ruby/complex.c

2440 строки
54 KiB
C
Исходник Обычный вид История

/*
complex.c: Coded by Tadayoshi Funaba 2008-2012
This implementation is based on Keiju Ishitsuka's Complex library
which is written in ruby.
*/
#include "ruby/internal/config.h"
#if defined _MSC_VER
/* Microsoft Visual C does not define M_PI and others by default */
# define _USE_MATH_DEFINES 1
#endif
#include <ctype.h>
#include <math.h>
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/class.h"
#include "internal/complex.h"
#include "internal/math.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/rational.h"
#include "ruby_assert.h"
#define ZERO INT2FIX(0)
#define ONE INT2FIX(1)
#define TWO INT2FIX(2)
#if USE_FLONUM
#define RFLOAT_0 DBL2NUM(0)
#else
static VALUE RFLOAT_0;
#endif
VALUE rb_cComplex;
static ID id_abs, id_arg,
2019-08-03 02:37:08 +03:00
id_denominator, id_numerator,
id_real_p, id_i_real, id_i_imag,
id_finite_p, id_infinite_p, id_rationalize,
id_PI;
#define id_to_i idTo_i
#define id_to_r idTo_r
#define id_negate idUMinus
#define id_expt idPow
#define id_to_f idTo_f
2019-08-03 02:37:08 +03:00
#define id_quo idQuo
#define id_fdiv idFdiv
#define fun1(n) \
inline static VALUE \
f_##n(VALUE x)\
{\
return rb_funcall(x, id_##n, 0);\
}
#define fun2(n) \
inline static VALUE \
f_##n(VALUE x, VALUE y)\
{\
return rb_funcall(x, id_##n, 1, y);\
}
#define PRESERVE_SIGNEDZERO
inline static VALUE
f_add(VALUE x, VALUE y)
{
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
if (RB_INTEGER_TYPE_P(x) &&
LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) {
if (FIXNUM_ZERO_P(x))
return y;
if (FIXNUM_ZERO_P(y))
return x;
return rb_int_plus(x, y);
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
}
else if (RB_FLOAT_TYPE_P(x) &&
LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) {
if (FIXNUM_ZERO_P(y))
return x;
return rb_float_plus(x, y);
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
}
else if (RB_TYPE_P(x, T_RATIONAL) &&
LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) {
if (FIXNUM_ZERO_P(y))
return x;
return rb_rational_plus(x, y);
complex.c: Optimize Complex#+ for some conditions Optimize f_add defined in complex.c for some specific conditions. It makes Complex#+ about 1.4x faster than r66678. Compared to r66678: ``` mrkn-mbp15-late2016:complex-optim-o3 mrkn$ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/trunk-o3/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 9.132M 12.864M i/s - 1.000M times in 0.109511s 0.077734s complex_float_div 600.723k 627.878k i/s - 1.000M times in 1.664662s 1.592666s complex_float_mul 2.320M 2.347M i/s - 1.000M times in 0.431039s 0.426113s complex_float_new 1.473M 1.489M i/s - 1.000M times in 0.678791s 0.671750s complex_float_power 1.690M 1.722M i/s - 1.000M times in 0.591863s 0.580775s complex_float_sub 8.870M 9.516M i/s - 1.000M times in 0.112740s 0.105091s Comparison: complex_float_add built-ruby: 12864383.7 i/s compare-ruby: 9131502.8 i/s - 1.41x slower complex_float_div built-ruby: 627878.0 i/s compare-ruby: 600722.5 i/s - 1.05x slower complex_float_mul built-ruby: 2346795.3 i/s compare-ruby: 2319975.7 i/s - 1.01x slower complex_float_new built-ruby: 1488649.1 i/s compare-ruby: 1473207.5 i/s - 1.01x slower complex_float_power built-ruby: 1721837.2 i/s compare-ruby: 1689580.2 i/s - 1.02x slower complex_float_sub built-ruby: 9515562.7 i/s compare-ruby: 8869966.3 i/s - 1.07x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66681 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-01 15:20:05 +03:00
}
return rb_funcall(x, '+', 1, y);
}
inline static VALUE
f_div(VALUE x, VALUE y)
{
if (FIXNUM_P(y) && FIX2LONG(y) == 1)
return x;
return rb_funcall(x, '/', 1, y);
}
inline static int
f_gt_p(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
if (FIXNUM_P(x) && FIXNUM_P(y))
return (SIGNED_VALUE)x > (SIGNED_VALUE)y;
return RTEST(rb_int_gt(x, y));
}
else if (RB_FLOAT_TYPE_P(x))
return RTEST(rb_float_gt(x, y));
else if (RB_TYPE_P(x, T_RATIONAL)) {
int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y);
return cmp > 0;
}
return RTEST(rb_funcall(x, '>', 1, y));
}
inline static VALUE
f_mul(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x) &&
LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) {
if (FIXNUM_ZERO_P(y))
return ZERO;
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
return ZERO;
if (x == ONE) return y;
if (y == ONE) return x;
complex.c: Optimize Complex#* and Complex#** Optimize f_mul for the core numeric class components. This change improves the computation time of Complex#* and Complex#**. ``` $ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby generating known_errors.inc known_errors.inc unchanged /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 6.558M 13.012M i/s - 1.000M times in 0.152480s 0.076850s complex_float_div 576.821k 567.969k i/s - 1.000M times in 1.733640s 1.760660s complex_float_mul 1.690M 2.628M i/s - 1.000M times in 0.591786s 0.380579s complex_float_new 1.350M 1.268M i/s - 1.000M times in 0.740669s 0.788762s complex_float_power 1.571M 1.835M i/s - 1.000M times in 0.636507s 0.544909s complex_float_sub 8.635M 8.779M i/s - 1.000M times in 0.115814s 0.113906s Comparison: complex_float_add built-ruby: 13012361.7 i/s compare-ruby: 6558237.1 i/s - 1.98x slower complex_float_div compare-ruby: 576821.0 i/s built-ruby: 567968.8 i/s - 1.02x slower complex_float_mul built-ruby: 2627575.4 i/s compare-ruby: 1689800.0 i/s - 1.55x slower complex_float_new compare-ruby: 1350130.8 i/s built-ruby: 1267809.6 i/s - 1.06x slower complex_float_power built-ruby: 1835168.8 i/s compare-ruby: 1571074.6 i/s - 1.17x slower complex_float_sub built-ruby: 8779168.8 i/s compare-ruby: 8634534.7 i/s - 1.02x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66697 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-03 09:19:17 +03:00
return rb_int_mul(x, y);
}
else if (RB_FLOAT_TYPE_P(x) &&
LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) {
complex.c: Optimize Complex#* and Complex#** Optimize f_mul for the core numeric class components. This change improves the computation time of Complex#* and Complex#**. ``` $ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby generating known_errors.inc known_errors.inc unchanged /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 6.558M 13.012M i/s - 1.000M times in 0.152480s 0.076850s complex_float_div 576.821k 567.969k i/s - 1.000M times in 1.733640s 1.760660s complex_float_mul 1.690M 2.628M i/s - 1.000M times in 0.591786s 0.380579s complex_float_new 1.350M 1.268M i/s - 1.000M times in 0.740669s 0.788762s complex_float_power 1.571M 1.835M i/s - 1.000M times in 0.636507s 0.544909s complex_float_sub 8.635M 8.779M i/s - 1.000M times in 0.115814s 0.113906s Comparison: complex_float_add built-ruby: 13012361.7 i/s compare-ruby: 6558237.1 i/s - 1.98x slower complex_float_div compare-ruby: 576821.0 i/s built-ruby: 567968.8 i/s - 1.02x slower complex_float_mul built-ruby: 2627575.4 i/s compare-ruby: 1689800.0 i/s - 1.55x slower complex_float_new compare-ruby: 1350130.8 i/s built-ruby: 1267809.6 i/s - 1.06x slower complex_float_power built-ruby: 1835168.8 i/s compare-ruby: 1571074.6 i/s - 1.17x slower complex_float_sub built-ruby: 8779168.8 i/s compare-ruby: 8634534.7 i/s - 1.02x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66697 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-03 09:19:17 +03:00
if (y == ONE) return x;
return rb_float_mul(x, y);
}
else if (RB_TYPE_P(x, T_RATIONAL) &&
LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) {
complex.c: Optimize Complex#* and Complex#** Optimize f_mul for the core numeric class components. This change improves the computation time of Complex#* and Complex#**. ``` $ make benchmark ITEM=complex_float_ COMPARE_RUBY=/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby generating known_errors.inc known_errors.inc unchanged /Users/mrkn/src/github.com/ruby/ruby/revision.h unchanged /Users/mrkn/.rbenv/shims/ruby --disable=gems -rrubygems -I/Users/mrkn/src/github.com/ruby/ruby/benchmark/lib /Users/mrkn/src/github.com/ruby/ruby/benchmark/benchmark-driver/exe/benchmark-driver \ --executables="compare-ruby::/Users/mrkn/.rbenv/versions/2.6.0/bin/ruby -I.ext/common --disable-gem" \ --executables="built-ruby::./miniruby -I/Users/mrkn/src/github.com/ruby/ruby/lib -I. -I.ext/common -r/Users/mrkn/src/github.com/ruby/ruby/prelude --disable-gem" \ $(find /Users/mrkn/src/github.com/ruby/ruby/benchmark -maxdepth 1 -name '*complex_float_*.yml' -o -name '*complex_float_*.rb' | sort) Calculating ------------------------------------- compare-ruby built-ruby complex_float_add 6.558M 13.012M i/s - 1.000M times in 0.152480s 0.076850s complex_float_div 576.821k 567.969k i/s - 1.000M times in 1.733640s 1.760660s complex_float_mul 1.690M 2.628M i/s - 1.000M times in 0.591786s 0.380579s complex_float_new 1.350M 1.268M i/s - 1.000M times in 0.740669s 0.788762s complex_float_power 1.571M 1.835M i/s - 1.000M times in 0.636507s 0.544909s complex_float_sub 8.635M 8.779M i/s - 1.000M times in 0.115814s 0.113906s Comparison: complex_float_add built-ruby: 13012361.7 i/s compare-ruby: 6558237.1 i/s - 1.98x slower complex_float_div compare-ruby: 576821.0 i/s built-ruby: 567968.8 i/s - 1.02x slower complex_float_mul built-ruby: 2627575.4 i/s compare-ruby: 1689800.0 i/s - 1.55x slower complex_float_new compare-ruby: 1350130.8 i/s built-ruby: 1267809.6 i/s - 1.06x slower complex_float_power built-ruby: 1835168.8 i/s compare-ruby: 1571074.6 i/s - 1.17x slower complex_float_sub built-ruby: 8779168.8 i/s compare-ruby: 8634534.7 i/s - 1.02x slower ``` git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66697 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-01-03 09:19:17 +03:00
if (y == ONE) return x;
return rb_rational_mul(x, y);
}
else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) {
if (y == ONE) return x;
}
return rb_funcall(x, '*', 1, y);
}
inline static VALUE
f_sub(VALUE x, VALUE y)
{
if (FIXNUM_ZERO_P(y) &&
LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) {
return x;
}
return rb_funcall(x, '-', 1, y);
}
inline static VALUE
f_abs(VALUE x)
{
if (RB_INTEGER_TYPE_P(x)) {
return rb_int_abs(x);
}
else if (RB_FLOAT_TYPE_P(x)) {
return rb_float_abs(x);
}
else if (RB_TYPE_P(x, T_RATIONAL)) {
return rb_rational_abs(x);
}
else if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_abs(x);
}
return rb_funcall(x, id_abs, 0);
}
static VALUE numeric_arg(VALUE self);
static VALUE float_arg(VALUE self);
inline static VALUE
f_arg(VALUE x)
{
if (RB_INTEGER_TYPE_P(x)) {
return numeric_arg(x);
}
else if (RB_FLOAT_TYPE_P(x)) {
return float_arg(x);
}
else if (RB_TYPE_P(x, T_RATIONAL)) {
return numeric_arg(x);
}
else if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_arg(x);
}
return rb_funcall(x, id_arg, 0);
}
2019-07-16 02:15:05 +03:00
inline static VALUE
f_numerator(VALUE x)
{
if (RB_TYPE_P(x, T_RATIONAL)) {
return RRATIONAL(x)->num;
}
if (RB_FLOAT_TYPE_P(x)) {
return rb_float_numerator(x);
}
return x;
}
2019-07-16 01:58:47 +03:00
inline static VALUE
f_denominator(VALUE x)
{
if (RB_TYPE_P(x, T_RATIONAL)) {
return RRATIONAL(x)->den;
}
if (RB_FLOAT_TYPE_P(x)) {
return rb_float_denominator(x);
}
return INT2FIX(1);
}
inline static VALUE
f_negate(VALUE x)
{
if (RB_INTEGER_TYPE_P(x)) {
return rb_int_uminus(x);
}
else if (RB_FLOAT_TYPE_P(x)) {
return rb_float_uminus(x);
}
else if (RB_TYPE_P(x, T_RATIONAL)) {
return rb_rational_uminus(x);
}
else if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_uminus(x);
}
return rb_funcall(x, id_negate, 0);
}
2019-11-25 09:05:53 +03:00
static bool nucomp_real_p(VALUE self);
2019-08-10 07:56:18 +03:00
static inline bool
f_real_p(VALUE x)
{
if (RB_INTEGER_TYPE_P(x)) {
2019-11-25 09:05:53 +03:00
return true;
2019-08-10 07:56:18 +03:00
}
else if (RB_FLOAT_TYPE_P(x)) {
2019-11-25 09:05:53 +03:00
return true;
2019-08-10 07:56:18 +03:00
}
else if (RB_TYPE_P(x, T_RATIONAL)) {
2019-11-25 09:05:53 +03:00
return true;
2019-08-10 07:56:18 +03:00
}
else if (RB_TYPE_P(x, T_COMPLEX)) {
return nucomp_real_p(x);
}
return rb_funcall(x, id_real_p, 0);
}
inline static VALUE
f_to_i(VALUE x)
{
if (RB_TYPE_P(x, T_STRING))
return rb_str_to_inum(x, 10, 0);
return rb_funcall(x, id_to_i, 0);
}
2019-08-10 07:56:18 +03:00
inline static VALUE
f_to_f(VALUE x)
{
if (RB_TYPE_P(x, T_STRING))
return DBL2NUM(rb_str_to_dbl(x, 0));
return rb_funcall(x, id_to_f, 0);
}
fun1(to_r)
inline static int
f_eqeq_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return x == y;
else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y))
return NUM2DBL(x) == NUM2DBL(y);
return (int)rb_equal(x, y);
}
fun2(expt)
fun2(fdiv)
2019-08-10 08:30:34 +03:00
static VALUE
f_quo(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x))
return rb_numeric_quo(x, y);
if (RB_FLOAT_TYPE_P(x))
return rb_float_div(x, y);
if (RB_TYPE_P(x, T_RATIONAL))
return rb_numeric_quo(x, y);
return rb_funcallv(x, id_quo, 1, &y);
}
inline static int
f_negative_p(VALUE x)
{
if (RB_INTEGER_TYPE_P(x))
return INT_NEGATIVE_P(x);
else if (RB_FLOAT_TYPE_P(x))
return RFLOAT_VALUE(x) < 0.0;
else if (RB_TYPE_P(x, T_RATIONAL))
return INT_NEGATIVE_P(RRATIONAL(x)->num);
return rb_num_negative_p(x);
}
#define f_positive_p(x) (!f_negative_p(x))
inline static int
f_zero_p(VALUE x)
{
if (RB_FLOAT_TYPE_P(x)) {
return FLOAT_ZERO_P(x);
}
else if (RB_INTEGER_TYPE_P(x)) {
return FIXNUM_ZERO_P(x);
}
else if (RB_TYPE_P(x, T_RATIONAL)) {
const VALUE num = RRATIONAL(x)->num;
return FIXNUM_ZERO_P(num);
}
return (int)rb_equal(x, ZERO);
}
#define f_nonzero_p(x) (!f_zero_p(x))
static inline bool
always_finite_type_p(VALUE x)
{
if (FIXNUM_P(x)) return true;
if (FLONUM_P(x)) return true; /* Infinity can't be a flonum */
return (RB_INTEGER_TYPE_P(x) || RB_TYPE_P(x, T_RATIONAL));
}
inline static int
f_finite_p(VALUE x)
{
if (always_finite_type_p(x)) {
return TRUE;
}
else if (RB_FLOAT_TYPE_P(x)) {
return isfinite(RFLOAT_VALUE(x));
}
return RTEST(rb_funcallv(x, id_finite_p, 0, 0));
}
inline static int
f_infinite_p(VALUE x)
{
if (always_finite_type_p(x)) {
return FALSE;
}
else if (RB_FLOAT_TYPE_P(x)) {
return isinf(RFLOAT_VALUE(x));
}
return RTEST(rb_funcallv(x, id_infinite_p, 0, 0));
}
inline static int
f_kind_of_p(VALUE x, VALUE c)
{
return (int)rb_obj_is_kind_of(x, c);
}
inline static int
k_numeric_p(VALUE x)
{
return f_kind_of_p(x, rb_cNumeric);
}
#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x))
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
#define get_dat1(x) \
struct RComplex *dat = RCOMPLEX(x)
#define get_dat2(x,y) \
struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y)
inline static VALUE
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
{
* gc.c: support RGENGC. [ruby-trunk - Feature #8339] See this ticet about RGENGC. * gc.c: Add several flags: * RGENGC_DEBUG: if >0, then prints debug information. * RGENGC_CHECK_MODE: if >0, add assertions. * RGENGC_PROFILE: if >0, add profiling features. check GC.stat and GC::Profiler. * include/ruby/ruby.h: disable RGENGC by default (USE_RGENGC == 0). * array.c: add write barriers for T_ARRAY and generate sunny objects. * include/ruby/ruby.h (RARRAY_PTR_USE): added. Use this macro if you want to access raw pointers. If you modify the contents which pointer pointed, then you need to care write barrier. * bignum.c, marshal.c, random.c: generate T_BIGNUM sunny objects. * complex.c, include/ruby/ruby.h: add write barriers for T_COMPLEX and generate sunny objects. * rational.c (nurat_s_new_internal), include/ruby/ruby.h: add write barriers for T_RATIONAL and generate sunny objects. * internal.h: add write barriers for RBasic::klass. * numeric.c (rb_float_new_in_heap): generate sunny T_FLOAT objects. * object.c (rb_class_allocate_instance), range.c: generate sunny T_OBJECT objects. * string.c: add write barriers for T_STRING and generate sunny objects. * variable.c: add write barriers for ivars. * vm_insnhelper.c (vm_setivar): ditto. * include/ruby/ruby.h, debug.c: use two flags FL_WB_PROTECTED and FL_OLDGEN. * node.h (NODE_FL_CREF_PUSHED_BY_EVAL, NODE_FL_CREF_OMOD_SHARED): move flag bits. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40703 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 22:07:47 +04:00
NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0));
RCOMPLEX_SET_REAL(obj, real);
RCOMPLEX_SET_IMAG(obj, imag);
OBJ_FREEZE_RAW((VALUE)obj);
return (VALUE)obj;
}
static VALUE
nucomp_s_alloc(VALUE klass)
{
return nucomp_s_new_internal(klass, ZERO, ZERO);
}
inline static VALUE
f_complex_new_bang1(VALUE klass, VALUE x)
{
assert(!RB_TYPE_P(x, T_COMPLEX));
return nucomp_s_new_internal(klass, x, ZERO);
}
inline static VALUE
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
{
assert(!RB_TYPE_P(x, T_COMPLEX));
assert(!RB_TYPE_P(y, T_COMPLEX));
return nucomp_s_new_internal(klass, x, y);
}
inline static void
nucomp_real_check(VALUE num)
{
if (!RB_INTEGER_TYPE_P(num) &&
!RB_FLOAT_TYPE_P(num) &&
!RB_TYPE_P(num, T_RATIONAL)) {
if (!k_numeric_p(num) || !f_real_p(num))
rb_raise(rb_eTypeError, "not a real");
}
}
inline static VALUE
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
{
int complex_r, complex_i;
complex_r = RB_TYPE_P(real, T_COMPLEX);
complex_i = RB_TYPE_P(imag, T_COMPLEX);
if (!complex_r && !complex_i) {
return nucomp_s_new_internal(klass, real, imag);
}
else if (!complex_r) {
get_dat1(imag);
return nucomp_s_new_internal(klass,
f_sub(real, dat->imag),
f_add(ZERO, dat->real));
}
else if (!complex_i) {
get_dat1(real);
return nucomp_s_new_internal(klass,
dat->real,
f_add(dat->imag, imag));
}
else {
get_dat2(real, imag);
return nucomp_s_new_internal(klass,
f_sub(adat->real, bdat->imag),
f_add(adat->imag, bdat->real));
}
}
/*
* call-seq:
* Complex.rect(real[, imag]) -> complex
* Complex.rectangular(real[, imag]) -> complex
*
* Returns a complex object which denotes the given rectangular form.
*
* Complex.rectangular(1, 2) #=> (1+2i)
*/
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
nucomp_real_check(real);
imag = ZERO;
break;
default:
nucomp_real_check(real);
nucomp_real_check(imag);
break;
}
return nucomp_s_canonicalize_internal(klass, real, imag);
}
inline static VALUE
f_complex_new2(VALUE klass, VALUE x, VALUE y)
{
assert(!RB_TYPE_P(x, T_COMPLEX));
return nucomp_s_canonicalize_internal(klass, x, y);
}
static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise);
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
/*
* call-seq:
* Complex(x[, y], exception: true) -> numeric or nil
*
* Returns x+i*y;
*
* Complex(1, 2) #=> (1+2i)
* Complex('1+2i') #=> (1+2i)
* Complex(nil) #=> TypeError
* Complex(1, nil) #=> TypeError
*
* Complex(1, nil, exception: false) #=> nil
* Complex('1+2', exception: false) #=> nil
*
* Syntax of string form:
*
* string form = extra spaces , complex , extra spaces ;
* complex = real part | [ sign ] , imaginary part
* | real part , sign , imaginary part
* | rational , "@" , rational ;
* real part = rational ;
* imaginary part = imaginary unit | unsigned rational , imaginary unit ;
* rational = [ sign ] , unsigned rational ;
* unsigned rational = numerator | numerator , "/" , denominator ;
* numerator = integer part | fractional part | integer part , fractional part ;
* denominator = digits ;
* integer part = digits ;
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
* imaginary unit = "i" | "I" | "j" | "J" ;
* sign = "-" | "+" ;
* digits = digit , { digit | "_" , digit };
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
* extra spaces = ? \s* ? ;
*
* See String#to_c.
*/
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
VALUE a1, a2, opts = Qnil;
int raise = TRUE;
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
a2 = Qundef;
}
if (!NIL_P(opts)) {
raise = rb_opts_exception_p(opts, raise);
}
if (argc > 0 && CLASS_OF(a1) == rb_cComplex && a2 == Qundef) {
return a1;
}
return nucomp_convert(rb_cComplex, a1, a2, raise);
}
#define imp1(n) \
inline static VALUE \
m_##n##_bang(VALUE x)\
{\
return rb_math_##n(x);\
}
imp1(cos)
imp1(cosh)
imp1(exp)
static VALUE
m_log_bang(VALUE x)
{
return rb_math_log(1, &x);
}
imp1(sin)
imp1(sinh)
static VALUE
m_cos(VALUE x)
{
if (!RB_TYPE_P(x, T_COMPLEX))
return m_cos_bang(x);
{
get_dat1(x);
return f_complex_new2(rb_cComplex,
f_mul(m_cos_bang(dat->real),
m_cosh_bang(dat->imag)),
f_mul(f_negate(m_sin_bang(dat->real)),
m_sinh_bang(dat->imag)));
}
}
static VALUE
m_sin(VALUE x)
{
if (!RB_TYPE_P(x, T_COMPLEX))
return m_sin_bang(x);
{
get_dat1(x);
return f_complex_new2(rb_cComplex,
f_mul(m_sin_bang(dat->real),
m_cosh_bang(dat->imag)),
f_mul(m_cos_bang(dat->real),
m_sinh_bang(dat->imag)));
}
}
static VALUE
f_complex_polar(VALUE klass, VALUE x, VALUE y)
{
assert(!RB_TYPE_P(x, T_COMPLEX));
assert(!RB_TYPE_P(y, T_COMPLEX));
if (f_zero_p(x) || f_zero_p(y)) {
return nucomp_s_new_internal(klass, x, RFLOAT_0);
}
if (RB_FLOAT_TYPE_P(y)) {
const double arg = RFLOAT_VALUE(y);
if (arg == M_PI) {
x = f_negate(x);
y = RFLOAT_0;
}
else if (arg == M_PI_2) {
y = x;
x = RFLOAT_0;
}
else if (arg == M_PI_2+M_PI) {
y = f_negate(x);
x = RFLOAT_0;
}
else if (RB_FLOAT_TYPE_P(x)) {
const double abs = RFLOAT_VALUE(x);
const double real = abs * cos(arg), imag = abs * sin(arg);
x = DBL2NUM(real);
y = DBL2NUM(imag);
}
else {
const double ax = sin(arg), ay = cos(arg);
y = f_mul(x, DBL2NUM(ax));
x = f_mul(x, DBL2NUM(ay));
}
return nucomp_s_new_internal(klass, x, y);
}
return nucomp_s_canonicalize_internal(klass,
f_mul(x, m_cos(y)),
f_mul(x, m_sin(y)));
}
#ifdef HAVE___COSPI
# define cospi(x) __cospi(x)
#else
# define cospi(x) cos((x) * M_PI)
#endif
#ifdef HAVE___SINPI
# define sinpi(x) __sinpi(x)
#else
# define sinpi(x) sin((x) * M_PI)
#endif
/* returns a Complex or Float of ang*PI-rotated abs */
VALUE
rb_dbl_complex_new_polar_pi(double abs, double ang)
{
double fi;
const double fr = modf(ang, &fi);
int pos = fr == +0.5;
if (pos || fr == -0.5) {
if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs;
return rb_complex_new(RFLOAT_0, DBL2NUM(abs));
}
else if (fr == 0.0) {
if (modf(fi / 2.0, &fi) != 0.0) abs = -abs;
return DBL2NUM(abs);
}
else {
const double real = abs * cospi(ang), imag = abs * sinpi(ang);
return rb_complex_new(DBL2NUM(real), DBL2NUM(imag));
}
}
/*
* call-seq:
* Complex.polar(abs[, arg]) -> complex
*
* Returns a complex object which denotes the given polar form.
*
* Complex.polar(3, 0) #=> (3.0+0.0i)
* Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
* Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
* Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
*/
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
VALUE abs, arg;
switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
case 1:
nucomp_real_check(abs);
return nucomp_s_new_internal(klass, abs, ZERO);
default:
nucomp_real_check(abs);
nucomp_real_check(arg);
break;
}
if (RB_TYPE_P(abs, T_COMPLEX)) {
get_dat1(abs);
abs = dat->real;
}
if (RB_TYPE_P(arg, T_COMPLEX)) {
get_dat1(arg);
arg = dat->real;
}
return f_complex_polar(klass, abs, arg);
}
/*
* call-seq:
* cmp.real -> real
*
* Returns the real part.
*
* Complex(7).real #=> 7
* Complex(9, -4).real #=> 9
*/
VALUE
rb_complex_real(VALUE self)
{
get_dat1(self);
return dat->real;
}
/*
* call-seq:
* cmp.imag -> real
* cmp.imaginary -> real
*
* Returns the imaginary part.
*
* Complex(7).imaginary #=> 0
* Complex(9, -4).imaginary #=> -4
*/
VALUE
rb_complex_imag(VALUE self)
{
get_dat1(self);
return dat->imag;
}
/*
* call-seq:
* -cmp -> complex
*
* Returns negation of the value.
*
* -Complex(1, 2) #=> (-1-2i)
*/
VALUE
rb_complex_uminus(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_negate(dat->real), f_negate(dat->imag));
}
/*
* call-seq:
* cmp + numeric -> complex
*
* Performs addition.
*
* Complex(2, 3) + Complex(2, 3) #=> (4+6i)
* Complex(900) + Complex(1) #=> (901+0i)
* Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i)
* Complex(9, 8) + 4 #=> (13+8i)
* Complex(20, 9) + 9.8 #=> (29.8+9i)
*/
VALUE
rb_complex_plus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_add(adat->real, bdat->real);
imag = f_add(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_add(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '+');
}
/*
* call-seq:
* cmp - numeric -> complex
*
* Performs subtraction.
*
* Complex(2, 3) - Complex(2, 3) #=> (0+0i)
* Complex(900) - Complex(1) #=> (899+0i)
* Complex(-2, 9) - Complex(-9, 2) #=> (7+7i)
* Complex(9, 8) - 4 #=> (5+8i)
* Complex(20, 9) - 9.8 #=> (10.2+9i)
*/
VALUE
rb_complex_minus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_sub(adat->real, bdat->real);
imag = f_sub(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_sub(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '-');
}
static VALUE
safe_mul(VALUE a, VALUE b, int az, int bz)
{
double v;
if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) {
a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
}
if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) {
b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
}
return f_mul(a, b);
}
static void
comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag)
{
int arzero = f_zero_p(areal);
int aizero = f_zero_p(aimag);
int brzero = f_zero_p(breal);
int bizero = f_zero_p(bimag);
*real = f_sub(safe_mul(areal, breal, arzero, brzero),
safe_mul(aimag, bimag, aizero, bizero));
*imag = f_add(safe_mul(areal, bimag, arzero, bizero),
safe_mul(aimag, breal, aizero, brzero));
}
/*
* call-seq:
* cmp * numeric -> complex
*
* Performs multiplication.
*
* Complex(2, 3) * Complex(2, 3) #=> (-5+12i)
* Complex(900) * Complex(1) #=> (900+0i)
* Complex(-2, 9) * Complex(-9, 2) #=> (0-85i)
* Complex(9, 8) * 4 #=> (36+32i)
* Complex(20, 9) * 9.8 #=> (196.0+88.2i)
*/
VALUE
rb_complex_mul(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_mul(dat->real, other),
f_mul(dat->imag, other));
}
return rb_num_coerce_bin(self, other, '*');
}
inline static VALUE
f_divide(VALUE self, VALUE other,
VALUE (*func)(VALUE, VALUE), ID id)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE r, n, x, y;
int flo;
get_dat2(self, other);
flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) ||
RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag));
if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
r = (*func)(bdat->imag, bdat->real);
n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n);
y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n);
}
else {
r = (*func)(bdat->real, bdat->imag);
n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n);
y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n);
}
if (!flo) {
x = rb_rational_canonicalize(x);
y = rb_rational_canonicalize(y);
}
return f_complex_new2(CLASS_OF(self), x, y);
}
if (k_numeric_p(other) && f_real_p(other)) {
2019-01-07 05:03:41 +03:00
VALUE x, y;
get_dat1(self);
2019-01-07 05:03:41 +03:00
x = rb_rational_canonicalize((*func)(dat->real, other));
y = rb_rational_canonicalize((*func)(dat->imag, other));
return f_complex_new2(CLASS_OF(self), x, y);
}
return rb_num_coerce_bin(self, other, id);
}
#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
/*
* call-seq:
* cmp / numeric -> complex
* cmp.quo(numeric) -> complex
*
* Performs division.
*
* Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i)
* Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i)
* Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i)
* Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i)
* Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
*/
VALUE
rb_complex_div(VALUE self, VALUE other)
{
return f_divide(self, other, f_quo, id_quo);
}
#define nucomp_quo rb_complex_div
/*
* call-seq:
* cmp.fdiv(numeric) -> complex
*
* Performs division as each part is a float, never returns a float.
*
* Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
*/
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
return f_divide(self, other, f_fdiv, id_fdiv);
}
inline static VALUE
f_reciprocal(VALUE x)
{
return f_quo(ONE, x);
}
/*
* call-seq:
* cmp ** numeric -> complex
*
* Performs exponentiation.
*
* Complex('i') ** 2 #=> (-1+0i)
* Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
*/
VALUE
rb_complex_pow(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_complex_new_bang1(CLASS_OF(self), ONE);
if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
other = RRATIONAL(other)->num; /* c14n */
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat1(other);
if (k_exact_zero_p(dat->imag))
other = dat->real; /* c14n */
}
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE r, theta, nr, ntheta;
get_dat1(other);
r = f_abs(self);
theta = f_arg(self);
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
f_mul(dat->imag, theta)));
ntheta = f_add(f_mul(theta, dat->real),
f_mul(dat->imag, m_log_bang(r)));
return f_complex_polar(CLASS_OF(self), nr, ntheta);
}
if (FIXNUM_P(other)) {
long n = FIX2LONG(other);
if (n == 0) {
return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
}
if (n < 0) {
self = f_reciprocal(self);
other = rb_int_uminus(other);
n = -n;
}
{
get_dat1(self);
VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
if (f_zero_p(xi)) {
zr = rb_num_pow(zr, other);
}
else if (f_zero_p(xr)) {
zi = rb_num_pow(zi, other);
if (n & 2) zi = f_negate(zi);
if (!(n & 1)) {
VALUE tmp = zr;
zr = zi;
zi = tmp;
}
}
else {
while (--n) {
long q, r;
for (; q = n / 2, r = n % 2, r == 0; n = q) {
VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
xi = f_mul(f_mul(TWO, xr), xi);
xr = tmp;
}
comp_mul(zr, zi, xr, xi, &zr, &zi);
}
}
return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
}
}
if (k_numeric_p(other) && f_real_p(other)) {
VALUE r, theta;
2021-09-03 14:50:12 +03:00
if (RB_BIGNUM_TYPE_P(other))
rb_warn("in a**b, b may be too big");
r = f_abs(self);
theta = f_arg(self);
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
f_mul(theta, other));
}
return rb_num_coerce_bin(self, other, id_expt);
}
/*
* call-seq:
* cmp == object -> true or false
*
* Returns true if cmp equals object numerically.
*
* Complex(2, 3) == Complex(2, 3) #=> true
* Complex(5) == 5 #=> true
* Complex(0) == 0.0 #=> true
* Complex('1/3') == 0.33 #=> false
* Complex('1/2') == '1/2' #=> false
*/
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat2(self, other);
return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
f_eqeq_p(adat->imag, bdat->imag));
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
}
return RBOOL(f_eqeq_p(other, self));
}
2019-11-25 09:05:53 +03:00
static bool
nucomp_real_p(VALUE self)
{
get_dat1(self);
2019-11-25 09:05:53 +03:00
return(f_zero_p(dat->imag) ? true : false);
}
/*
* call-seq:
* cmp <=> object -> 0, 1, -1, or nil
*
* If +cmp+'s imaginary part is zero, and +object+ is also a
* real number (or a Complex number where the imaginary part is zero),
* compare the real part of +cmp+ to object. Otherwise, return nil.
*
* Complex(2, 3) <=> Complex(2, 3) #=> nil
* Complex(2, 3) <=> 1 #=> nil
* Complex(2) <=> 1 #=> 1
* Complex(2) <=> 2 #=> 0
* Complex(2) <=> 3 #=> -1
*/
static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
if (nucomp_real_p(self) && k_numeric_p(other)) {
if (RB_TYPE_P(other, T_COMPLEX) && nucomp_real_p(other)) {
get_dat2(self, other);
return rb_funcall(adat->real, idCmp, 1, bdat->real);
2019-08-10 07:56:18 +03:00
}
else if (f_real_p(other)) {
get_dat1(self);
return rb_funcall(dat->real, idCmp, 1, other);
}
}
return Qnil;
}
/* :nodoc: */
static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX))
return rb_assoc_new(other, self);
if (k_numeric_p(other) && f_real_p(other))
2019-06-19 22:07:31 +03:00
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
rb_obj_class(other), rb_obj_class(self));
return Qnil;
}
/*
* call-seq:
* cmp.abs -> real
* cmp.magnitude -> real
*
* Returns the absolute part of its polar form.
*
* Complex(-1).abs #=> 1
* Complex(3.0, -4.0).abs #=> 5.0
*/
VALUE
rb_complex_abs(VALUE self)
{
get_dat1(self);
if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
if (f_zero_p(dat->imag)) {
VALUE a = f_abs(dat->real);
if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
return rb_math_hypot(dat->real, dat->imag);
}
/*
* call-seq:
* cmp.abs2 -> real
*
* Returns square of the absolute value.
*
* Complex(-1).abs2 #=> 1
* Complex(3.0, -4.0).abs2 #=> 25.0
*/
static VALUE
nucomp_abs2(VALUE self)
{
get_dat1(self);
return f_add(f_mul(dat->real, dat->real),
f_mul(dat->imag, dat->imag));
}
/*
* call-seq:
* cmp.arg -> float
* cmp.angle -> float
* cmp.phase -> float
*
* Returns the angle part of its polar form.
*
* Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
*/
VALUE
rb_complex_arg(VALUE self)
{
get_dat1(self);
return rb_math_atan2(dat->imag, dat->real);
}
/*
* call-seq:
* cmp.rect -> array
* cmp.rectangular -> array
*
* Returns an array; [cmp.real, cmp.imag].
*
* Complex(1, 2).rectangular #=> [1, 2]
*/
static VALUE
nucomp_rect(VALUE self)
{
get_dat1(self);
return rb_assoc_new(dat->real, dat->imag);
}
/*
* call-seq:
* cmp.polar -> array
*
* Returns an array; [cmp.abs, cmp.arg].
*
* Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
*/
static VALUE
nucomp_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
/*
* call-seq:
* cmp.conj -> complex
* cmp.conjugate -> complex
*
* Returns the complex conjugate.
*
* Complex(1, 2).conjugate #=> (1-2i)
*/
VALUE
rb_complex_conjugate(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
/*
* call-seq:
* Complex(1).real? -> false
* Complex(1, 2).real? -> false
*
* Returns false, even if the complex number has no imaginary part.
*/
static VALUE
2021-05-20 08:31:49 +03:00
nucomp_real_p_m(VALUE self)
{
return Qfalse;
}
/*
* call-seq:
* cmp.denominator -> integer
*
* Returns the denominator (lcm of both denominator - real and imag).
*
* See numerator.
*/
static VALUE
nucomp_denominator(VALUE self)
{
get_dat1(self);
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
/*
* call-seq:
* cmp.numerator -> numeric
*
* Returns the numerator.
*
* 1 2 3+4i <- numerator
* - + -i -> ----
* 2 3 6 <- denominator
*
* c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
* n = c.numerator #=> (3+4i)
* d = c.denominator #=> 6
* n / d #=> ((1/2)+(2/3)*i)
* Complex(Rational(n.real, d), Rational(n.imag, d))
* #=> ((1/2)+(2/3)*i)
* See denominator.
*/
static VALUE
nucomp_numerator(VALUE self)
{
VALUE cd;
get_dat1(self);
2019-07-16 01:58:47 +03:00
cd = nucomp_denominator(self);
return f_complex_new2(CLASS_OF(self),
f_mul(f_numerator(dat->real),
f_div(cd, f_denominator(dat->real))),
f_mul(f_numerator(dat->imag),
f_div(cd, f_denominator(dat->imag))));
}
/* :nodoc: */
st_index_t
rb_complex_hash(VALUE self)
{
st_index_t v, h[2];
VALUE n;
get_dat1(self);
n = rb_hash(dat->real);
h[0] = NUM2LONG(n);
n = rb_hash(dat->imag);
h[1] = NUM2LONG(n);
v = rb_memhash(h, sizeof(h));
return v;
}
static VALUE
nucomp_hash(VALUE self)
{
return ST2FIX(rb_complex_hash(self));
}
/* :nodoc: */
static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat2(self, other);
return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
f_eqeq_p(self, other));
}
return Qfalse;
}
inline static int
f_signbit(VALUE x)
{
if (RB_FLOAT_TYPE_P(x)) {
double f = RFLOAT_VALUE(x);
return !isnan(f) && signbit(f);
}
return f_negative_p(x);
}
inline static int
f_tpositive_p(VALUE x)
{
return !f_signbit(x);
}
static VALUE
f_format(VALUE self, VALUE (*func)(VALUE))
{
VALUE s;
int impos;
get_dat1(self);
impos = f_tpositive_p(dat->imag);
s = (*func)(dat->real);
rb_str_cat2(s, !impos ? "-" : "+");
rb_str_concat(s, (*func)(f_abs(dat->imag)));
if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
rb_str_cat2(s, "*");
rb_str_cat2(s, "i");
return s;
}
/*
* call-seq:
* cmp.to_s -> string
*
* Returns the value as a string.
*
* Complex(2).to_s #=> "2+0i"
* Complex('-8/6').to_s #=> "-4/3+0i"
* Complex('1/2i').to_s #=> "0+1/2i"
* Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i"
* Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i"
*/
static VALUE
nucomp_to_s(VALUE self)
{
return f_format(self, rb_String);
}
/*
* call-seq:
* cmp.inspect -> string
*
* Returns the value as a string for inspection.
*
* Complex(2).inspect #=> "(2+0i)"
* Complex('-8/6').inspect #=> "((-4/3)+0i)"
* Complex('1/2i').inspect #=> "(0+(1/2)*i)"
* Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)"
* Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
*/
static VALUE
nucomp_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, rb_inspect));
rb_str_cat2(s, ")");
return s;
}
#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL))
/*
* call-seq:
* cmp.finite? -> true or false
*
* Returns +true+ if +cmp+'s real and imaginary parts are both finite numbers,
* otherwise returns +false+.
*/
static VALUE
rb_complex_finite_p(VALUE self)
{
get_dat1(self);
2021-09-15 02:11:05 +03:00
return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
}
/*
* call-seq:
* cmp.infinite? -> nil or 1
*
* Returns +1+ if +cmp+'s real or imaginary part is an infinite number,
* otherwise returns +nil+.
*
* For example:
*
* (1+1i).infinite? #=> nil
* (Float::INFINITY + 1i).infinite? #=> 1
*/
static VALUE
rb_complex_infinite_p(VALUE self)
{
get_dat1(self);
if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
return Qnil;
}
return ONE;
}
/* :nodoc: */
static VALUE
nucomp_dumper(VALUE self)
{
return self;
}
/* :nodoc: */
static VALUE
nucomp_loader(VALUE self, VALUE a)
{
get_dat1(self);
RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
OBJ_FREEZE_RAW(self);
return self;
}
/* :nodoc: */
static VALUE
nucomp_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->real, dat->imag);
rb_copy_generic_ivar(a, self);
return a;
}
/* :nodoc: */
static VALUE
nucomp_marshal_load(VALUE self, VALUE a)
{
Check_Type(a, T_ARRAY);
if (RARRAY_LEN(a) != 2)
rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
return self;
}
VALUE
rb_complex_raw(VALUE x, VALUE y)
{
return nucomp_s_new_internal(rb_cComplex, x, y);
}
VALUE
rb_complex_new(VALUE x, VALUE y)
{
return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
}
VALUE
rb_complex_new_polar(VALUE x, VALUE y)
{
return f_complex_polar(rb_cComplex, x, y);
}
VALUE
rb_complex_polar(VALUE x, VALUE y)
{
return rb_complex_new_polar(x, y);
}
VALUE
rb_Complex(VALUE x, VALUE y)
{
VALUE a[2];
a[0] = x;
a[1] = y;
return nucomp_s_convert(2, a, rb_cComplex);
}
VALUE
rb_dbl_complex_new(double real, double imag)
{
return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag));
}
/*
* call-seq:
* cmp.to_i -> integer
*
* Returns the value as an integer if possible (the imaginary part
* should be exactly zero).
*
* Complex(1, 0).to_i #=> 1
* Complex(1, 0.0).to_i # RangeError
* Complex(1, 2).to_i # RangeError
*/
static VALUE
nucomp_to_i(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
self);
}
return f_to_i(dat->real);
}
/*
* call-seq:
* cmp.to_f -> float
*
* Returns the value as a float if possible (the imaginary part should
* be exactly zero).
*
* Complex(1, 0).to_f #=> 1.0
* Complex(1, 0.0).to_f # RangeError
* Complex(1, 2).to_f # RangeError
*/
static VALUE
nucomp_to_f(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
self);
}
return f_to_f(dat->real);
}
/*
* call-seq:
* cmp.to_r -> rational
*
* Returns the value as a rational if possible (the imaginary part
* should be exactly zero).
*
* Complex(1, 0).to_r #=> (1/1)
* Complex(1, 0.0).to_r # RangeError
* Complex(1, 2).to_r # RangeError
*
* See rationalize.
*/
static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return f_to_r(dat->real);
}
/*
* call-seq:
* cmp.rationalize([eps]) -> rational
*
* Returns the value as a rational if possible (the imaginary part
* should be exactly zero).
*
* Complex(1.0/3, 0).rationalize #=> (1/3)
* Complex(1, 0.0).rationalize # RangeError
* Complex(1, 2).rationalize # RangeError
*
* See to_r.
*/
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
get_dat1(self);
rb_check_arity(argc, 0, 1);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
/*
* call-seq:
* complex.to_c -> self
*
* Returns self.
*
* Complex(2).to_c #=> (2+0i)
* Complex(-8, 6).to_c #=> (-8+6i)
*/
static VALUE
nucomp_to_c(VALUE self)
{
return self;
}
/*
* call-seq:
* nil.to_c -> (0+0i)
*
* Returns zero as a complex.
*/
static VALUE
nilclass_to_c(VALUE self)
{
return rb_complex_new1(INT2FIX(0));
}
/*
* call-seq:
* num.to_c -> complex
*
* Returns the value as a complex.
*/
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
inline static int
issign(int c)
{
return (c == '-' || c == '+');
}
static int
read_sign(const char **s,
char **b)
{
int sign = '?';
if (issign(**s)) {
sign = **b = **s;
(*s)++;
(*b)++;
}
return sign;
}
inline static int
isdecimal(int c)
{
return isdigit((unsigned char)c);
}
static int
read_digits(const char **s, int strict,
char **b)
{
int us = 1;
if (!isdecimal(**s))
return 0;
while (isdecimal(**s) || **s == '_') {
if (**s == '_') {
if (strict) {
if (us)
return 0;
}
us = 1;
}
else {
**b = **s;
(*b)++;
us = 0;
}
(*s)++;
}
if (us)
do {
(*s)--;
} while (**s == '_');
return 1;
}
inline static int
islettere(int c)
{
return (c == 'e' || c == 'E');
}
static int
read_num(const char **s, int strict,
char **b)
{
if (**s != '.') {
if (!read_digits(s, strict, b))
return 0;
}
if (**s == '.') {
**b = **s;
(*s)++;
(*b)++;
if (!read_digits(s, strict, b)) {
(*b)--;
return 0;
}
}
if (islettere(**s)) {
**b = **s;
(*s)++;
(*b)++;
read_sign(s, b);
if (!read_digits(s, strict, b)) {
(*b)--;
return 0;
}
}
return 1;
}
inline static int
read_den(const char **s, int strict,
char **b)
{
if (!read_digits(s, strict, b))
return 0;
return 1;
}
static int
read_rat_nos(const char **s, int strict,
char **b)
{
if (!read_num(s, strict, b))
return 0;
if (**s == '/') {
**b = **s;
(*s)++;
(*b)++;
if (!read_den(s, strict, b)) {
(*b)--;
return 0;
}
}
return 1;
}
static int
read_rat(const char **s, int strict,
char **b)
{
read_sign(s, b);
if (!read_rat_nos(s, strict, b))
return 0;
return 1;
}
inline static int
isimagunit(int c)
{
return (c == 'i' || c == 'I' ||
c == 'j' || c == 'J');
}
static VALUE
str2num(char *s)
{
if (strchr(s, '/'))
return rb_cstr_to_rat(s, 0);
if (strpbrk(s, ".eE"))
return DBL2NUM(rb_cstr_to_dbl(s, 0));
return rb_cstr_to_inum(s, 10, 0);
}
static int
read_comp(const char **s, int strict,
VALUE *ret, char **b)
{
char *bb;
int sign;
VALUE num, num2;
bb = *b;
sign = read_sign(s, b);
if (isimagunit(**s)) {
(*s)++;
num = INT2FIX((sign == '-') ? -1 : + 1);
*ret = rb_complex_new2(ZERO, num);
return 1; /* e.g. "i" */
}
if (!read_rat_nos(s, strict, b)) {
**b = '\0';
num = str2num(bb);
*ret = rb_complex_new2(num, ZERO);
return 0; /* e.g. "-" */
}
**b = '\0';
num = str2num(bb);
if (isimagunit(**s)) {
(*s)++;
*ret = rb_complex_new2(ZERO, num);
return 1; /* e.g. "3i" */
}
if (**s == '@') {
int st;
(*s)++;
bb = *b;
st = read_rat(s, strict, b);
**b = '\0';
if (strlen(bb) < 1 ||
!isdecimal(*(bb + strlen(bb) - 1))) {
*ret = rb_complex_new2(num, ZERO);
return 0; /* e.g. "1@-" */
}
num2 = str2num(bb);
*ret = rb_complex_new_polar(num, num2);
if (!st)
return 0; /* e.g. "1@2." */
else
return 1; /* e.g. "1@2" */
}
if (issign(**s)) {
bb = *b;
sign = read_sign(s, b);
if (isimagunit(**s))
num2 = INT2FIX((sign == '-') ? -1 : + 1);
else {
if (!read_rat_nos(s, strict, b)) {
*ret = rb_complex_new2(num, ZERO);
return 0; /* e.g. "1+xi" */
}
**b = '\0';
num2 = str2num(bb);
}
if (!isimagunit(**s)) {
*ret = rb_complex_new2(num, ZERO);
return 0; /* e.g. "1+3x" */
}
(*s)++;
*ret = rb_complex_new2(num, num2);
return 1; /* e.g. "1+2i" */
}
/* !(@, - or +) */
{
*ret = rb_complex_new2(num, ZERO);
return 1; /* e.g. "3" */
}
}
inline static void
skip_ws(const char **s)
{
while (isspace((unsigned char)**s))
(*s)++;
}
static int
parse_comp(const char *s, int strict, VALUE *num)
{
char *buf, *b;
VALUE tmp;
int ret = 1;
buf = ALLOCV_N(char, tmp, strlen(s) + 1);
b = buf;
skip_ws(&s);
if (!read_comp(&s, strict, num, &b)) {
ret = 0;
}
else {
skip_ws(&s);
if (strict)
if (*s != '\0')
ret = 0;
}
ALLOCV_END(tmp);
return ret;
}
static VALUE
string_to_c_strict(VALUE self, int raise)
{
char *s;
VALUE num;
rb_must_asciicompat(self);
s = RSTRING_PTR(self);
if (!s || memchr(s, '\0', RSTRING_LEN(self))) {
if (!raise) return Qnil;
rb_raise(rb_eArgError, "string contains null byte");
}
if (s && s[RSTRING_LEN(self)]) {
rb_str_modify(self);
s = RSTRING_PTR(self);
s[RSTRING_LEN(self)] = '\0';
}
if (!s)
s = (char *)"";
if (!parse_comp(s, 1, &num)) {
if (!raise) return Qnil;
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
self);
}
return num;
}
/*
* call-seq:
* str.to_c -> complex
*
* Returns a complex which denotes the string form. The parser
* ignores leading whitespaces and trailing garbage. Any digit
* sequences can be separated by an underscore. Returns zero for null
* or garbage string.
*
* '9'.to_c #=> (9+0i)
* '2.5'.to_c #=> (2.5+0i)
* '2.5/1'.to_c #=> ((5/2)+0i)
* '-3/2'.to_c #=> ((-3/2)+0i)
* '-i'.to_c #=> (0-1i)
* '45i'.to_c #=> (0+45i)
* '3-4i'.to_c #=> (3-4i)
* '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
* '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
* '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
* 'ruby'.to_c #=> (0+0i)
*
* See Kernel.Complex.
*/
static VALUE
string_to_c(VALUE self)
{
char *s;
VALUE num;
rb_must_asciicompat(self);
s = RSTRING_PTR(self);
if (s && s[RSTRING_LEN(self)]) {
rb_str_modify(self);
s = RSTRING_PTR(self);
s[RSTRING_LEN(self)] = '\0';
}
if (!s)
s = (char *)"";
(void)parse_comp(s, 0, &num);
return num;
}
static VALUE
to_complex(VALUE val)
{
return rb_convert_type(val, T_COMPLEX, "Complex", "to_c");
}
static VALUE
nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
{
if (NIL_P(a1) || NIL_P(a2)) {
if (!raise) return Qnil;
rb_raise(rb_eTypeError, "can't convert nil into Complex");
}
if (RB_TYPE_P(a1, T_STRING)) {
a1 = string_to_c_strict(a1, raise);
if (NIL_P(a1)) return Qnil;
}
if (RB_TYPE_P(a2, T_STRING)) {
a2 = string_to_c_strict(a2, raise);
if (NIL_P(a2)) return Qnil;
}
if (RB_TYPE_P(a1, T_COMPLEX)) {
{
get_dat1(a1);
if (k_exact_zero_p(dat->imag))
a1 = dat->real;
}
}
if (RB_TYPE_P(a2, T_COMPLEX)) {
{
get_dat1(a2);
if (k_exact_zero_p(dat->imag))
a2 = dat->real;
}
}
if (RB_TYPE_P(a1, T_COMPLEX)) {
if (a2 == Qundef || (k_exact_zero_p(a2)))
return a1;
}
if (a2 == Qundef) {
if (k_numeric_p(a1) && !f_real_p(a1))
return a1;
/* should raise exception for consistency */
if (!k_numeric_p(a1)) {
if (!raise)
return rb_protect(to_complex, a1, NULL);
return to_complex(a1);
}
}
else {
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
(!f_real_p(a1) || !f_real_p(a2)))
return f_add(a1,
f_mul(a2,
f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
}
{
int argc;
VALUE argv2[2];
argv2[0] = a1;
if (a2 == Qundef) {
argv2[1] = Qnil;
argc = 1;
}
else {
if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL))
return Qnil;
argv2[1] = a2;
argc = 2;
}
return nucomp_s_new(argc, argv2, klass);
}
}
static VALUE
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
{
VALUE a1, a2;
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
a2 = Qundef;
}
return nucomp_convert(klass, a1, a2, TRUE);
}
/*
* call-seq:
* num.real -> self
*
* Returns self.
*/
static VALUE
numeric_real(VALUE self)
{
return self;
}
/*
* call-seq:
* num.imag -> 0
* num.imaginary -> 0
*
* Returns zero.
*/
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
/*
* call-seq:
* num.abs2 -> real
*
* Returns square of self.
*/
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
/*
* call-seq:
* num.arg -> 0 or float
* num.angle -> 0 or float
* num.phase -> 0 or float
*
* Returns 0 if the value is positive, pi otherwise.
*/
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return DBL2NUM(M_PI);
}
/*
* call-seq:
* num.rect -> array
* num.rectangular -> array
*
* Returns an array; [num, 0].
*/
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
/*
* call-seq:
* num.polar -> array
*
* Returns an array; [num.abs, num.arg].
*/
static VALUE
numeric_polar(VALUE self)
{
VALUE abs, arg;
if (RB_INTEGER_TYPE_P(self)) {
abs = rb_int_abs(self);
arg = numeric_arg(self);
}
else if (RB_FLOAT_TYPE_P(self)) {
abs = rb_float_abs(self);
arg = float_arg(self);
}
else if (RB_TYPE_P(self, T_RATIONAL)) {
abs = rb_rational_abs(self);
arg = numeric_arg(self);
}
else {
abs = f_abs(self);
arg = f_arg(self);
}
return rb_assoc_new(abs, arg);
}
/*
* call-seq:
* num.conj -> self
* num.conjugate -> self
*
* Returns self.
*/
static VALUE
numeric_conj(VALUE self)
{
return self;
}
/*
* call-seq:
* flo.arg -> 0 or float
* flo.angle -> 0 or float
* flo.phase -> 0 or float
*
* Returns 0 if the value is positive, pi otherwise.
*/
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
/*
* A complex number can be represented as a paired real number with
* imaginary unit; a+bi. Where a is real part, b is imaginary part
* and i is imaginary unit. Real a equals complex a+0i
* mathematically.
*
* You can create a \Complex object explicitly with:
*
* - A {complex literal}[doc/syntax/literals_rdoc.html#label-Complex+Literals].
*
* You can convert certain objects to \Complex objects with:
*
* - \Method {Complex}[Kernel.html#method-i-Complex].
*
* Complex object can be created as literal, and also by using
* Kernel#Complex, Complex::rect, Complex::polar or to_c method.
*
* 2+1i #=> (2+1i)
* Complex(1) #=> (1+0i)
* Complex(2, 3) #=> (2+3i)
* Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
* 3.to_c #=> (3+0i)
*
* You can also create complex object from floating-point numbers or
* strings.
*
* Complex(0.3) #=> (0.3+0i)
* Complex('0.3-0.5i') #=> (0.3-0.5i)
* Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
* Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
*
* 0.3.to_c #=> (0.3+0i)
* '0.3-0.5i'.to_c #=> (0.3-0.5i)
* '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
* '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
*
* A complex object is either an exact or an inexact number.
*
* Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
* Complex(1, 1) / 2.0 #=> (0.5+0.5i)
*/
void
Init_Complex(void)
{
VALUE compat;
id_abs = rb_intern_const("abs");
id_arg = rb_intern_const("arg");
id_denominator = rb_intern_const("denominator");
id_numerator = rb_intern_const("numerator");
id_real_p = rb_intern_const("real?");
id_i_real = rb_intern_const("@real");
id_i_imag = rb_intern_const("@image"); /* @image, not @imag */
id_finite_p = rb_intern_const("finite?");
id_infinite_p = rb_intern_const("infinite?");
id_rationalize = rb_intern_const("rationalize");
id_PI = rb_intern_const("PI");
rb_cComplex = rb_define_class("Complex", rb_cNumeric);
rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
rb_undef_method(CLASS_OF(rb_cComplex), "new");
rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
rb_define_global_function("Complex", nucomp_f_complex, -1);
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable));
rb_undef_method(rb_cComplex, "%");
rb_undef_method(rb_cComplex, "div");
rb_undef_method(rb_cComplex, "divmod");
rb_undef_method(rb_cComplex, "floor");
rb_undef_method(rb_cComplex, "ceil");
rb_undef_method(rb_cComplex, "modulo");
rb_undef_method(rb_cComplex, "remainder");
rb_undef_method(rb_cComplex, "round");
rb_undef_method(rb_cComplex, "step");
rb_undef_method(rb_cComplex, "truncate");
rb_undef_method(rb_cComplex, "i");
rb_define_method(rb_cComplex, "real", rb_complex_real, 0);
rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0);
rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0);
rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0);
rb_define_method(rb_cComplex, "+", rb_complex_plus, 1);
rb_define_method(rb_cComplex, "-", rb_complex_minus, 1);
rb_define_method(rb_cComplex, "*", rb_complex_mul, 1);
rb_define_method(rb_cComplex, "/", rb_complex_div, 1);
rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
rb_define_method(rb_cComplex, "**", rb_complex_pow, 1);
rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1);
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0);
rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0);
rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0);
rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0);
rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0);
rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0);
rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0);
2021-05-20 08:31:49 +03:00
rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0);
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
rb_undef_method(rb_cComplex, "positive?");
rb_undef_method(rb_cComplex, "negative?");
rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0);
rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0);
rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
/* :nodoc: */
compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
rb_define_method(rb_cString, "to_c", string_to_c, 0);
rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
rb_define_method(rb_cNumeric, "real", numeric_real, 0);
rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
rb_define_method(rb_cFloat, "arg", float_arg, 0);
rb_define_method(rb_cFloat, "angle", float_arg, 0);
rb_define_method(rb_cFloat, "phase", float_arg, 0);
/*
* The imaginary unit.
*/
rb_define_const(rb_cComplex, "I",
f_complex_new_bang2(rb_cComplex, ZERO, ONE));
#if !USE_FLONUM
rb_gc_register_mark_object(RFLOAT_0 = DBL2NUM(0.0));
#endif
rb_provide("complex.so"); /* for backward compatibility */
}