* fix: Fixed bug where every underlying LGBMRegressor or LGBMClassifier had n_estimators = 1
* test: Added test showing case where FLAMLised CatBoostModel result isn't reproducible
* fix: Fixing issue where callbacks cause LGBM results to not be reproducible
* Update test/automl/test_regression.py
Co-authored-by: Li Jiang <bnujli@gmail.com>
* fix: Adding back the LGBM EarlyStopping
* refactor: Fix tweaked to ensure other models aren't likely to be affected
* test: Fixed test to allow reproduced results to be better than the FLAML results, when LGBM earlystopping is involved
---------
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Added documentation for automl.model.estimator usage
Updated documentation across various examples and the model.py file to include information about automl.model.estimator. This addition enhances the clarity and usability of FLAML by providing users with clear guidance on how to utilize this feature in their AutoML workflows. These changes aim to improve the overall user experience and facilitate easier understanding of FLAML's capabilities.
* fix: Ran pre-commit hook on docs
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Daniel Grindrod <dannycg1996@gmail.com>
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
* Merged PR 1444697: Fix json dumps TypeError
Fix json dumps TypeError
----
Bug fix to address a `TypeError` in `json.dumps`.
This pull request fixes a `TypeError` encountered when using `json.dumps` on `automl._automl_user_configurations` by introducing a safe JSON serialization function.
- Added `safe_json_dumps` function in `flaml/fabric/mlflow.py` to handle non-serializable objects.
- Updated `MLflowIntegration` class in `flaml/fabric/mlflow.py` to use `safe_json_dumps` for JSON serialization.
- Modified `test/automl/test_multiclass.py` to test the new `safe_json_dumps` function.
Related work items: #3439408
* Fix data transform issue and spark log_loss metric compute error
* fix: CatBoostRegressors metrics are now reproducible
* test: Made tests live, which ensure the reproducibility of catboost models
* fix: Added defunct line of code as a comment
* fix: Re-adding removed if statement, and test to show one issue that if statement can cause
* fix: Stopped ending CatBoost training early when time budget is running out
---------
Co-authored-by: Daniel Grindrod <Daniel.Grindrod@evotec.com>
* Add more spark models and improved mlflow integration
* Update test_extra_models, setup and gitignore
* Remove autofe
* Remove autofe
* Remove autofe
* Sync changes in internal
* Fix test for env without pyspark
* Fix import errors
* Fix tests
* Fix typos
* Fix pytorch-forecasting version
* Remove internal funcs, rename _mlflow.py
* Fix import error
* Fix dependency
* Fix experiment name setting
* Fix dependency
* Update pandas version
* Update pytorch-forecasting version
* Add warning message for not has_automl
* Fix test errors with nltk 3.8.2
* Don't enable mlflow logging w/o an active run
* Fix pytorch-forecasting can't be pickled issue
* Update pyspark tests condition
* Update synapseml
* Update synapseml
* No parent run, no logging for OSS
* Log when autolog is enabled
* upgrade code
* Enable autolog for tune
* Increase time budget for test
* End run before start a new run
* Update parent run
* Fix import error
* clean up
* skip macos and win
* Update notes
* Update default value of model_history
* Don't pass `callbacks=None` to `XGBoostSklearnEstimator._fit`
The original implmentation would pass `callbacks=None` to `XGBoostSklearnEstimator._fit` and eventually lead to a `TypeError` of `XGBModel.fit() got an unexpected keyword argument 'callbacks'`. This PR instead does not pass the `callbacks=None` parameter to avoid the error.
* Update setup.py to allow for xgboost 2.x
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Fix typos, upgrade yarn packages, add some improvements
* Fix joblib 1.4.0 breaks joblib-spark
* Fix xgboost test error
* Pin xgboost<2.0.0
* Try update prophet to 1.5.1
* Update github workflow
* Revert prophet version
* Update github workflow
* Update install libomp
* Fix test errors
* Fix test errors
* Add retry to test and coverage
* Revert "Add retry to test and coverage"
This reverts commit ce13097cd5.
* Increase test budget
* Add more data to test_models, try fixing ValueError: Found array with 0 sample(s) (shape=(0, 252)) while a minimum of 1 is required.
* support xgboost 2.0
* try classes_
* test version
* quote
* use_label_encoder
* Fix xgboost test error
* remove deprecated files
* remove deprecated files
* remove deprecated import
* replace deprecated import in integrate_spark.ipynb
* replace deprecated import in automl_lightgbm.ipynb
* formatted integrate_spark.ipynb
* replace deprecated import
* try fix driver python path
* Update python-package.yml
* replace deprecated reference
* move spark python env var to other section
* Update setup.py, install xgb<2 for MacOS
* Fix typo
* assert
* Try assert xgboost version
* Fail fast
* Keep all test/spark to try fail fast
* No need to skip spark test in Mac or Win
* Remove assert xgb version
* Remove fail fast
* Found root cause, fix test_sparse_matrix_xgboost
* Revert "No need to skip spark test in Mac or Win"
This reverts commit a09034817f.
* remove assertion
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: levscaut <57213911+levscaut@users.noreply.github.com>
Co-authored-by: levscaut <lwd2010530@qq.com>
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
* Commenting use_label_encoder - xgboost
* format change
* moving the import xgboost version to the head
* Shfit params for use_label to outside maxdept
* Keep the original logic
---------
Co-authored-by: Shaokun <shaokunzhang529@gmail.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* add doc for spark
* labelCol equals to label by default
* change title and reformat
* reference about default index type
* fix doc build
* Update website/docs/Examples/Integrate - Spark.md
* update doc
* Added more references
* remove exception case when `y_train.name` is None
* fix broken link
---------
Co-authored-by: Wendong Li <v-wendongli@microsoft.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* Refactor into automl subpackage
Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.
Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.
* Fix doc building post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Remove vw from test deps as this is breaking the build
* Move default back to the top-level
I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.
* Re-add top level modules with deprecation warnings
flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.
* Fix model.py line-endings
* WIP
* WIP - Notes below
Got to the point where the methods from AutoML are pulled to
GenericTask. Started removing private markers and removing the passing
of automl to these methods. Done with decide_split_type, started on
prepare_data. Need to do the others after
* Re-add generic_task
* Most of the merge done, test_forecast_automl fit succeeds, fails at predict()
* Remaining fixes - test_forecast.py passes
* Comment out holidays-related code as it's not currently used
* Further holidays cleanup
* Fix imports in a test
* tidy up validate_data in time series task
* Test fixes
* Fix tests: add Task.__str__
* Fix tests: test for ray.ObjectRef
* Hotwire TS_Sklearn wrapper to fix test fail
* Attempt at test fix
* Fix test where val_pred_y is a list
* Attempt to fix remaining tests
* Push to retrigger tests
* Push to retrigger tests
* Push to retrigger tests
* Push to retrigger tests
* Remove plots from automl/test_forecast
* Remove unused data size field from Task
* Fix import for CLASSIFICATION in notebook
* Monkey patch TFT to avoid plotting, to fix tests on MacOS
* Monkey patch TFT to avoid plotting v2, to fix tests on MacOS
* Monkey patch TFT to avoid plotting v2, to fix tests on MacOS
* Fix circular import
* remove redundant code in task.py post-merge
* Fix test: set svd_solver="full" in PCA
* Update flaml/automl/data.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Fix review comments
* Fix task -> str in custom learner constructor
* Remove unused CLASSIFICATION imports
* Hotwire TS_Sklearn wrapper to fix test fail by setting
optimizer_for_horizon == False
* Revert changes to the automl_classification and pin FLAML version
* Fix imports in reverted notebook
* Fix FLAML version in automl notebooks
* Fix ml.py line endings
* Fix CLASSIFICATION task import in automl_classification notebook
* Uncomment pip install in notebook and revert import
Not convinced this will work because of installing an older version of
the package into the environment in which we're running the tests, but
let's see.
* Revert c6a5dd1a0
* Fix get_classification_objective import in suggest.py
* Remove hcrystallball docs reference in TS_Sklearn
* Merge markharley:extract-task-class-from-automl into this
* Fix import, remove smooth.py
* Fix dependencies to fix TFT fail on Windows Python 3.8 and 3.9
* Add tensorboardX dependency to fix TFT fail on Windows Python 3.8 and 3.9
* Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9
* Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9
* Disable PCA reduction of lagged features for now, to fix svd convervence fail
* Merge flaml/main into time_series_task
* Attempt to fix formatting
* Attempt to fix formatting
* tentatively implement holt-winters-no covariates
* fix forecast method, clean class
* checking external regressors too
* update test forecast
* remove duplicated test file, re-add sarimax, search space cleanup
* Update flaml/automl/model.py
removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* prevent short series
* add docs
* First attempt at merging Holt-Winters
* Linter fix
* Add holt-winters to TimeSeriesTask.estimators
* Fix spark test fail
* Attempt to fix another spark test fail
* Attempt to fix another spark test fail
* Change Black max line length to 127
* Change Black max line length to 120
* Add logging for ARIMA params, clean up time series models inheritance
* Add more logging for missing ARIMA params
* Remove a meaningless test causing a fail, add stricter check on ARIMA params
* Fix a bug in HoltWinters
* A pointless change to hopefully trigger the on and off KeyError in ARIMA.fit()
* Fix formatting
* Attempt to fix formatting
* Attempt to fix formatting
* Attempt to fix formatting
* Attempt to fix formatting
* Add type annotations to _train_with_config() in state.py
* Add type annotations to prepare_sample_train_data() in state.py
* Add docstring for time_col argument of AutoML.fit()
* Address @sonichi's comments on PR
* Fix formatting
* Fix formatting
* Reduce test time budget
* Reduce test time budget
* Increase time budget for the test to pass
* Remove redundant imports
* Remove more redundant imports
* Minor fixes of points raised by Qingyun
* Try to fix pandas import fail
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Try to fix pandas import fail, again
* Formatting fixes
* More formatting fixes
* Added test that loops over TS models to ensure coverage
* Fix formatting issues
* Fix more formatting issues
* Fix random fail in check
* Put back in tests for ARIMA predict without fit
* Put back in tests for lgbm
* Update test/test_model.py
cover dedup
* Match target length to X length in missing test
---------
Co-authored-by: Mark Harley <mark.harley@transferwise.com>
Co-authored-by: Mark Harley <mharley.code@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Andrea W <a.ruggerini@ammagamma.com>
Co-authored-by: Andrea Ruggerini <nescio.adv@gmail.com>
Co-authored-by: Egor Kraev <Egor.Kraev@tw.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* version update post release v1.2.2
* automl option
* import pandas
* remove automl.utils
* default
* test
* type hint and version update
* dependency update
* link to open in colab
* use packging.version to close#725
---------
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* fix NLP zero division error
* set predictions to None
* set predictions to None
* set predictions to None
* refactor
* refactor
---------
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
* expose label and feature transformer
* linter apply
* avoid undefined attribute in flaml/automl/automl.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* avoid undefined attribute in flaml/automl/automl.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* retrigger checks
* retrigger checks
---------
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* tentatively implement holt-winters-no covariates
* fix forecast method, clean class
* checking external regressors too
* update test forecast
* remove duplicated test file, re-add sarimax, search space cleanup
* Update flaml/automl/model.py
removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* prevent short series
* add docs
---------
Co-authored-by: Andrea W <a.ruggerini@ammagamma.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* add basic support to Spark dataframe
add support to SynapseML LightGBM model
update to pyspark>=3.2.0 to leverage pandas_on_Spark API
* clean code, add TODOs
* add sample_train_data for pyspark.pandas dataframe, fix bugs
* improve some functions, fix bugs
* fix dict change size during iteration
* update model predict
* update LightGBM model, update test
* update SynapseML LightGBM params
* update synapseML and tests
* update TODOs
* Added support to roc_auc for spark models
* Added support to score of spark estimator
* Added test for automl score of spark estimator
* Added cv support to pyspark.pandas dataframe
* Update test, fix bugs
* Added tests
* Updated docs, tests, added a notebook
* Fix bugs in non-spark env
* Fix bugs and improve tests
* Fix uninstall pyspark
* Fix tests error
* Fix java.lang.OutOfMemoryError: Java heap space
* Fix test_performance
* Update test_sparkml to test_0sparkml to use the expected spark conf
* Remove unnecessary widgets in notebook
* Fix iloc java.lang.StackOverflowError
* fix pre-commit
* Added params check for spark dataframes
* Refactor code for train_test_split to a function
* Update train_test_split_pyspark
* Refactor if-else, remove unnecessary code
* Remove y from predict, remove mem control from n_iter compute
* Update workflow
* Improve _split_pyspark
* Fix test failure of too short training time
* Fix typos, improve docstrings
* Fix index errors of pandas_on_spark, add spark loss metric
* Fix typo of ndcgAtK
* Update NDCG metrics and tests
* Remove unuseful logger
* Use cache and count to ensure consistent indexes
* refactor for merge maain
* fix errors of refactor
* Updated SparkLightGBMEstimator and cache
* Updated config2params
* Remove unused import
* Fix unknown parameters
* Update default_estimator_list
* Add unit tests for spark metrics
* Refactor into automl subpackage
Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.
Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.
* Fix doc building post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Remove vw from test deps as this is breaking the build
* Move default back to the top-level
I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.
* Re-add top level modules with deprecation warnings
flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.
* Fix model.py line-endings
* WIP
* WIP - Notes below
Got to the point where the methods from AutoML are pulled to
GenericTask. Started removing private markers and removing the passing
of automl to these methods. Done with decide_split_type, started on
prepare_data. Need to do the others after
* Re-add generic_task
* Fix tests: add Task.__str__
* Fix tests: test for ray.ObjectRef
* Hotwire TS_Sklearn wrapper to fix test fail
* Remove unused data size field from Task
* Fix import for CLASSIFICATION in notebook
* Update flaml/automl/data.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Fix review comments
* Fix task -> str in custom learner constructor
* Remove unused CLASSIFICATION imports
* Hotwire TS_Sklearn wrapper to fix test fail by setting
optimizer_for_horizon == False
* Revert changes to the automl_classification and pin FLAML version
* Fix imports in reverted notebook
* Fix FLAML version in automl notebooks
* Fix ml.py line endings
* Fix CLASSIFICATION task import in automl_classification notebook
* Uncomment pip install in notebook and revert import
Not convinced this will work because of installing an older version of
the package into the environment in which we're running the tests, but
let's see.
* Revert c6a5dd1a0
* Revert "Revert c6a5dd1a0"
This reverts commit e55e35adea.
* Black format model.py
* Bump version to 1.1.2 in automl_xgboost
* Add docstrings to the Task ABC
* Fix import in custom_learner
* fix 'optimize_for_horizon' for ts_sklearn
* remove debugging print statements
* Check for is_forecast() before is_classification() in decide_split_type
* Attempt to fix formatting fail
* Another attempt to fix formatting fail
* And another attempt to fix formatting fail
* Add type annotations for task arg in signatures and docstrings
* Fix formatting
* Fix linting
---------
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Kevin Chen <chenkevin.8787@gmail.com>
* improve max_valid_n and doc
* Update README.md
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
* newline at end of file
* doc
---------
Co-authored-by: Li Jiang <lijiang1@microsoft.com>
Co-authored-by: Susan Xueqing Liu <liususan091219@users.noreply.github.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
* merging
* clean commit
* Delete mylearner.py
This file is not needed.
* fix py4j import error
* more tolerant cancelling time
* fix problems following suggestions
* Update flaml/tune/spark/utils.py
Co-authored-by: Li Jiang <bnujli@gmail.com>
* remove redundant model
* Update test/spark/custom_mylearner.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* add docstr
* reverse change in gitignore
* Update test/spark/custom_mylearner.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
---------
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* begin annotation in automl.py and ml.py
* EstimatorSubclass + annotate metric
* review: fixes + setting fit_kwargs as proper Optional
* import from flaml.automl.model (import from flaml.model is deprecated)
* comment n_jobs in train_estimator as well
* better annotation in _compute_with_config_base
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
---------
Co-authored-by: Andrea W <a.ruggerini@ammagamma.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>