WSL2-Linux-Kernel/drivers/scsi/hpsa.h

668 строки
20 KiB
C
Исходник Обычный вид История

/*
* Disk Array driver for HP Smart Array SAS controllers
* Copyright 2016 Microsemi Corporation
* Copyright 2014-2015 PMC-Sierra, Inc.
* Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
*
*/
#ifndef HPSA_H
#define HPSA_H
#include <scsi/scsicam.h>
#define IO_OK 0
#define IO_ERROR 1
struct ctlr_info;
struct access_method {
void (*submit_command)(struct ctlr_info *h,
struct CommandList *c);
void (*set_intr_mask)(struct ctlr_info *h, unsigned long val);
bool (*intr_pending)(struct ctlr_info *h);
unsigned long (*command_completed)(struct ctlr_info *h, u8 q);
};
/* for SAS hosts and SAS expanders */
struct hpsa_sas_node {
struct device *parent_dev;
struct list_head port_list_head;
};
struct hpsa_sas_port {
struct list_head port_list_entry;
u64 sas_address;
struct sas_port *port;
int next_phy_index;
struct list_head phy_list_head;
struct hpsa_sas_node *parent_node;
struct sas_rphy *rphy;
};
struct hpsa_sas_phy {
struct list_head phy_list_entry;
struct sas_phy *phy;
struct hpsa_sas_port *parent_port;
bool added_to_port;
};
#define EXTERNAL_QD 7
struct hpsa_scsi_dev_t {
unsigned int devtype;
int bus, target, lun; /* as presented to the OS */
unsigned char scsi3addr[8]; /* as presented to the HW */
u8 physical_device : 1;
u8 expose_device;
u8 removed : 1; /* device is marked for death */
#define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0"
unsigned char device_id[16]; /* from inquiry pg. 0x83 */
u64 sas_address;
unsigned char vendor[8]; /* bytes 8-15 of inquiry data */
unsigned char model[16]; /* bytes 16-31 of inquiry data */
unsigned char rev; /* byte 2 of inquiry data */
unsigned char raid_level; /* from inquiry page 0xC1 */
unsigned char volume_offline; /* discovered via TUR or VPD */
u16 queue_depth; /* max queue_depth for this device */
atomic_t reset_cmds_out; /* Count of commands to-be affected */
atomic_t ioaccel_cmds_out; /* Only used for physical devices
* counts commands sent to physical
* device via "ioaccel" path.
*/
u32 ioaccel_handle;
u8 active_path_index;
u8 path_map;
u8 bay;
u8 box[8];
u16 phys_connector[8];
int offload_config; /* I/O accel RAID offload configured */
int offload_enabled; /* I/O accel RAID offload enabled */
int offload_to_be_enabled;
int hba_ioaccel_enabled;
int offload_to_mirror; /* Send next I/O accelerator RAID
* offload request to mirror drive
*/
struct raid_map_data raid_map; /* I/O accelerator RAID map */
/*
* Pointers from logical drive map indices to the phys drives that
* make those logical drives. Note, multiple logical drives may
* share physical drives. You can have for instance 5 physical
* drives with 3 logical drives each using those same 5 physical
* disks. We need these pointers for counting i/o's out to physical
* devices in order to honor physical device queue depth limits.
*/
struct hpsa_scsi_dev_t *phys_disk[RAID_MAP_MAX_ENTRIES];
int nphysical_disks;
hpsa: clean up aborts Do not send aborts to logical devices that do not support aborts Instead of relying on what the Smart Array claims for supporting logical drives, simply try an abort and see how it responds at device discovery time. This way devices that do support aborts (e.g. MSA2000) can work and we do not waste time trying to send aborts to logical drives that do not support them (important for high IOPS devices.) While rescanning devices only test whether devices support aborts the first time we encounter a device rather than every time. Some Smart Arrays required aborts to be sent with tags in the wrong endian byte order. To avoid having to know about this, we would send two aborts with tags with each endian order. On high IOPS devices, this turns out to be not such a hot idea. So we now have a list of the devices that got the tag backwards, and we only send it one way. If all available commands are outstanding and the abort handler is invoked, the abort handler may not be able to allocate a command and may busy-wait excessivly. Reserve a small number of commands for the abort handler and limit the number of concurrent abort requests to the number of reserved commands. Reviewed-by: Scott Teel <scott.teel@pmcs.com> Reviewed-by: Kevin Barnett <kevin.barnett@pmcs.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Hannes Reinecke <hare@Suse.de> Signed-off-by: Don Brace <don.brace@pmcs.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com>
2015-04-23 17:32:06 +03:00
int supports_aborts;
struct hpsa_sas_port *sas_port;
int external; /* 1-from external array 0-not <0-unknown */
};
struct reply_queue_buffer {
u64 *head;
size_t size;
u8 wraparound;
u32 current_entry;
dma_addr_t busaddr;
};
#pragma pack(1)
struct bmic_controller_parameters {
u8 led_flags;
u8 enable_command_list_verification;
u8 backed_out_write_drives;
u16 stripes_for_parity;
u8 parity_distribution_mode_flags;
u16 max_driver_requests;
u16 elevator_trend_count;
u8 disable_elevator;
u8 force_scan_complete;
u8 scsi_transfer_mode;
u8 force_narrow;
u8 rebuild_priority;
u8 expand_priority;
u8 host_sdb_asic_fix;
u8 pdpi_burst_from_host_disabled;
char software_name[64];
char hardware_name[32];
u8 bridge_revision;
u8 snapshot_priority;
u32 os_specific;
u8 post_prompt_timeout;
u8 automatic_drive_slamming;
u8 reserved1;
u8 nvram_flags;
u8 cache_nvram_flags;
u8 drive_config_flags;
u16 reserved2;
u8 temp_warning_level;
u8 temp_shutdown_level;
u8 temp_condition_reset;
u8 max_coalesce_commands;
u32 max_coalesce_delay;
u8 orca_password[4];
u8 access_id[16];
u8 reserved[356];
};
#pragma pack()
struct ctlr_info {
unsigned int *reply_map;
int ctlr;
char devname[8];
char *product_name;
struct pci_dev *pdev;
u32 board_id;
u64 sas_address;
void __iomem *vaddr;
unsigned long paddr;
int nr_cmds; /* Number of commands allowed on this controller */
#define HPSA_CMDS_RESERVED_FOR_ABORTS 2
#define HPSA_CMDS_RESERVED_FOR_DRIVER 1
struct CfgTable __iomem *cfgtable;
int interrupts_enabled;
int max_commands;
atomic_t commands_outstanding;
# define PERF_MODE_INT 0
# define DOORBELL_INT 1
# define SIMPLE_MODE_INT 2
# define MEMQ_MODE_INT 3
unsigned int msix_vectors;
int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */
struct access_method access;
/* queue and queue Info */
unsigned int Qdepth;
unsigned int maxSG;
spinlock_t lock;
int maxsgentries;
u8 max_cmd_sg_entries;
int chainsize;
struct SGDescriptor **cmd_sg_list;
struct ioaccel2_sg_element **ioaccel2_cmd_sg_list;
/* pointers to command and error info pool */
struct CommandList *cmd_pool;
dma_addr_t cmd_pool_dhandle;
struct io_accel1_cmd *ioaccel_cmd_pool;
dma_addr_t ioaccel_cmd_pool_dhandle;
struct io_accel2_cmd *ioaccel2_cmd_pool;
dma_addr_t ioaccel2_cmd_pool_dhandle;
struct ErrorInfo *errinfo_pool;
dma_addr_t errinfo_pool_dhandle;
unsigned long *cmd_pool_bits;
int scan_finished;
u8 scan_waiting : 1;
spinlock_t scan_lock;
wait_queue_head_t scan_wait_queue;
struct Scsi_Host *scsi_host;
spinlock_t devlock; /* to protect hba[ctlr]->dev[]; */
int ndevices; /* number of used elements in .dev[] array. */
struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES];
/*
* Performant mode tables.
*/
u32 trans_support;
u32 trans_offset;
struct TransTable_struct __iomem *transtable;
unsigned long transMethod;
/* cap concurrent passthrus at some reasonable maximum */
#define HPSA_MAX_CONCURRENT_PASSTHRUS (10)
atomic_t passthru_cmds_avail;
/*
* Performant mode completion buffers
*/
size_t reply_queue_size;
struct reply_queue_buffer reply_queue[MAX_REPLY_QUEUES];
u8 nreply_queues;
u32 *blockFetchTable;
u32 *ioaccel1_blockFetchTable;
u32 *ioaccel2_blockFetchTable;
u32 __iomem *ioaccel2_bft2_regs;
unsigned char *hba_inquiry_data;
u32 driver_support;
u32 fw_support;
int ioaccel_support;
int ioaccel_maxsg;
u64 last_intr_timestamp;
u32 last_heartbeat;
u64 last_heartbeat_timestamp;
u32 heartbeat_sample_interval;
atomic_t firmware_flash_in_progress;
u32 __percpu *lockup_detected;
struct delayed_work monitor_ctlr_work;
struct delayed_work rescan_ctlr_work;
struct delayed_work event_monitor_work;
int remove_in_progress;
/* Address of h->q[x] is passed to intr handler to know which queue */
u8 q[MAX_REPLY_QUEUES];
char intrname[MAX_REPLY_QUEUES][16]; /* "hpsa0-msix00" names */
u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */
#define HPSATMF_BITS_SUPPORTED (1 << 0)
#define HPSATMF_PHYS_LUN_RESET (1 << 1)
#define HPSATMF_PHYS_NEX_RESET (1 << 2)
#define HPSATMF_PHYS_TASK_ABORT (1 << 3)
#define HPSATMF_PHYS_TSET_ABORT (1 << 4)
#define HPSATMF_PHYS_CLEAR_ACA (1 << 5)
#define HPSATMF_PHYS_CLEAR_TSET (1 << 6)
#define HPSATMF_PHYS_QRY_TASK (1 << 7)
#define HPSATMF_PHYS_QRY_TSET (1 << 8)
#define HPSATMF_PHYS_QRY_ASYNC (1 << 9)
#define HPSATMF_IOACCEL_ENABLED (1 << 15)
#define HPSATMF_MASK_SUPPORTED (1 << 16)
#define HPSATMF_LOG_LUN_RESET (1 << 17)
#define HPSATMF_LOG_NEX_RESET (1 << 18)
#define HPSATMF_LOG_TASK_ABORT (1 << 19)
#define HPSATMF_LOG_TSET_ABORT (1 << 20)
#define HPSATMF_LOG_CLEAR_ACA (1 << 21)
#define HPSATMF_LOG_CLEAR_TSET (1 << 22)
#define HPSATMF_LOG_QRY_TASK (1 << 23)
#define HPSATMF_LOG_QRY_TSET (1 << 24)
#define HPSATMF_LOG_QRY_ASYNC (1 << 25)
u32 events;
#define CTLR_STATE_CHANGE_EVENT (1 << 0)
#define CTLR_ENCLOSURE_HOT_PLUG_EVENT (1 << 1)
#define CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV (1 << 4)
#define CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV (1 << 5)
#define CTLR_STATE_CHANGE_EVENT_REDUNDANT_CNTRL (1 << 6)
#define CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED (1 << 30)
#define CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE (1 << 31)
#define RESCAN_REQUIRED_EVENT_BITS \
(CTLR_ENCLOSURE_HOT_PLUG_EVENT | \
CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV | \
CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV | \
CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED | \
CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE)
spinlock_t offline_device_lock;
struct list_head offline_device_list;
int acciopath_status;
int drv_req_rescan;
int raid_offload_debug;
int discovery_polling;
int legacy_board;
struct ReportLUNdata *lastlogicals;
hpsa: clean up aborts Do not send aborts to logical devices that do not support aborts Instead of relying on what the Smart Array claims for supporting logical drives, simply try an abort and see how it responds at device discovery time. This way devices that do support aborts (e.g. MSA2000) can work and we do not waste time trying to send aborts to logical drives that do not support them (important for high IOPS devices.) While rescanning devices only test whether devices support aborts the first time we encounter a device rather than every time. Some Smart Arrays required aborts to be sent with tags in the wrong endian byte order. To avoid having to know about this, we would send two aborts with tags with each endian order. On high IOPS devices, this turns out to be not such a hot idea. So we now have a list of the devices that got the tag backwards, and we only send it one way. If all available commands are outstanding and the abort handler is invoked, the abort handler may not be able to allocate a command and may busy-wait excessivly. Reserve a small number of commands for the abort handler and limit the number of concurrent abort requests to the number of reserved commands. Reviewed-by: Scott Teel <scott.teel@pmcs.com> Reviewed-by: Kevin Barnett <kevin.barnett@pmcs.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Hannes Reinecke <hare@Suse.de> Signed-off-by: Don Brace <don.brace@pmcs.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com>
2015-04-23 17:32:06 +03:00
int needs_abort_tags_swizzled;
struct workqueue_struct *resubmit_wq;
struct workqueue_struct *rescan_ctlr_wq;
hpsa: clean up aborts Do not send aborts to logical devices that do not support aborts Instead of relying on what the Smart Array claims for supporting logical drives, simply try an abort and see how it responds at device discovery time. This way devices that do support aborts (e.g. MSA2000) can work and we do not waste time trying to send aborts to logical drives that do not support them (important for high IOPS devices.) While rescanning devices only test whether devices support aborts the first time we encounter a device rather than every time. Some Smart Arrays required aborts to be sent with tags in the wrong endian byte order. To avoid having to know about this, we would send two aborts with tags with each endian order. On high IOPS devices, this turns out to be not such a hot idea. So we now have a list of the devices that got the tag backwards, and we only send it one way. If all available commands are outstanding and the abort handler is invoked, the abort handler may not be able to allocate a command and may busy-wait excessivly. Reserve a small number of commands for the abort handler and limit the number of concurrent abort requests to the number of reserved commands. Reviewed-by: Scott Teel <scott.teel@pmcs.com> Reviewed-by: Kevin Barnett <kevin.barnett@pmcs.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Hannes Reinecke <hare@Suse.de> Signed-off-by: Don Brace <don.brace@pmcs.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com>
2015-04-23 17:32:06 +03:00
atomic_t abort_cmds_available;
wait_queue_head_t event_sync_wait_queue;
struct mutex reset_mutex;
u8 reset_in_progress;
struct hpsa_sas_node *sas_host;
spinlock_t reset_lock;
};
struct offline_device_entry {
unsigned char scsi3addr[8];
struct list_head offline_list;
};
#define HPSA_ABORT_MSG 0
#define HPSA_DEVICE_RESET_MSG 1
#define HPSA_RESET_TYPE_CONTROLLER 0x00
#define HPSA_RESET_TYPE_BUS 0x01
#define HPSA_RESET_TYPE_LUN 0x04
#define HPSA_PHYS_TARGET_RESET 0x99 /* not defined by cciss spec */
#define HPSA_MSG_SEND_RETRY_LIMIT 10
#define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000)
/* Maximum time in seconds driver will wait for command completions
* when polling before giving up.
*/
#define HPSA_MAX_POLL_TIME_SECS (20)
/* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines
* how many times to retry TEST UNIT READY on a device
* while waiting for it to become ready before giving up.
* HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval
* between sending TURs while waiting for a device
* to become ready.
*/
#define HPSA_TUR_RETRY_LIMIT (20)
#define HPSA_MAX_WAIT_INTERVAL_SECS (30)
/* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board
* to become ready, in seconds, before giving up on it.
* HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait
* between polling the board to see if it is ready, in
* milliseconds. HPSA_BOARD_READY_POLL_INTERVAL and
* HPSA_BOARD_READY_ITERATIONS are derived from those.
*/
#define HPSA_BOARD_READY_WAIT_SECS (120)
#define HPSA_BOARD_NOT_READY_WAIT_SECS (100)
#define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100)
#define HPSA_BOARD_READY_POLL_INTERVAL \
((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000)
#define HPSA_BOARD_READY_ITERATIONS \
((HPSA_BOARD_READY_WAIT_SECS * 1000) / \
HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
#define HPSA_BOARD_NOT_READY_ITERATIONS \
((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \
HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
#define HPSA_POST_RESET_PAUSE_MSECS (3000)
#define HPSA_POST_RESET_NOOP_RETRIES (12)
/* Defining the diffent access_menthods */
/*
* Memory mapped FIFO interface (SMART 53xx cards)
*/
#define SA5_DOORBELL 0x20
#define SA5_REQUEST_PORT_OFFSET 0x40
#define SA5_REQUEST_PORT64_LO_OFFSET 0xC0
#define SA5_REQUEST_PORT64_HI_OFFSET 0xC4
#define SA5_REPLY_INTR_MASK_OFFSET 0x34
#define SA5_REPLY_PORT_OFFSET 0x44
#define SA5_INTR_STATUS 0x30
#define SA5_SCRATCHPAD_OFFSET 0xB0
#define SA5_CTCFG_OFFSET 0xB4
#define SA5_CTMEM_OFFSET 0xB8
#define SA5_INTR_OFF 0x08
#define SA5B_INTR_OFF 0x04
#define SA5_INTR_PENDING 0x08
#define SA5B_INTR_PENDING 0x04
#define FIFO_EMPTY 0xffffffff
#define HPSA_FIRMWARE_READY 0xffff0000 /* value in scratchpad register */
#define HPSA_ERROR_BIT 0x02
/* Performant mode flags */
#define SA5_PERF_INTR_PENDING 0x04
#define SA5_PERF_INTR_OFF 0x05
#define SA5_OUTDB_STATUS_PERF_BIT 0x01
#define SA5_OUTDB_CLEAR_PERF_BIT 0x01
#define SA5_OUTDB_CLEAR 0xA0
#define SA5_OUTDB_CLEAR_PERF_BIT 0x01
#define SA5_OUTDB_STATUS 0x9C
#define HPSA_INTR_ON 1
#define HPSA_INTR_OFF 0
/*
* Inbound Post Queue offsets for IO Accelerator Mode 2
*/
#define IOACCEL2_INBOUND_POSTQ_32 0x48
#define IOACCEL2_INBOUND_POSTQ_64_LOW 0xd0
#define IOACCEL2_INBOUND_POSTQ_64_HI 0xd4
#define HPSA_PHYSICAL_DEVICE_BUS 0
#define HPSA_RAID_VOLUME_BUS 1
#define HPSA_EXTERNAL_RAID_VOLUME_BUS 2
#define HPSA_HBA_BUS 0
#define HPSA_LEGACY_HBA_BUS 3
/*
Send the command to the hardware
*/
static void SA5_submit_command(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
(void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
}
static void SA5_submit_command_no_read(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
}
static void SA5_submit_command_ioaccel2(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
}
/*
* This card is the opposite of the other cards.
* 0 turns interrupts on...
* 0x08 turns them off...
*/
static void SA5_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* Turn interrupts on */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else { /* Turn them off */
h->interrupts_enabled = 0;
writel(SA5_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
/*
* Variant of the above; 0x04 turns interrupts off...
*/
static void SA5B_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* Turn interrupts on */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else { /* Turn them off */
h->interrupts_enabled = 0;
writel(SA5B_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* turn on interrupts */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else {
h->interrupts_enabled = 0;
writel(SA5_PERF_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q)
{
struct reply_queue_buffer *rq = &h->reply_queue[q];
unsigned long register_value = FIFO_EMPTY;
/* msi auto clears the interrupt pending bit. */
if (unlikely(!(h->pdev->msi_enabled || h->msix_vectors))) {
/* flush the controller write of the reply queue by reading
* outbound doorbell status register.
*/
(void) readl(h->vaddr + SA5_OUTDB_STATUS);
writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR);
/* Do a read in order to flush the write to the controller
* (as per spec.)
*/
(void) readl(h->vaddr + SA5_OUTDB_STATUS);
}
if ((((u32) rq->head[rq->current_entry]) & 1) == rq->wraparound) {
register_value = rq->head[rq->current_entry];
rq->current_entry++;
atomic_dec(&h->commands_outstanding);
} else {
register_value = FIFO_EMPTY;
}
/* Check for wraparound */
if (rq->current_entry == h->max_commands) {
rq->current_entry = 0;
rq->wraparound ^= 1;
}
return register_value;
}
/*
* returns value read from hardware.
* returns FIFO_EMPTY if there is nothing to read
*/
static unsigned long SA5_completed(struct ctlr_info *h,
__attribute__((unused)) u8 q)
{
unsigned long register_value
= readl(h->vaddr + SA5_REPLY_PORT_OFFSET);
if (register_value != FIFO_EMPTY)
atomic_dec(&h->commands_outstanding);
#ifdef HPSA_DEBUG
if (register_value != FIFO_EMPTY)
dev_dbg(&h->pdev->dev, "Read %lx back from board\n",
register_value);
else
dev_dbg(&h->pdev->dev, "FIFO Empty read\n");
#endif
return register_value;
}
/*
* Returns true if an interrupt is pending..
*/
static bool SA5_intr_pending(struct ctlr_info *h)
{
unsigned long register_value =
readl(h->vaddr + SA5_INTR_STATUS);
return register_value & SA5_INTR_PENDING;
}
static bool SA5_performant_intr_pending(struct ctlr_info *h)
{
unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
if (!register_value)
return false;
/* Read outbound doorbell to flush */
register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
return register_value & SA5_OUTDB_STATUS_PERF_BIT;
}
#define SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT 0x100
static bool SA5_ioaccel_mode1_intr_pending(struct ctlr_info *h)
{
unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
return (register_value & SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT) ?
true : false;
}
/*
* Returns true if an interrupt is pending..
*/
static bool SA5B_intr_pending(struct ctlr_info *h)
{
return readl(h->vaddr + SA5_INTR_STATUS) & SA5B_INTR_PENDING;
}
#define IOACCEL_MODE1_REPLY_QUEUE_INDEX 0x1A0
#define IOACCEL_MODE1_PRODUCER_INDEX 0x1B8
#define IOACCEL_MODE1_CONSUMER_INDEX 0x1BC
#define IOACCEL_MODE1_REPLY_UNUSED 0xFFFFFFFFFFFFFFFFULL
static unsigned long SA5_ioaccel_mode1_completed(struct ctlr_info *h, u8 q)
{
u64 register_value;
struct reply_queue_buffer *rq = &h->reply_queue[q];
BUG_ON(q >= h->nreply_queues);
register_value = rq->head[rq->current_entry];
if (register_value != IOACCEL_MODE1_REPLY_UNUSED) {
rq->head[rq->current_entry] = IOACCEL_MODE1_REPLY_UNUSED;
if (++rq->current_entry == rq->size)
rq->current_entry = 0;
/*
* @todo
*
* Don't really need to write the new index after each command,
* but with current driver design this is easiest.
*/
wmb();
writel((q << 24) | rq->current_entry, h->vaddr +
IOACCEL_MODE1_CONSUMER_INDEX);
atomic_dec(&h->commands_outstanding);
}
return (unsigned long) register_value;
}
static struct access_method SA5_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_intr_mask,
.intr_pending = SA5_intr_pending,
.command_completed = SA5_completed,
};
/* Duplicate entry of the above to mark unsupported boards */
static struct access_method SA5A_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_intr_mask,
.intr_pending = SA5_intr_pending,
.command_completed = SA5_completed,
};
static struct access_method SA5B_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5B_intr_mask,
.intr_pending = SA5B_intr_pending,
.command_completed = SA5_completed,
};
static struct access_method SA5_ioaccel_mode1_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_ioaccel_mode1_intr_pending,
.command_completed = SA5_ioaccel_mode1_completed,
};
static struct access_method SA5_ioaccel_mode2_access = {
.submit_command = SA5_submit_command_ioaccel2,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
static struct access_method SA5_performant_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
static struct access_method SA5_performant_access_no_read = {
.submit_command = SA5_submit_command_no_read,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
struct board_type {
u32 board_id;
char *product_name;
struct access_method *access;
};
#endif /* HPSA_H */