(long));
}
MJIT_FUNC_EXPORTED VALUE
rb_int_size(VALUE num)
{
if (FIXNUM_P(num)) {
return fix_size(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_size_m(num);
}
return Qnil;
}
static VALUE
rb_fix_bit_length(VALUE fix)
{
long v = FIX2LONG(fix);
if (v < 0)
v = ~v;
return LONG2FIX(bit_length(v));
}
2020-07-11 08:25:51 +03:00
VALUE
rb_int_bit_length(VALUE num)
{
if (FIXNUM_P(num)) {
return rb_fix_bit_length(num);
}
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_bit_length(num);
}
return Qnil;
}
static VALUE
rb_fix_digits(VALUE fix, long base)
{
VALUE digits;
long x = FIX2LONG(fix);
assert(x >= 0);
if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
if (x == 0)
return rb_ary_new_from_args(1, INT2FIX(0));
digits = rb_ary_new();
while (x > 0) {
long q = x % base;
rb_ary_push(digits, LONG2NUM(q));
x /= base;
}
return digits;
}
static VALUE
rb_int_digits_bigbase(VALUE num, VALUE base)
{
VALUE digits, bases;
assert(!rb_num_negative_p(num));
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(base))
base = rb_big_norm(base);
if (FIXNUM_P(base) && FIX2LONG(base) < 2)
rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base));
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(base) && BIGNUM_NEGATIVE_P(base))
rb_raise(rb_eArgError, "negative radix");
if (FIXNUM_P(base) && FIXNUM_P(num))
return rb_fix_digits(num, FIX2LONG(base));
if (FIXNUM_P(num))
return rb_ary_new_from_args(1, num);
if (int_lt(rb_int_div(rb_int_bit_length(num), rb_int_bit_length(base)), INT2FIX(50))) {
digits = rb_ary_new();
while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
VALUE qr = rb_int_divmod(num, base);
rb_ary_push(digits, RARRAY_AREF(qr, 1));
num = RARRAY_AREF(qr, 0);
}
return digits;
}
bases = rb_ary_new();
for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) {
rb_ary_push(bases, b);
}
digits = rb_ary_new_from_args(1, num);
while (RARRAY_LEN(bases)) {
VALUE b = rb_ary_pop(bases);
long i, last_idx = RARRAY_LEN(digits) - 1;
for(i = last_idx; i >= 0; i--) {
VALUE n = RARRAY_AREF(digits, i);
VALUE divmod = rb_int_divmod(n, b);
VALUE div = RARRAY_AREF(divmod, 0);
VALUE mod = RARRAY_AREF(divmod, 1);
if (i != last_idx || div != INT2FIX(0)) rb_ary_store(digits, 2 * i + 1, div);
rb_ary_store(digits, 2 * i, mod);
}
}
return digits;
}
/*
* call-seq:
* digits(base = 10) -> array_of_integers
*
* Returns an array of integers representing the +base+-radix
* digits of +self+;
* the first element of the array represents the least significant digit:
*
* 12345.digits # => [5, 4, 3, 2, 1]
* 12345.digits(7) # => [4, 6, 6, 0, 5]
* 12345.digits(100) # => [45, 23, 1]
*
* Raises an exception if +self+ is negative or +base+ is less than 2.
*
*/
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
VALUE base_value;
long base;
if (rb_num_negative_p(num))
rb_raise(rb_eMathDomainError, "out of domain");
if (rb_check_arity(argc, 0, 1)) {
base_value = rb_to_int(argv[0]);
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(base_value))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
if (base < 0)
rb_raise(rb_eArgError, "negative radix");
else if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
}
else
base = 10;
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
2021-09-03 14:50:12 +03:00
else if (RB_BIGNUM_TYPE_P(num))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
static VALUE
int_upto_size(VALUE from, VALUE args, VALUE eobj)
{
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
}
/*
* call-seq:
* upto(limit) {|i| ... } -> self
* upto(limit) -> enumerator
*
* Calls the given block with each integer value from +self+ up to +limit+;
* returns +self+:
*
* a = []
* 5.upto(10) {|i| a << i } # => 5
* a # => [5, 6, 7, 8, 9, 10]
* a = []
* -5.upto(0) {|i| a << i } # => -5
* a # => [-5, -4, -3, -2, -1, 0]
* 5.upto(4) {|i| fail 'Cannot happen' } # => 5
*
* With no block given, returns an Enumerator.
*
*/
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
ensure_cmp(c, i, to);
}
return from;
}
static VALUE
int_downto_size(VALUE from, VALUE args, VALUE eobj)
{
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
}
/*
* call-seq:
* downto(limit) {|i| ... } -> self
* downto(limit) -> enumerator
*
* Calls the given block with each integer value from +self+ down to +limit+;
* returns +self+:
*
* a = []
* 10.downto(5) {|i| a << i } # => 10
* a # => [10, 9, 8, 7, 6, 5]
* a = []
* 0.downto(-5) {|i| a << i } # => 0
* a # => [0, -1, -2, -3, -4, -5]
* 4.downto(5) {|i| fail 'Cannot happen' } # => 4
*
* With no block given, returns an Enumerator.
*
*/
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
static VALUE
int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
{
if (FIXNUM_P(num)) {
if (NUM2LONG(num) <= 0) return INT2FIX(0);
}
else {
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
}
return num;
}
/*
* call-seq:
* times {|i| ... } -> self
* times -> enumerator
*
* Calls the given block +self+ times with each integer in <tt>(0..self-1)</tt>:
*
* a = []
* 5.times {|i| a.push(i) } # => 5
* a # => [0, 1, 2, 3, 4]
*
* With no block given, returns an Enumerator.
*
*/
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield_1(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(int_le(i, num))) break;
rb_yield(i);
i = rb_int_plus(i, INT2FIX(1));
}
}
return num;
}
/*
* call-seq:
* round(ndigits= 0, half: :up) -> integer
*
* Returns +self+ rounded to the nearest value with
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is negative, the returned value
* has at least <tt>ndigits.abs</tt> trailing zeros:
*
* 555.round(-1) # => 560
* 555.round(-2) # => 600
* 555.round(-3) # => 1000
* -555.round(-2) # => -600
* 555.round(-4) # => 0
*
* Returns +self+ when +ndigits+ is zero or positive.
*
* 555.round # => 555
* 555.round(1) # => 555
* 555.round(50) # => 555
*
* If keyword argument +half+ is given,
* and +self+ is equidistant from the two candidate values,
* the rounding is according to the given +half+ value:
*
* - +:up+ or +nil+: round away from zero:
*
* 25.round(-1, half: :up) # => 30
* (-25).round(-1, half: :up) # => -30
*
* - +:down+: round toward zero:
*
* 25.round(-1, half: :down) # => 20
* (-25).round(-1, half: :down) # => -20
*
*
* - +:even+: round toward the candidate whose last nonzero digit is even:
*
* 25.round(-1, half: :even) # => 20
* 15.round(-1, half: :even) # => 20
* (-25).round(-1, half: :even) # => -20
*
* Raises and exception if the value for +half+ is invalid.
*
* Related: Integer#truncate.
*
*/
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
int ndigits;
int mode;
VALUE nd, opt;
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
return num;
}
return rb_int_round(num, ndigits, mode);
}
/*
* call-seq:
* floor(ndigits = 0) -> integer
*
* Returns the largest number less than or equal to +self+ with
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is negative, the returned value
* has at least <tt>ndigits.abs</tt> trailing zeros:
*
* 555.floor(-1) # => 550
* 555.floor(-2) # => 500
* -555.floor(-2) # => -600
* 555.floor(-3) # => 0
*
* Returns +self+ when +ndigits+ is zero or positive.
*
* 555.floor # => 555
* 555.floor(50) # => 555
*
* Related: Integer#ceil.
*
*/
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_floor(num, ndigits);
}
/*
* call-seq:
* ceil(ndigits = 0) -> integer
*
* Returns the smallest number greater than or equal to +self+ with
* a precision of +ndigits+ decimal digits.
*
* When the precision is negative, the returned value is an integer
* with at least <code>ndigits.abs</code> trailing zeros:
*
* 555.ceil(-1) # => 560
* 555.ceil(-2) # => 600
* -555.ceil(-2) # => -500
* 555.ceil(-3) # => 1000
*
* Returns +self+ when +ndigits+ is zero or positive.
*
* 555.ceil # => 555
* 555.ceil(50) # => 555
*
* Related: Integer#floor.
*
*/
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_ceil(num, ndigits);
}
/*
* call-seq:
* truncate(ndigits = 0) -> integer
*
* Returns +self+ truncated (toward zero) to
* a precision of +ndigits+ decimal digits.
*
* When +ndigits+ is negative, the returned value
* has at least <tt>ndigits.abs</tt> trailing zeros:
*
* 555.truncate(-1) # => 550
* 555.truncate(-2) # => 500
* -555.truncate(-2) # => -500
*
* Returns +self+ when +ndigits+ is zero or positive.
*
* 555.truncate # => 555
* 555.truncate(50) # => 555
*
* Related: Integer#round.
*
*/
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_truncate(num, ndigits);
}
#define DEFINE_INT_SQRT(rettype, prefix, argtype) \
rettype \
prefix##_isqrt(argtype n) \
{ \
if (!argtype##_IN_DOUBLE_P(n)) { \
unsigned int b = bit_length(n); \
argtype t; \
rettype x = (rettype)(n >> (b/2+1)); \
x |= ((rettype)1LU << (b-1)/2); \
while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
return x; \
} \
return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
}
#if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG
# define RB_ULONG_IN_DOUBLE_P(n) ((n) < (1UL << DBL_MANT_DIG))
#else
# define RB_ULONG_IN_DOUBLE_P(n) 1
#endif
#define RB_ULONG_TO_DOUBLE(n) (double)(n)
#define RB_ULONG unsigned long
DEFINE_INT_SQRT(unsigned long, rb_ulong, RB_ULONG)
#if 2*SIZEOF_BDIGIT > SIZEOF_LONG
# if 2*SIZEOF_BDIGIT*CHAR_BIT > DBL_MANT_DIG
# define BDIGIT_DBL_IN_DOUBLE_P(n) ((n) < ((BDIGIT_DBL)1UL << DBL_MANT_DIG))
# else
# define BDIGIT_DBL_IN_DOUBLE_P(n) 1
# endif
# ifdef ULL_TO_DOUBLE
# define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n)
# else
# define BDIGIT_DBL_TO_DOUBLE(n) (double)(n)
# endif
DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL)
#endif
#define domain_error(msg) \
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
/*
* call-seq:
* Integer.sqrt(numeric) -> integer
*
* Returns the integer square root of the non-negative integer +n+,
* which is the largest non-negative integer less than or equal to the
* square root of +numeric+.
*
* Integer.sqrt(0) # => 0
* Integer.sqrt(1) # => 1
* Integer.sqrt(24) # => 4
* Integer.sqrt(25) # => 5
* Integer.sqrt(10**400) # => 10**200
*
* If +numeric+ is not an \Integer, it is converted to an \Integer:
*
* Integer.sqrt(Complex(4, 0)) # => 2
* Integer.sqrt(Rational(4, 1)) # => 2
* Integer.sqrt(4.0) # => 2
* Integer.sqrt(3.14159) # => 1
*
* This method is equivalent to <tt>Math.sqrt(numeric).floor</tt>,
* except that the result of the latter code may differ from the true value
* due to the limited precision of floating point arithmetic.
*
* Integer.sqrt(10**46) # => 100000000000000000000000
* Math.sqrt(10**46).floor # => 99999999999999991611392
*
* Raises an exception if +numeric+ is negative.
*
*/
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
if (FIXNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
n = FIX2ULONG(num);
sq = rb_ulong_isqrt(n);
return LONG2FIX(sq);
}
else {
size_t biglen;
if (RBIGNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
biglen = BIGNUM_LEN(num);
if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
/* short-circuit */
if (biglen == 1) {
n = BIGNUM_DIGITS(num)[0];
sq = rb_ulong_isqrt(n);
return ULONG2NUM(sq);
}
#endif
return rb_big_isqrt(num);
}
}
2021-12-08 11:59:16 +03:00
/* :nodoc: */
static VALUE
int_s_try_convert(VALUE self, VALUE num)
{
return rb_check_integer_type(num);
}
/*
* Document-class: ZeroDivisionError
*
* Raised when attempting to divide an integer by 0.
*
* 42 / 0 #=> ZeroDivisionError: divided by 0
*
* Note that only division by an exact 0 will raise the exception:
*
* 42 / 0.0 #=> Float::INFINITY
* 42 / -0.0 #=> -Float::INFINITY
* 0 / 0.0 #=> NaN
*/
/*
* Document-class: FloatDomainError
*
* Raised when attempting to convert special float values (in particular
* +Infinity+ or +NaN+) to numerical classes which don't support them.
*
* Float::INFINITY.to_r #=> FloatDomainError: Infinity
*/
/*
* Document-class: Numeric
*
* Numeric is the class from which all higher-level numeric classes should inherit.
*
* Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
* Integer are implemented as immediates, which means that each Integer is a single immutable
* object which is always passed by value.
*
* a = 1
* 1.object_id == a.object_id #=> true
*
* There can only ever be one instance of the integer +1+, for example. Ruby ensures this
* by preventing instantiation. If duplication is attempted, the same instance is returned.
*
* Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class
* 1.dup #=> 1
* 1.object_id == 1.dup.object_id #=> true
*
* For this reason, Numeric should be used when defining other numeric classes.
*
* Classes which inherit from Numeric must implement +coerce+, which returns a two-member
* Array containing an object that has been coerced into an instance of the new class
* and +self+ (see #coerce).
*
* Inheriting classes should also implement arithmetic operator methods (<code>+</code>,
* <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see
* Comparable). These methods may rely on +coerce+ to ensure interoperability with
* instances of other numeric classes.
*
* class Tally < Numeric
* def initialize(string)
* @string = string
* end
*
* def to_s
* @string
* end
*
* def to_i
* @string.size
* end
*
* def coerce(other)
* [self.class.new('|' * other.to_i), self]
* end
*
* def <=>(other)
* to_i <=> other.to_i
* end
*
* def +(other)
* self.class.new('|' * (to_i + other.to_i))
* end
*
* def -(other)
* self.class.new('|' * (to_i - other.to_i))
* end
*
* def *(other)
* self.class.new('|' * (to_i * other.to_i))
* end
*
* def /(other)
* self.class.new('|' * (to_i / other.to_i))
* end
* end
*
* tally = Tally.new('||')
* puts tally * 2 #=> "||||"
* puts tally > 1 #=> true
2021-05-18 16:27:41 +03:00
*
* == What's Here
*
* First, what's elsewhere. \Class \Numeric:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
2021-05-18 16:27:41 +03:00
*
* Here, class \Numeric provides methods for:
*
* - {Querying}[rdoc-ref:Numeric@Querying]
* - {Comparing}[rdoc-ref:Numeric@Comparing]
* - {Converting}[rdoc-ref:Numeric@Converting]
* - {Other}[rdoc-ref:Numeric@Other]
2021-05-18 16:27:41 +03:00
*
* === Querying
*
* - #finite?: Returns true unless +self+ is infinite or not a number.
* - #infinite?: Returns -1, +nil+ or +1, depending on whether +self+
* is <tt>-Infinity<tt>, finite, or <tt>+Infinity</tt>.
* - #integer?: Returns whether +self+ is an integer.
* - #negative?: Returns whether +self+ is negative.
* - #nonzero?: Returns whether +self+ is not zero.
* - #positive?: Returns whether +self+ is positive.
* - #real?: Returns whether +self+ is a real value.
* - #zero?: Returns whether +self+ is zero.
2021-05-18 16:27:41 +03:00
*
* === Comparing
*
* - #<=>: Returns:
*
2021-05-18 16:27:41 +03:00
* - -1 if +self+ is less than the given value.
* - 0 if +self+ is equal to the given value.
* - 1 if +self+ is greater than the given value.
2021-05-18 16:27:41 +03:00
* - +nil+ if +self+ and the given value are not comparable.
*
* - #eql?: Returns whether +self+ and the given value have the same value and type.
2021-05-18 16:27:41 +03:00
*
* === Converting
*
* - #% (aliased as #modulo): Returns the remainder of +self+ divided by the given value.
* - #-@: Returns the value of +self+, negated.
* - #abs (aliased as #magnitude): Returns the absolute value of +self+.
* - #abs2: Returns the square of +self+.
* - #angle (aliased as #arg and #phase): Returns 0 if +self+ is positive,
* Math::PI otherwise.
* - #ceil: Returns the smallest number greater than or equal to +self+,
* to a given precision.
* - #coerce: Returns array <tt>[coerced_self, coerced_other]</tt>
* for the given other value.
* - #conj (aliased as #conjugate): Returns the complex conjugate of +self+.
* - #denominator: Returns the denominator (always positive)
* of the Rational representation of +self+.
* - #div: Returns the value of +self+ divided by the given value
* and converted to an integer.
* - #divmod: Returns array <tt>[quotient, modulus]</tt> resulting
* from dividing +self+ the given divisor.
* - #fdiv: Returns the Float result of dividing +self+ by the given divisor.
* - #floor: Returns the largest number less than or equal to +self+,
* to a given precision.
* - #i: Returns the Complex object <tt>Complex(0, self)</tt>.
* the given value.
* - #imaginary (aliased as #imag): Returns the imaginary part of the +self+.
* - #numerator: Returns the numerator of the Rational representation of +self+;
* has the same sign as +self+.
* - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
* - #quo: Returns the value of +self+ divided by the given value.
* - #real: Returns the real part of +self+.
* - #rect (aliased as #rectangular): Returns the array <tt>[self, 0]</tt>.
* - #remainder: Returns <tt>self-arg*(self/arg).truncate</tt> for the given +arg+.
* - #round: Returns the value of +self+ rounded to the nearest value
* for the given a precision.
* - #to_c: Returns the Complex representation of +self+.
* - #to_int: Returns the Integer representation of +self+, truncating if necessary.
* - #truncate: Returns +self+ truncated (toward zero) to a given precision.
2021-05-18 16:27:41 +03:00
*
* === Other
*
* - #clone: Returns +self+; does not allow freezing.
* - #dup (aliased as #+@): Returns +self+.
* - #step: Invokes the given block with the sequence of specified numbers.
2021-05-18 16:27:41 +03:00
*
*/
void
Init_Numeric(void)
{
#ifdef _UNICOSMP
/* Turn off floating point exceptions for divide by zero, etc. */
_set_Creg(0, 0);
#endif
id_coerce = rb_intern_const("coerce");
id_to = rb_intern_const("to");
id_by = rb_intern_const("by");
rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
rb_cNumeric = rb_define_class("Numeric", rb_cObject);
rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
rb_include_module(rb_cNumeric, rb_mComparable);
rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
rb_define_method(rb_cNumeric, "clone", num_clone, -1);
rb_define_method(rb_cNumeric, "dup", num_dup, 0);
rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
rb_define_method(rb_cNumeric, "div", num_div, 1);
rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
rb_define_method(rb_cNumeric, "%", num_modulo, 1);
rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
rb_define_method(rb_cNumeric, "abs", num_abs, 0);
rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
rb_define_method(rb_cNumeric, "floor", num_floor, -1);
rb_define_method(rb_cNumeric, "ceil", num_ceil, -1);
rb_define_method(rb_cNumeric, "round", num_round, -1);
rb_define_method(rb_cNumeric, "truncate", num_truncate, -1);
rb_define_method(rb_cNumeric, "step", num_step, -1);
rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0);
rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0);
rb_cInteger = rb_define_class("Integer", rb_cNumeric);
rb_undef_alloc_func(rb_cInteger);
rb_undef_method(CLASS_OF(rb_cInteger), "new");
rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1);
rb_define_singleton_method(rb_cInteger, "try_convert", int_s_try_convert, 1);
rb_define_method(rb_cInteger, "to_s", rb_int_to_s, -1);
rb_define_alias(rb_cInteger, "inspect", "to_s");
rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1);
rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1);
rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
rb_define_method(rb_cInteger, "upto", int_upto, 1);
rb_define_method(rb_cInteger, "downto", int_downto, 1);
rb_define_method(rb_cInteger, "times", int_dotimes, 0);
rb_define_method(rb_cInteger, "succ", int_succ, 0);
rb_define_method(rb_cInteger, "next", int_succ, 0);
rb_define_method(rb_cInteger, "pred", int_pred, 0);
rb_define_method(rb_cInteger, "chr", int_chr, -1);
rb_define_method(rb_cInteger, "to_f", int_to_f, 0);
rb_define_method(rb_cInteger, "floor", int_floor, -1);
rb_define_method(rb_cInteger, "ceil", int_ceil, -1);
rb_define_method(rb_cInteger, "truncate", int_truncate, -1);
rb_define_method(rb_cInteger, "round", int_round, -1);
rb_define_method(rb_cInteger, "<=>", rb_int_cmp, 1);
rb_define_method(rb_cInteger, "+", rb_int_plus, 1);
rb_define_method(rb_cInteger, "-", rb_int_minus, 1);
rb_define_method(rb_cInteger, "*", rb_int_mul, 1);
rb_define_method(rb_cInteger, "/", rb_int_div, 1);
rb_define_method(rb_cInteger, "div", rb_int_idiv, 1);
rb_define_method(rb_cInteger, "%", rb_int_modulo, 1);
rb_define_method(rb_cInteger, "modulo", rb_int_modulo, 1);
rb_define_method(rb_cInteger, "remainder", int_remainder, 1);
rb_define_method(rb_cInteger, "divmod", rb_int_divmod, 1);
rb_define_method(rb_cInteger, "fdiv", rb_int_fdiv, 1);
rb_define_method(rb_cInteger, "**", rb_int_pow, 1);
rb_define_method(rb_cInteger, "pow", rb_int_powm, -1); /* in bignum.c */
rb_define_method(rb_cInteger, "===", rb_int_equal, 1);
rb_define_method(rb_cInteger, "==", rb_int_equal, 1);
rb_define_method(rb_cInteger, ">", rb_int_gt, 1);
rb_define_method(rb_cInteger, ">=", rb_int_ge, 1);
rb_define_method(rb_cInteger, "<", int_lt, 1);
rb_define_method(rb_cInteger, "<=", int_le, 1);
rb_define_method(rb_cInteger, "&", rb_int_and, 1);
rb_define_method(rb_cInteger, "|", int_or, 1);
rb_define_method(rb_cInteger, "^", int_xor, 1);
rb_define_method(rb_cInteger, "[]", int_aref, -1);
rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1);
rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
rb_fix_to_s_static[0] = rb_fstring_literal("0");
rb_fix_to_s_static[1] = rb_fstring_literal("1");
rb_fix_to_s_static[2] = rb_fstring_literal("2");
rb_fix_to_s_static[3] = rb_fstring_literal("3");
rb_fix_to_s_static[4] = rb_fstring_literal("4");
rb_fix_to_s_static[5] = rb_fstring_literal("5");
rb_fix_to_s_static[6] = rb_fstring_literal("6");
rb_fix_to_s_static[7] = rb_fstring_literal("7");
rb_fix_to_s_static[8] = rb_fstring_literal("8");
rb_fix_to_s_static[9] = rb_fstring_literal("9");
for(int i = 0; i < 10; i++) {
rb_gc_register_mark_object(rb_fix_to_s_static[i]);
}
rb_cFloat = rb_define_class("Float", rb_cNumeric);
rb_undef_alloc_func(rb_cFloat);
rb_undef_method(CLASS_OF(rb_cFloat), "new");
/*
* The base of the floating point, or number of unique digits used to
* represent the number.
*
* Usually defaults to 2 on most systems, which would represent a base-10 decimal.
*/
rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
/*
* The number of base digits for the +double+ data type.
*
* Usually defaults to 53.
*/
rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
/*
* The minimum number of significant decimal digits in a double-precision
* floating point.
*
* Usually defaults to 15.
*/
rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
/*
* The smallest possible exponent value in a double-precision floating
* point.
*
* Usually defaults to -1021.
*/
rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
/*
* The largest possible exponent value in a double-precision floating
* point.
*
* Usually defaults to 1024.
*/
rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
/*
* The smallest negative exponent in a double-precision floating point
* where 10 raised to this power minus 1.
*
* Usually defaults to -307.
*/
rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
/*
* The largest positive exponent in a double-precision floating point where
* 10 raised to this power minus 1.
*
* Usually defaults to 308.
*/
rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
/*
* The smallest positive normalized number in a double-precision floating point.
*
* Usually defaults to 2.2250738585072014e-308.
*
* If the platform supports denormalized numbers,
* there are numbers between zero and Float::MIN.
* 0.0.next_float returns the smallest positive floating point number
* including denormalized numbers.
*/
rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
/*
* The largest possible integer in a double-precision floating point number.
*
* Usually defaults to 1.7976931348623157e+308.
*/
rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
/*
* The difference between 1 and the smallest double-precision floating
* point number greater than 1.
*
* Usually defaults to 2.2204460492503131e-16.
*/
rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
/*
* An expression representing positive infinity.
*/
rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(HUGE_VAL));
/*
* An expression representing a value which is "not a number".
*/
rb_define_const(rb_cFloat, "NAN", DBL2NUM(nan("")));
rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
rb_define_alias(rb_cFloat, "inspect", "to_s");
rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
rb_define_method(rb_cFloat, "+", rb_float_plus, 1);
rb_define_method(rb_cFloat, "-", rb_float_minus, 1);
complex.c: Optimize Complex#* and Complex#** Optimize f_mul for the core numeric class components. This change improves the computation time of Complex#* and Complex#**. ``` $ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby generating known_errors.inc known_errors.inc unchanged /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 6.558M 13.012M i/s - 1.000M times in 0.152480s 0.076850s complex_float_div 576.821k 567.969k i/s - 1.000M times in 1.733640s 1.760660s complex_float_mul 1.690M 2.628M i/s - 1.000M times in 0.591786s 0.380579s complex_float_new 1.350M 1.268M i/s - 1.000M times in 0.740669s 0.788762s complex_float_power 1.571M 1.835M i/s - 1.000M times in 0.636507s 0.544909s complex_float_sub 8.635M 8.779M i/s - 1.000M times in 0.115814s 0.113906s Comparison: complex_float_add built-ruby: 13012361.7 i/s compare-ruby: 6558237.1 i/s - 1.98x slower complex_float_div compare-ruby: 576821.0 i/s built-ruby: 567968.8 i/s - 1.02x slower complex_float_mul built-ruby: 2627575.4 i/s compare-ruby: 1689800.0 i/s - 1.55x slower complex_float_new compare-ruby: 1350130.8 i/s built-ruby: 1267809.6 i/s - 1.06x slower complex_float_power built-ruby: 1835168.8 i/s compare-ruby: 1571074.6 i/s - 1.17x slower complex_float_sub built-ruby: 8779168.8 i/s compare-ruby: 8634534.7 i/s - 1.02x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66697 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-03 09:19:17 +03:00
rb_define_method(rb_cFloat, "*", rb_float_mul, 1);
2019-08-10 08:30:34 +03:00
rb_define_method(rb_cFloat, "/", rb_float_div, 1);
rb_define_method(rb_cFloat, "quo", flo_quo, 1);
rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
rb_define_method(rb_cFloat, "%", flo_mod, 1);
rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
rb_define_method(rb_cFloat, "**", rb_float_pow, 1);
rb_define_method(rb_cFloat, "==", flo_eq, 1);
rb_define_method(rb_cFloat, "===", flo_eq, 1);
rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
rb_define_method(rb_cFloat, ">", rb_float_gt, 1);
rb_define_method(rb_cFloat, ">=", flo_ge, 1);
rb_define_method(rb_cFloat, "<", flo_lt, 1);
rb_define_method(rb_cFloat, "<=", flo_le, 1);
rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
rb_define_method(rb_cFloat, "hash", flo_hash, 0);
rb_define_method(rb_cFloat, "to_i", flo_to_i, 0);
rb_define_method(rb_cFloat, "to_int", flo_to_i, 0);
rb_define_method(rb_cFloat, "floor", flo_floor, -1);
rb_define_method(rb_cFloat, "ceil", flo_ceil, -1);
rb_define_method(rb_cFloat, "round", flo_round, -1);
rb_define_method(rb_cFloat, "truncate", flo_truncate, -1);
rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0);
rb_define_method(rb_cFloat, "infinite?", rb_flo_is_infinite_p, 0);
rb_define_method(rb_cFloat, "finite?", rb_flo_is_finite_p, 0);
rb_define_method(rb_cFloat, "next_float", flo_next_float, 0);
rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0);
}
#undef rb_float_value
double
rb_float_value(VALUE v)
{
return rb_float_value_inline(v);
}
#undef rb_float_new
VALUE
rb_float_new(double d)
{
return rb_float_new_inline(d);
}
#include "numeric.rbinc"