Use a #defined symbol ACPI_DT_NAMESPACE_HID instead of the PRP0001
string.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
The ACPI 6 specification has made some changes in the device power
management area. In particular:
* The D3hot power state is now supposed to be always available
(instead of D3cold) and D3cold is only regarded as valid if the
_PR3 object is present for the given device.
* The required ordering of transitions into power states deeper than
D0 is now such that for a transition into state Dx the _PSx method
is supposed to be executed first, if present, and the states of
the power resources the device depends on are supposed to be
changed after that.
* It is now explicitly forbidden to transition devices from
lower-power (deeper) into higher-power (shallower) power states
other than D0.
Those changes have been made so the specification reflects the
Windows' device power management code that the vast majority of
systems using ACPI is validated against.
To avoid artificial differences in ACPI device power management
between Windows and Linux, modify the ACPI device power management
code to follow the new specification. Add comments explaining the
code flow in some unclear places.
This only may affect some real corner cases in which the OS behavior
expected by the firmware is different from the Windows one, but that's
quite unlikely. The transition ordering change affects transitions
to D1 and D2 which are rarely used (if at all) and into D3hot and
D3cold for devices actually having _PR3, but those are likely to
be validated against Windows anyway. The other changes may affect
code calling acpi_device_get_power() or acpi_device_update_power()
where ACPI_STATE_D3_HOT may be returned instead of ACPI_STATE_D3_COLD
(that's why the ACPI fan driver needs to be updated too) and since
transitions into ACPI_STATE_D3_HOT may remove power now, it is better
to avoid this one in acpi_pm_device_sleep_state() if the "no power
off" PM QoS flag is set.
The only existing user of acpi_device_can_poweroff() really cares
about the case when _PR3 is present, so the change in that function
should not cause any problems to happen too.
A plus is that PCI_D3hot can be mapped to ACPI_STATE_D3_HOT
now and the compatibility with older systems should be covered
automatically.
In any case, if any real problems result from this, it still will
be better to follow the Windows' behavior (which now is reflected
by the specification too) in general and handle the cases when it
doesn't work via quirks.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If the special PRP0001 device ID is present in the given device's list
of ACPI/PNP IDs and the device has a valid "compatible" property in
the _DSD, it should be enumerated using the default mechanism,
unless some scan handlers match the IDs preceding PRP0001 in the
device's list of ACPI/PNP IDs. In addition to that, no scan handlers
matching the IDs following PRP0001 in that list should be attached
to the device.
To make that happen, define a scan handler that will match PRP0001
and trigger the default enumeration for the matching devices if the
"compatible" property is present for them.
Since that requires the check for platform_id and device->handler
to be removed from acpi_default_enumeration(), move the fallback
invocation of acpi_default_enumeration() to acpi_bus_attach()
(after it's checked if there's a matching ACPI driver for the
device), which is a better place to call it, and do the platform_id
check in there too (device->handler is guaranteed to be unset at
the point where the function is looking for a matching ACPI driver).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
acpi_scan_is_offline() may be called under the physical_node_lock
lock of the given device object's parent, so prevent lockdep from
complaining about that by annotating that instance with
SINGLE_DEPTH_NESTING.
Fixes: caa73ea158 (ACPI / hotplug / driver core: Handle containers in a special way)
Reported-and-tested-by: Xie XiuQi <xiexiuqi@huawei.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit e1acdeb0e7 "ACPI / scan: Simplify acpi_match_device()"
introduced code that may lead to a NULL pointer dereference when
trying to unlock a mutex. Fix that.
Fixes: e1acdeb0e7 "ACPI / scan: Simplify acpi_match_device()"
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, the ACPI modalias creation covers two mutually exclusive
cases: If the PRP0001 device ID is present in the device's list of
ACPI/PNP IDs and the "compatible" property is present in _DSD, the
created modalias will follow the OF rules of modalias creation.
Otherwise, ACPI rules are used.
However, that is not really desirable, because the presence of PRP0001
in the list of device IDs generally does not preclude using other
ACPI/PNP IDs with that device and those other IDs may be of higher
priority. In those cases, the other IDs should take preference over
PRP0001 and therefore they also should be present in the modalias.
For this reason, rework the modalias creation for ACPI so that it
shows both the ACPI-style and OF-style modalias strings if the
device has a non-empty list of ACPI/PNP IDs (other than PRP0001)
and a valid "compatible" property at the same time.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
If the special PRP0001 device ID is present in a device's _CID list,
it should not prevent any ACPI/PNP IDs preceding it in the device's
list of identifiers from being matched first. That is, only if none
of the IDs preceding PRP0001 in the device's PNP/ACPI IDs list
matches the IDs recognized by the driver, the driver's list of
"compatible" IDs should be matched against the device's "compatible"
property, if present.
In addition to that, drivers can provide both acpi_match_table and
of_match_table at the same time and the of_compatible matching
should be used in that case too if PRP0001 is present in the
device's list of identifiers.
To make that happen, rework acpi_driver_match_device() to do the
"compatible" property check in addition to matching the driver's
list of ACPI IDs against the device's one.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Redefine acpi_companion_match() to return an ACPI device object
pointer instead of a bool and use it to remove some redundant code
from acpi_match_device().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Redefine the function used for matching the device's "compatible"
property against a given list of "compatible" strings to take
a pointer to that list instead of a driver object pointer to
make it more general.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The fixed event handler should return a value that is either 0 or 1
meanning if the event is handled or not, instead of an acpi_status to
mean if the handler runs well or not.
Suggested-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This new feature is to interpret AMD specific ACPI device to
platform device such as I2C, UART, GPIO found on AMD CZ and
later chipsets. It based on example intel LPSS. Now, it can
support AMD I2C, UART and GPIO.
Signed-off-by: Ken Xue <Ken.Xue@amd.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If an ACPI device object whose _STA returns 0 (not present and not
functional) has _PR0 or _PS0, its power_manageable flag will be set
and acpi_bus_init_power() will return 0 for it. Consequently, if
such a device object is passed to the ACPI device PM functions, they
will attempt to carry out the requested operation on the device,
although they should not do that for devices that are not present.
To fix that problem make acpi_bus_init_power() return an error code
for devices that are not present which will cause power_manageable to
be cleared for them as appropriate in acpi_bus_get_power_flags().
However, the lists of power resources should not be freed for the
device in that case, so modify acpi_bus_get_power_flags() to keep
those lists even if acpi_bus_init_power() returns an error.
Accordingly, when deciding whether or not the lists of power
resources need to be freed, acpi_free_power_resources_lists()
should check the power.flags.power_resources flag instead of
flags.power_manageable, so make that change too.
Furthermore, if acpi_bus_attach() sees that flags.initialized is
unset for the given device, it should reset the power management
settings of the device and re-initialize them from scratch instead
of relying on the previous settings (the device may have appeared
after being not present previously, for example), so make it use
the 'valid' flag of the D0 power state as the initial value of
flags.power_manageable for it and call acpi_bus_init_power() to
discover its current power state.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: 3.10+ <stable@vger.kernel.org> # 3.10+
* acpi-scan:
ACPI / scan: Change the level of _DEP-related messages to KERN_DEBUG
* acpi-utils:
ACPI / utils: Drop error messages from acpi_evaluate_reference()
* acpi-pm:
ACPI / PM: Do not disable wakeup GPEs that have not been enabled
Two _DEP-related failure messages are printed as dev_err() which is
unnecessary and annoying. Use dev_dbg() to print them.
While at it, one of the messages should actually say it is related
to _DEP, so modify it to that effect.
Fixes: 40e7fcb192 (ACPI: Add _DEP support to fix battery issue on Asus T100TA)
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-scan:
ACPI: Add _DEP support to fix battery issue on Asus T100TA
* acpi-pm:
ACPI / sleep: Drain outstanding events after disabling multiple GPEs
ACPI / PM: Fixed a typo in a comment
* acpi-lpss:
dmaengine: dw: enable runtime PM
ACPI / LPSS: introduce a 'proxy' device to power on LPSS for DMA
ACPI / LPSS: allow to use specific PM domain during ->probe()
ACPI / LPSS: add all LPSS devices to the specific power domain
* acpi-processor:
ACPI / cpuidle: avoid assigning signed errno to acpi_status
ACPI / processor: remove unused variabled from acpi_processor_power structure
ACPI / processor: Update the comments in processor.h
ACPI 5.0 introduces _DEP (Operation Region Dependencies) to designate
device objects that OSPM should assign a higher priority in start
ordering due to future operation region accesses.
On Asus T100TA, ACPI battery info are read from a I2C slave device via
I2C operation region. Before I2C operation region handler is installed,
battery _STA always returns 0. There is a _DEP method of designating
start order under battery device node.
This patch is to implement _DEP feature to fix battery issue on the
Asus T100TA. Introducing acpi_dep_list and adding dep_unmet count
in struct acpi_device. During ACPI namespace scan, create struct
acpi_dep_data for a valid pair of master (device pointed to by _DEP)/
slave(device with _DEP), record master's and slave's ACPI handle in
it and put it into acpi_dep_list. The dep_unmet count will increase
by one if there is a device under its _DEP. Driver's probe() should
return EPROBE_DEFER when find dep_unmet is larger than 0. When I2C
operation region handler is installed, remove all struct acpi_dep_data
on the acpi_dep_list whose master is pointed to I2C host controller
and decrease slave's dep_unmet. When dep_unmet decreases to 0, all
_DEP conditions are met and then do acpi_bus_attach() for the device
in order to resolve battery _STA issue on the Asus T100TA.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=69011
Tested-by: Jan-Michael Brummer <jan.brummer@tabos.org>
Tested-by: Adam Williamson <adamw@happyassassin.net>
Tested-by: Michael Shigorin <shigorin@gmail.com>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add new generic routines are provided for retrieving properties from
device description objects in the platform firmware in case there are
no struct device objects for them (either those objects have not been
created yet or they do not exist at all).
The following functions are provided:
fwnode_property_present()
fwnode_property_read_u8()
fwnode_property_read_u16()
fwnode_property_read_u32()
fwnode_property_read_u64()
fwnode_property_read_string()
fwnode_property_read_u8_array()
fwnode_property_read_u16_array()
fwnode_property_read_u32_array()
fwnode_property_read_u64_array()
fwnode_property_read_string_array()
in analogy with the corresponding functions for struct device added
previously. For all of them, the first argument is a pointer to struct
fwnode_handle (new type) that allows a device description object
(depending on what platform firmware interface is in use) to be
obtained.
Add a new macro device_for_each_child_node() for iterating over the
children of the device description object associated with a given
device and a new function device_get_child_node_count() returning the
number of a given device's child nodes.
The interface covers both ACPI and Device Trees.
Suggested-by: Grant Likely <grant.likely@linaro.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We have lots of existing Device Tree enabled drivers and allocating
separate _HID for each is not feasible. Instead we allocate special _HID
"PRP0001" that means that the match should be done using Device Tree
compatible property using driver's .of_match_table instead if the driver
is missing .acpi_match_table.
If there is a need to distinguish from where the device is enumerated
(DT/ACPI) driver can check dev->of_node or ACPI_COMPATION(dev).
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Device Tree is used in many embedded systems to describe the system
configuration to the OS. It supports attaching properties or name-value
pairs to the devices it describe. With these properties one can pass
additional information to the drivers that would not be available
otherwise.
ACPI is another configuration mechanism (among other things) typically
seen, but not limited to, x86 machines. ACPI allows passing arbitrary
data from methods but there has not been mechanism equivalent to Device
Tree until the introduction of _DSD in the recent publication of the
ACPI 5.1 specification.
In order to facilitate ACPI usage in systems where Device Tree is
typically used, it would be beneficial to standardize a way to retrieve
Device Tree style properties from ACPI devices, which is what we do in
this patch.
If a given device described in ACPI namespace wants to export properties it
must implement _DSD method (Device Specific Data, introduced with ACPI 5.1)
that returns the properties in a package of packages. For example:
Name (_DSD, Package () {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () {"name1", <VALUE1>},
Package () {"name2", <VALUE2>},
...
}
})
The UUID reserved for properties is daffd814-6eba-4d8c-8a91-bc9bbf4aa301
and is documented in the ACPI 5.1 companion document called "_DSD
Implementation Guide" [1], [2].
We add several helper functions that can be used to extract these
properties and convert them to different Linux data types.
The ultimate goal is that we only have one device property API that
retrieves the requested properties from Device Tree or from ACPI
transparent to the caller.
[1] http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel.htm
[2] http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 6ab3430129 ("mfd: Add ACPI support") made the MFD subdevices
share the parent MFD ACPI companion if no _HID/_CID is specified for
the subdevice in mfd_cell description. However, since all the subdevices
share the ACPI companion, the match and modalias generation logic started
to use the ACPI companion as well resulting this:
# cat /sys/bus/platform/devices/HID-SENSOR-200041.6.auto/modalias
acpi:INT33D1:PNP0C50:
instead of the expected one
# cat /sys/bus/platform/devices/HID-SENSOR-200041.6.auto/modalias
platform:HID-SENSOR-200041
In other words the subdevice modalias is overwritten by the one taken from
ACPI companion. This causes udev not to load the driver anymore.
It is useful to be able to share the ACPI companion so that MFD subdevices
(and possibly other devices as well) can access the ACPI resources even if
they do not have ACPI representation in the namespace themselves.
An example where this is used is Minnowboard LPC driver that creates GPIO
as a subdevice among other things. Without the ACPI companion gpiolib is
not able to lookup the corresponding GPIO controller from ACPI GpioIo
resource.
To fix this, restrict the match and modalias logic to be limited to the
first (primary) physical device associated with the given ACPI comapnion.
The secondary devices will still be able to access the ACPI companion,
but they will be matched in a different way.
Fixes: 6ab3430129 (mfd: Add ACPI support)
Reported-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Fix for a recent PCI power management change that overlooked
the fact that some IRQ chips might not be able to configure
PCIe PME for system wakeup from Lucas Stach.
- Fix for a bug introduced in 3.17 where acpi_device_wakeup()
is called with a wrong ordering of arguments from Zhang Rui.
- A bunch of intel_pstate driver fixes (all -stable candidates)
from Dirk Brandewie, Gabriele Mazzotta and Pali Rohár.
- Fixes for a rather long-standing problem with the OOM killer
and the freezer that frozen processes killed by the OOM do
not actually release any memory until they are thawed, so
OOM-killing them is rather pointless, with a couple of
cleanups on top (Michal Hocko, Cong Wang, Rafael J Wysocki).
- ACPICA update to upstream release 20140926, inlcuding mostly
cleanups reducing differences between the upstream ACPICA and
the kernel code, tools changes (acpidump, acpiexec) and
support for the _DDN object (Bob Moore, Lv Zheng).
- New PM QoS class for memory bandwidth from Tomeu Vizoso.
- Default 32-bit DMA mask for platform devices enumerated by ACPI
(this change is mostly needed for some drivers development in
progress targeted at 3.19) from Heikki Krogerus.
- ACPI EC driver cleanups, mostly related to debugging, from
Lv Zheng.
- cpufreq-dt driver updates from Thomas Petazzoni.
- powernv cpuidle driver update from Preeti U Murthy.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJUSjZFAAoJEILEb/54YlRxyfIP/irc/f7DDb0mElF755ANtSXp
CTVIQSn6uZ2P//ElQO0+nckZSo39jrBkHVu11vDxmVt2PJE2VBgNjHJLyf1boaPI
9aR5kzVmL6jzJ9wA3gYqr91uCVegY1KDFx2KrAlrNomrlc2xtTGf6F17I4tI9qHL
pgc8jhJZ1swn4wL0qnqffLsmx3Hoq3uIO5PNAXD+qUSgm5+8zZwLLlvnrM8upOO4
cHTvxh+ZwXrak4RO4NciYZPKJQAD47MTcJCDR/bg7MKxeiJPrzLrR+WrbCYr5md1
iSiVThZDZnnYTiDLPiemcXoe3jpG2bigXncxJVRDJ7MBOO7ZX7mppwdNnMaNM5kN
92kvLOy269NSS2SFJ0N/B6Xr1jQ0HEdwj7erl4xJIkobKRuvN9fYyVWkoL9i3sj4
OQ7fqhXoEON9CW0KwC5FRAswIungB//o5OjN7VlNKTBKfPdWAjgVQOyeeZ+gSoQo
9tbR/QEEEcHn8fiQpBM9cQw2NL0Rx1ZzHXs7dB0U6ynfG5Drge4OTTwl/Gm4mavB
8Tv3ji26VvQdFr+It2SsijjjjjzVIsdK5iUpSHYo876u4l20CEH3gSpVA/jNhgH6
HaAN5DYIot4Qq5ifjDydRT6WGIyxsVMk3SqehjF47TDaX4l1FbSYWGVyKxfjnQs3
2rWJ3yuDjH28Cfmi0MO0
=4Q8f
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.18-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"This is material that didn't make it to my 3.18-rc1 pull request for
various reasons, mostly related to timing and travel (LinuxCon EU /
LPC) plus a couple of fixes for recent bugs.
The only really new thing here is the PM QoS class for memory
bandwidth, but it is simple enough and users of it will be added in
the next cycle. One major change in behavior is that platform devices
enumerated by ACPI will use 32-bit DMA mask by default. Also included
is an ACPICA update to a new upstream release, but that's mostly
cleanups, changes in tools and similar. The rest is fixes and
cleanups mostly.
Specifics:
- Fix for a recent PCI power management change that overlooked the
fact that some IRQ chips might not be able to configure PCIe PME
for system wakeup from Lucas Stach.
- Fix for a bug introduced in 3.17 where acpi_device_wakeup() is
called with a wrong ordering of arguments from Zhang Rui.
- A bunch of intel_pstate driver fixes (all -stable candidates) from
Dirk Brandewie, Gabriele Mazzotta and Pali Rohár.
- Fixes for a rather long-standing problem with the OOM killer and
the freezer that frozen processes killed by the OOM do not actually
release any memory until they are thawed, so OOM-killing them is
rather pointless, with a couple of cleanups on top (Michal Hocko,
Cong Wang, Rafael J Wysocki).
- ACPICA update to upstream release 20140926, inlcuding mostly
cleanups reducing differences between the upstream ACPICA and the
kernel code, tools changes (acpidump, acpiexec) and support for the
_DDN object (Bob Moore, Lv Zheng).
- New PM QoS class for memory bandwidth from Tomeu Vizoso.
- Default 32-bit DMA mask for platform devices enumerated by ACPI
(this change is mostly needed for some drivers development in
progress targeted at 3.19) from Heikki Krogerus.
- ACPI EC driver cleanups, mostly related to debugging, from Lv
Zheng.
- cpufreq-dt driver updates from Thomas Petazzoni.
- powernv cpuidle driver update from Preeti U Murthy"
* tag 'pm+acpi-3.18-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (34 commits)
intel_pstate: Correct BYT VID values.
intel_pstate: Fix BYT frequency reporting
intel_pstate: Don't lose sysfs settings during cpu offline
cpufreq: intel_pstate: Reflect current no_turbo state correctly
cpufreq: expose scaling_cur_freq sysfs file for set_policy() drivers
cpufreq: intel_pstate: Fix setting max_perf_pct in performance policy
PCI / PM: handle failure to enable wakeup on PCIe PME
ACPI: invoke acpi_device_wakeup() with correct parameters
PM / freezer: Clean up code after recent fixes
PM: convert do_each_thread to for_each_process_thread
OOM, PM: OOM killed task shouldn't escape PM suspend
freezer: remove obsolete comments in __thaw_task()
freezer: Do not freeze tasks killed by OOM killer
ACPI / platform: provide default DMA mask
cpuidle: powernv: Populate cpuidle state details by querying the device-tree
cpufreq: cpufreq-dt: adjust message related to regulators
cpufreq: cpufreq-dt: extend with platform_data
cpufreq: allow driver-specific data
ACPI / EC: Cleanup coding style.
ACPI / EC: Refine event/query debugging messages.
...
Pull thermal management updates from Zhang Rui:
"Sorry that I missed the merge window as there is a bug found in the
last minute, and I have to fix it and wait for the code to be tested
in linux-next tree for a few days. Now the buggy patch has been
dropped entirely from my next branch. Thus I hope those changes can
still be merged in 3.18-rc2 as most of them are platform thermal
driver changes.
Specifics:
- introduce ACPI INT340X thermal drivers.
Newer laptops and tablets may have thermal sensors and other
devices with thermal control capabilities that are exposed for the
OS to use via the ACPI INT340x device objects. Several drivers are
introduced to expose the temperature information and cooling
ability from these objects to user-space via the normal thermal
framework.
From: Lu Aaron, Lan Tianyu, Jacob Pan and Zhang Rui.
- introduce a new thermal governor, which just uses a hysteresis to
switch abruptly on/off a cooling device. This governor can be used
to control certain fan devices that can not be throttled but just
switched on or off. From: Peter Feuerer.
- introduce support for some new thermal interrupt functions on
i.MX6SX, in IMX thermal driver. From: Anson, Huang.
- introduce tracing support on thermal framework. From: Punit
Agrawal.
- small fixes in OF thermal and thermal step_wise governor"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (25 commits)
Thermal: int340x thermal: select ACPI fan driver
Thermal: int3400_thermal: use acpi_thermal_rel parsing APIs
Thermal: int340x_thermal: expose acpi thermal relationship tables
Thermal: introduce int3403 thermal driver
Thermal: introduce INT3402 thermal driver
Thermal: move the KELVIN_TO_MILLICELSIUS macro to thermal.h
ACPI / Fan: support INT3404 thermal device
ACPI / Fan: add ACPI 4.0 style fan support
ACPI / fan: convert to platform driver
ACPI / fan: use acpi_device_xxx_power instead of acpi_bus equivelant
ACPI / fan: remove no need check for device pointer
ACPI / fan: remove unused macro
Thermal: int3400 thermal: register to thermal framework
Thermal: int3400 thermal: add capability to detect supporting UUIDs
Thermal: introduce int3400 thermal driver
ACPI: add ACPI_TYPE_LOCAL_REFERENCE support to acpi_extract_package()
ACPI: make acpi_create_platform_device() an external API
thermal: step_wise: fix: Prevent from binary overflow when trend is dropping
ACPI: introduce ACPI int340x thermal scan handler
thermal: Added Bang-bang thermal governor
...
This patch is partial linuxized result of the following ACPICA commit:
ACPICA commit: a73b66c6aa1846d055bb6390d9c9b9902f7d804d
Subject: Add "has handler" flag to event/gpe status interfaces.
This change adds a new flag, ACPI_EVENT_FLAGS_HAS_HANDLER to the
acpi_get_event_status and acpi_get_gpe_status external interfaces. It
is set if the event/gpe currently has a handler associated with it.
This patch contains the code to rename ACPI_EVENT_FLAG_HANDLE to
ACPI_EVENT_FLAG_HAS_HANDLER, and the corresponding updates of its usages.
Link: https://github.com/acpica/acpica/commit/a73b66c6
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is a typo, it should be negative -errno instead.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 46394fd01 (ACPI / hotplug: Move container-specific code out of
the core) removed the generation of "online" uevents for containers,
because "add" uevents are now generated for them automatically when
container system devices are registered. However, there are user
space tools that need to be notified when the container and all of
its children have been enumerated, which doesn't happen any more.
For this reason, add a mechanism allowing "online" uevents to be
generated for ACPI containers after enumerating the container along
with all of its children.
Fixes: 46394fd01 (ACPI / hotplug: Move container-specific code out of the core)
Reported-and-tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Newer laptops and tablets that use ACPI may have thermal sensors and
other devices with thermal control capabilities outside the core CPU/SOC,
for thermal safety reasons.
They are exposed for the OS to use via
1) INT3400 ACPI device object as the master.
2) INT3401 ~ INT340B ACPI device objects as the slaves.
This patch introduces a scan handler to enumerate the INT3400
ACPI device object to platform bus, and prevent its slaves
from being enumerated before the controller driver being probed.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
The _SUN device indentification object is not guaranteed to return
the same value every time it is executed, so we should not cache its
return value, but rather execute it every time as needed. If it is
cached, an incorrect stale value may be used in some situations.
This issue was exposed by commit 202317a573 (ACPI / scan: Add
acpi_device objects for all device nodes in the namespace). Fix it
by avoiding to cache the return value of _SUN.
Fixes: 202317a573 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, notify callbacks for fixed button events are run from
interrupt context. That is not necessary and after commit 0bf6368ee8
(ACPI / button: Add ACPI Button event via netlink routine) it causes
netlink routines to be called from interrupt context which is not
correct.
Also, that is different from non-fixed device events (including
non-fixed button events) whose notify callbacks are all executed from
process context.
For the above reasons, make fixed button device notify callbacks run
in process context which will avoid the deadlock when using netlink
to report button events to user space.
Fixes: 0bf6368ee8 (ACPI / button: Add ACPI Button event via netlink routine)
Link: https://lkml.org/lkml/2014/8/21/606
Reported-by: Benjamin Block <bebl@mageta.org>
Reported-by: Knut Petersen <Knut_Petersen@t-online.de>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
[rjw: Function names, subject and changelog.]
Cc: 3.15+ <stable@vger.kernel.org> # 3.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We generally don't allow ACPI drivers to bind to ACPI device objects
that companion "physical" device objects are created for to avoid
situations in which two different drivers may attempt to handle one
device at the same time. Recent ACPI device enumeration rework
extended that approach to ACPI PNP devices by starting to use a scan
handler for enumerating them. However, we previously allowed ACPI
drivers to bind to ACPI device objects with existing PNP device
companions and changing that led to functional regressions on some
systems.
For this reason, add a special check for PNP devices in
acpi_device_probe() so that ACPI drivers can bind to ACPI device
objects having existing PNP device companions as before.
Fixes: eec15edbb0 (ACPI / PNP: use device ID list for PNPACPI device enumeration)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=81511
Link: https://bugzilla.kernel.org/show_bug.cgi?id=81971
Reported-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Reported-by: Dirk Griesbach <spamthis@freenet.de>
Cc: 3.16+ <stable@vger.kernel.org> # 3.16+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI device enumeration code in Linux assumes that buttons always
are wakeup devices, so it calls acpi_setup_gpe_for_wake() for them
which leads to undesirable side effects. Namely, that function sets
up implicit device wake notification mechanism for a given GPE if
there is no handler method in the ACPI namespace, which from the
ACPICA's perspective means that there always is a way to handle
that GPE if enabled. However, we don't handle wake notify events
for buttons, so if there are no handler methods for their GPEs in
the namespace, enabling a button GPE at run time leads to a GPE
storm in some cases (the GPE triggers, ACPICA carries out the
implicit wake notification for it which isn't handled, so the
GPE triggers again and so on).
To prevent that from happening use acpi_mark_gpe_for_wake()
instead of acpi_setup_gpe_for_wake() for buttons which will cause
ACPICA to only enable button GPEs if there are handler methods for
the in the namespace.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since all of the acpi_set_hp_context() callers pass at least one NULL
function pointer and one caller passes NULL function pointers only
to it, drop function pointer arguments from acpi_set_hp_context()
and make the callers initialize the function pointers in struct
acpi_hotplug_context by themselves before passing it to
acpi_set_hp_context().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
* acpi-enumeration:
ACPI / scan: use platform bus type by default for _HID enumeration
ACPI / scan: always register ACPI LPSS scan handler
ACPI / scan: always register memory hotplug scan handler
ACPI / scan: always register container scan handler
ACPI / scan: Change the meaning of missing .attach() in scan handlers
ACPI / scan: introduce platform_id device PNP type flag
ACPI / scan: drop unsupported serial IDs from PNP ACPI scan handler ID list
ACPI / scan: drop IDs that do not comply with the ACPI PNP ID rule
ACPI / PNP: use device ID list for PNPACPI device enumeration
ACPI / scan: .match() callback for ACPI scan handlers
* acpi-pm:
ACPI / PM: Export rest of the subsys PM callbacks
ACPI / PM: Avoid resuming devices in ACPI PM domain during system suspend
ACPI / PM: Hold ACPI scan lock over the "freeze" sleep state
ACPI / PM: Export acpi_target_system_state() to modules
Because of the growing demand for enumerating ACPI devices to
platform bus, change the code to enumerate ACPI device objects to
platform bus by default. Namely, create platform devices for the
ACPI device objects that
1. Have pnp.type.platform_id set (device objects with _HID currently).
2. Do not have a scan handler attached.
3. Are not SPI/I2C slave devices (that should be enumerated to the
appropriate buses bus by their parent).
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Subject and changelog, rebase and code cleanup]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Currently, some scan handlers can be compiled out entirely, which
leaves the device objects they normally attach to without a scan
handler. This isn't a problem as long as we don't have any default
enumeration mechanism that applies to all devices without a scan
handler. However, if such a default enumeration is added, it still
should not be applied to devices that are normally attached to by
scan handlers, because that may result in creating "physical" device
objects of a wrong type for them.
Since we are going to create platform device objects for all ACPI
device objects with pnp.type.platform_id set by default, clear
pnp.type.platform_id where there is a matching scan handler without
an .attach() callback and otherwise simply treat that scan handler
as though the .attach() callback was present but always returned 0.
This will allow us to compile out scan handler callbacks and leave
the device ID lists used by them so as to prevent creating platform
device objects for the matching ACPI devices.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Only certain types of ACPI device objects can be enumerated as
platform devices, so in order to distinguish them from the others
introduce a new ACPI device PNP type flag, platform_id, and set it
for devices with a valid _HID to start with.
This change is based on a Zhang Rui's prototype.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
ACPI can be used to enumerate PNP devices, but the code does not
handle this in the right way currently. Namely, if an ACPI device
object
1. Has a _CRS method,
2. Has an identification of
"three capital characters followed by four hex digits",
3. Is not in the excluded IDs list,
it will be enumerated to PNP bus (that is, a PNP device object will
be create for it). This means that, actually, the PNP bus type is
used as the default bus type for enumerating _HID devices in ACPI.
However, more and more _HID devices need to be enumerated to the
platform bus instead (that is, platform device objects need to be
created for them). As a result, the device ID list in acpi_platform.c
is used to enforce creating platform device objects rather than PNP
device objects for matching devices. That list has been continuously
growing recently, unfortunately, and it is pretty much guaranteed to
grow even more in the future.
To address that problem it is better to enumerate _HID devices
as platform devices by default. To this end, change the way of
enumerating PNP devices by adding a PNP ACPI scan handler that
will use a device ID list to create PNP devices for the ACPI
device objects whose device IDs are present in that list.
The initial device ID list in the PNP ACPI scan handler contains
all of the pnp_device_id strings from all the existing PNP drivers,
so this change should be transparent to the PNP core and all of the
PNP drivers. Still, in the future it should be possible to reduce
its size by converting PNP drivers that need not be PNP for any
technical reasons into platform drivers.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Rewrote the changelog, modified the PNP ACPI scan handler code]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Introduce a .match() callback for ACPI scan handlers to allow them to
use more elaborate matching algorithms if necessary. That is needed
for the upcoming PNP scan handler in particular.
This change is based on a Zhang Rui's prototype.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Rework the ACPI PM domain's PM callbacks to avoid resuming devices
during system suspend (in order to modify their wakeup settings etc.)
if that isn't necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fixed hardware does not exist on HW-reduced ACPI platforms since the
programming interface for them is not implemented on them, so no need
to scan that hardware on them.
This patch avoids creating the fixed power button ACPI device and
eliminates a probe error message from ACPI button driver on ASUS T100.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-ost:
ACPI: Drop acpi_evaluate_hotplug_ost() and ACPI_HOTPLUG_OST
ACPI: use device name LNXSYBUS.xx for ACPI \_SB and \_TZ objects
ACPI / processor: use acpi_evaluate_ost() to replace open-coded version
ACPI / PAD / xen: use acpi_evaluate_ost() to replace open-coded version
ACPI / PAD: use acpi_evaluate_ost() to replace open-coded version
ACPI: rename acpi_evaluate_hotplug_ost() to acpi_evaluate_ost()
Since the only function executed by acpi_hotplug_execute() is
acpi_device_hotplug() and it only is called by the ACPI core,
simplify its definition so that it only takes two arguments, the
ACPI device object pointer and event code, rename it to
acpi_hotplug_schedule() and move its header from acpi_bus.h to
the ACPI core's internal header file internal.h. Modify the
definition of acpi_device_hotplug() so that its first argument is
an ACPI device object pointer and modify the definition of
struct acpi_hp_work accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Replace acpi_evaluate_hotplug_ost() with acpi_evaluate_ost()
everywhere and drop the ACPI_HOTPLUG_OST symbol so that hotplug
_OST is supported unconditionally.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Modify the SATA subsystem to add hotplug contexts to ACPI companions
of SATA devices and ports instead of registering special ACPI dock
operations using register_hotplug_dock_device().
That change will allow the entire code handling those special ACPI
dock operations to be dropped in the next commit.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Tejun Heo <tj@kernel.org>
In order to avoid the need to register special ACPI dock
operations for SATA devices add a .uevent() callback pointer to
struct acpi_hotplug_context and make dock_hotplug_event() use that
callback if available. Also rename the existing .event() callback
in struct acpi_hotplug_context to .notify() to avoid possible
confusion in the future.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use device name "LNXSYBUS:xx" instead of "device.xx" for ACPI objects
\_SB and \_TZ.
BTW, the original check of "handle == ACPI_ROOT_OBJECT" in statment
"else if (list_empty(&pnp->ids) && handle == ACPI_ROOT_OBJECT)"
is always false because of the code at the begin of that block.
if (handle == ACPI_ROOT_OBJECT) {
acpi_add_id(pnp, ACPI_SYSTEM_HID);
break;
}
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since we already know what the device's PNP IDs are when
acpi_device_is_battery() is called, it is not necessary to run
acpi_get_object_info() for the device in that function. Instead, if
acpi_device_is_battery() is passed a pointer to a struct acpi_device
object, it can use the list of PNP IDs from that object, so make that
happen and modify the function's header accordingly
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI dock station code carries out an extra namespace scan
before the main one in order to find and register all of the dock
device objects. Then, it registers a notify handler for each of
them for handling dock events.
However, dock device objects need not be scanned for upfront. They
very well can be enumerated and registered during the first phase
of the main namespace scan, before attaching scan handlers and ACPI
drivers to ACPI device objects. Then, the dependent devices can be
added to the in the second phase. That makes it possible to drop
the extra namespace scan, so do it.
Moreover, it is not necessary to register notify handlers for all
of the dock stations' namespace nodes, becuase notifications may
be dispatched from the global notify handler for them. Do that and
drop two functions used for dock notify handling, acpi_dock_deferred_cb()
and dock_notify_handler(), that aren't necessary any more.
Finally, some dock station objects have _HID objects matching the
ACPI container scan handler which causes it to claim those objects
and try to handle their hotplug, but that is not a good idea,
because those objects have their own special hotplug handling anyway.
For this reason, the hotplug_notify flag should not be set for ACPI
device objects representing dock stations and the container scan
handler should be made ignore those objects, so make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In some cases it may be necessary to perform certain setup/cleanup
operations on a device object representing a physical device after
it has been associated with an ACPI companion by acpi_bind_one() or
before disassociating it from that companion by acpi_unbind_one(),
respectively. If there is a struct acpi_bus_type object for the
given device's bus type, the .setup()/.cleanup() callbacks from there
are executed for these purposes. However, an analogous mechanism will
be necessary for devices whose bus types don't have corresponding
struct acpi_bus_type objects and that have specific ACPI scan handlers.
For those devices, add new .bind() and .unbind() callbacks to struct
acpi_scan_handler that will be executed by acpi_platform_notify()
right after the given device has been associated with an ACPI
comapnion and by acpi_platform_notify_remove() right before calling
acpi_unbind_one() for that device, respectively.
To make that work for scan handlers registering new devices in their
.attach() callbacks, modify acpi_scan_attach_handler() to set the
ACPI device object's handler field before calling .attach() from the
scan handler at hand.
This changeset includes a fix from Mika Westerberg.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since acpi_bus_notify() is executed on all notifications for all
devices anyway, make it execute acpi_device_hotplug() for all
hotplug events instead of installing notify handlers pointing to
the same function for all hotplug devices.
This change reduces both the size and complexity of ACPI-based device
hotplug code. Moreover, since acpi_device_hotplug() only does
significant things for devices that have either an ACPI scan handler,
or a hotplug context with .eject() defined, and those devices
had notify handlers pointing to acpi_hotplug_notify_cb() installed
before anyway, this modification shouldn't change functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since acpi_hotplug_notify_cb() does not use its data argument any
more, the second argument of acpi_install_hotplug_notify_handler()
can be dropped, so do that and update its callers accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To avoid the need to install a hotplug notify handler for each ACPI
namespace node representing a device and having a matching scan
handler, move the check whether or not the ejection of the given
device is enabled through its scan handler from acpi_hotplug_notify_cb()
to acpi_generic_hotplug_event(). Also, move the execution of
ACPI_OST_SC_EJECT_IN_PROGRESS _OST to acpi_generic_hotplug_event(),
because in acpi_hotplug_notify_cb() or in acpi_eject_store() we really
don't know whether or not the eject is going to be in progress (for
example, acpi_hotplug_execute() may still fail without queuing up the
work item).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The ACPI-based PCI hotplug (ACPIPHP) code currently attaches its
hotplug context objects directly to ACPI namespace nodes representing
hotplug devices. However, after recent changes causing struct
acpi_device to be created for every namespace node representing a
device (regardless of its status), that is not necessary any more.
Moreover, it's vulnerable to the theoretical issue that the ACPI
handle passed in the context between handle_hotplug_event() and
hotplug_event_work() may become invalid in the meantime (as a
result of a concurrent table unload).
In principle, this issue might be addressed by adding a non-empty
release handler for ACPIPHP hotplug context objects analogous to
acpi_scan_drop_device(), but that would duplicate the code in that
function and in acpi_device_del_work_fn(). For this reason, it's
better to modify ACPIPHP to attach its device hotplug contexts to
struct device objects representing hotplug devices and make it
use acpi_hotplug_notify_cb() as its notify handler. At the same
time, acpi_device_hotplug() can be modified to dispatch the new
.hp.event() callback pointing to acpiphp_hotplug_event() from ACPI
device objects associated with PCI devices or use the generic
ACPI device hotplug code for device objects with matching scan
handlers.
This allows the existing code duplication between ACPIPHP and the
ACPI core to be reduced too and makes further ACPI-based device
hotplug consolidation possible.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Subsequent changes will require the ACPI core to acquire the lock
protecting the ACPIPHP hotplug contexts, so move the definition of
the lock to the core and change its name to be more generic.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
There is a slight possibility for the ACPI device object pointed to
by adev in acpi_hotplug_notify_cb() to become invalid between the
acpi_bus_get_device() that it comes from and the subsequent dereference
of that pointer under get_device(). Namely, if acpi_scan_drop_device()
runs in parallel with acpi_hotplug_notify_cb(), acpi_device_del_work_fn()
queued up by it may delete the device object in question right after
a successful execution of acpi_bus_get_device() in acpi_bus_notify().
An analogous problem is present in acpi_bus_notify() where the device
pointer coming from acpi_bus_get_device() may become invalid before
it subsequent dereference in the "if" block.
To prevent that from happening, introduce a new function,
acpi_bus_get_acpi_device(), working analogously to acpi_bus_get_device()
except that it will grab a reference to the ACPI device object returned
by it and it will do that under the ACPICA's namespace mutex. Then,
make both acpi_hotplug_notify_cb() and acpi_bus_notify() use
acpi_bus_get_acpi_device() instead of acpi_bus_get_device() so as to
ensure that the pointers used by them will not become stale at one
point.
In addition to that, introduce acpi_bus_put_acpi_device() as a wrapper
around put_device() to be used along with acpi_bus_get_acpi_device()
and make the (new) users of the latter use acpi_bus_put_acpi_device()
too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
When an eject request is sent to an ejected ACPI device, the following
panic occurs:
ACPI: \_SB_.SCK3.CPU3: ACPI_NOTIFY_EJECT_REQUEST event
BUG: unable to handle kernel NULL pointer dereference at 0000000000000070
IP: [<ffffffff813a7cfe>] acpi_device_hotplug+0x10b/0x33b
:
Call Trace:
[<ffffffff813a24da>] acpi_hotplug_work_fn+0x1c/0x27
[<ffffffff8109cbe5>] process_one_work+0x175/0x430
[<ffffffff8109d7db>] worker_thread+0x11b/0x3a0
This is becase device->handler is NULL in acpi_device_hotplug().
This case was used to fail in acpi_hotplug_notify_cb() as the target
had no acpi_deivce. However, acpi_device now exists after ejection.
Added a check to verify if acpi_device->handler is valid for an
eject request in acpi_hotplug_notify_cb(). Note that handler passed
from an argument is still valid while acpi_device->handler is NULL.
Fixes: 202317a573 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-processor:
ACPI / scan: reduce log level of "ACPI: \_PR_.CPU4: failed to get CPU APIC ID"
ACPI / processor: Return specific error value when mapping lapic id
* acpi-hotplug:
ACPI / scan: Clear match_driver flag in acpi_bus_trim()
* acpi-init:
ACPI / init: Flag use of ACPI and ACPI idioms for power supplies to regulator API
* acpi-pm:
ACPI / PM: Use ACPI_COMPANION() to get ACPI companions of devices
* acpica:
ACPICA: Remove bool usage from ACPICA.
Drivers should not bind to struct acpi_device objects that
acpi_bus_trim() has been called for, so make that function
clear flags.match_driver for those objects.
If that is not done, an ACPI driver may theoretically try to operate
a device that is not physically present.
Fixes: 202317a573 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
* acpi-modules:
platform: introduce OF style 'modalias' support for platform bus
ACPI: fix module autoloading for ACPI enumerated devices
ACPI: add module autoloading support for ACPI enumerated devices
ACPI: fix create_modalias() return value handling
An ACPI enumerated device may have its compatible id strings.
To support the compatible ACPI ids (acpi_device->pnp.ids),
we introduced acpi_driver_match_device() to match
the driver->acpi_match_table and acpi_device->pnp.ids.
For those drivers, MODULE_DEVICE_TABLE(acpi, xxx) is used to
exports the driver module alias in the format of
"acpi:device_compatible_ids".
But in the mean time, the current code does not export the
ACPI compatible strings as part of the module_alias for the
ACPI enumerated devices, which will break the module autoloading.
Take the following piece of code for example,
static const struct acpi_device_id xxx_acpi_match[] = {
{ "INTABCD", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, xxx_acpi_match);
If this piece of code is used in a platform driver for
an ACPI enumerated platform device, the platform driver module_alias
is "acpi:INTABCD", but the uevent attribute of its platform device node
is "platform:INTABCD:00" (PREFIX:platform_device->name).
If this piece of code is used in an i2c driver for an ACPI enumerated
i2c device, the i2c driver module_alias is "acpi:INTABCD", but
the uevent of its i2c device node is "i2c:INTABCD:00" (PREFIX:i2c_client->name).
If this piece of code is used in an spi driver for an ACPI enumerated
spi device, the spi driver module_alias is "acpi:INTABCD", but
the uevent of its spi device node is "spi:INTABCD" (PREFIX:spi_device->modalias).
The reason why the module autoloading is not broken for now is that
the uevent file of the ACPI device node is "acpi:INTABCD".
Thus it is the ACPI device node creation that loads the platform/i2c/spi driver.
So this is a problem that will affect us the day when the ACPI bus
is removed from device model.
This patch introduces two new APIs,
one for exporting ACPI ids in uevent MODALIAS field,
and another for exporting ACPI ids in device' modalias sysfs attribute.
For any bus that supports ACPI enumerated devices, it needs to invoke
these two functions for their uevent and modalias attribute.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, create_modalias() handles the output truncated case in
an improper way (return -EINVAL).
Plus, acpi_device_uevent() and acpi_device_modalias_show() do
improper check for the create_modalias() return value as well.
This patch fixes create_modalias() to
return -EINVAL if there is an output error,
return -ENOMEM if the output is truncated,
and also fixes both acpi_device_uevent() and acpi_device_modalias_show()
to do proper return value check.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds a "status" attribute for an ACPI device. This status
attribute shows the value of the _STA object. The _STA object returns
current status of an ACPI device: enabled, disabled, functioning,
present.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI container devices require special hotplug handling, at least
on some systems, since generally user space needs to carry out
system-specific cleanup before it makes sense to offline devices in
the container. However, the current ACPI hotplug code for containers
first attempts to offline devices in the container and only then it
notifies user space of the container offline.
Moreover, after commit 202317a573 (ACPI / scan: Add acpi_device
objects for all device nodes in the namespace), ACPI device objects
representing containers are present as long as the ACPI namespace
nodes corresponding to them are present, which may be forever, even
if the container devices are physically detached from the system (the
return values of the corresponding _STA methods change in those
cases, but generally the namespace nodes themselves are still there).
Thus it is useful to introduce entities representing containers that
will go away during container hot-unplug.
The goal of this change is to address both the above issues.
The idea is to create a "companion" container system device for each
of the ACPI container device objects during the initial namespace
scan or on a hotplug event making the container present. That system
device will be unregistered on container removal. A new bus type
for container devices is added for this purpose, because device
offline and online operations need to be defined for them. The
online operation is a trivial function that is always successful
and the offline uses a callback pointed to by the container device's
offline member.
For ACPI containers that callback simply walks the list of ACPI
device objects right below the container object (its children) and
checks if all of their physical companion devices are offline. If
that's not the case, it returns -EBUSY and the container system
devivce cannot be put offline. Consequently, to put the container
system device offline, it is necessary to put all of the physical
devices depending on its ACPI companion object offline beforehand.
Container system devices created for ACPI container objects are
initially online. They are created by the container ACPI scan
handler whose hotplug.demand_offline flag is set. That causes
acpi_scan_hot_remove() to check if the companion container system
device is offline before attempting to remove an ACPI container or
any devices below it. If the check fails, a KOBJ_CHANGE uevent is
emitted for the container system device in question and user space
is expected to offline all devices below the container and the
container itself in response to it. Then, user space can finalize
the removal of the container with the help of its ACPI device
object's eject attribute in sysfs.
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a new ACPI hotplug profile flag, demand_offline, such that if
set for the given ACPI device object's scan handler, it will cause
acpi_scan_hot_remove() to check if that device object's physical
companions are offline upfront and fail the hot removal if that
is not the case.
That flag will be useful to overcome a problem with containers on
some system where they can only be hot-removed after some cleanup
operations carried out by user space, which needs to be notified
of the container hot-removal before the kernel attempts to offline
devices in the container. In those cases the current implementation
of acpi_scan_hot_remove() is not sufficient, because it first tries
to offline the devices in the container and only if that is
suffcessful it tries to offline the container itself. As a result,
the container hot-removal notification is not delivered to user space
at the right time.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and
<acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h>
inclusions and remove some inclusions of those files that aren't
necessary.
First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>
should not be included directly from any files that are built for
CONFIG_ACPI unset, because that generally leads to build warnings about
undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set,
<linux/acpi.h> includes those files and for CONFIG_ACPI unset it
provides stub ACPI symbols to be used in that case.
Second, there are ordering dependencies between those files that always
have to be met. Namely, it is required that <acpi/acpi_bus.h> be included
prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the
latter depends on are always there. And <acpi/acpi.h> which provides
basic ACPICA type declarations should always be included prior to any other
ACPI headers in CONFIG_ACPI builds. That also is taken care of including
<linux/acpi.h> as appropriate.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff)
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rework acpi_bus_trim() and acpi_bus_device_attach(), which is
renamed as acpi_bus_attach(), to walk the list of each device
object's children directly and call themselves recursively for
each child instead of using acpi_walk_namespace(). This
simplifies the code quite a bit and avoids the overhead of
callbacks and the ACPICA's internal processing which are not
really necessary for these two routines.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Introduce a static inline function for setting the status field
of struct acpi_device on the basis of a supplied u32 number,
acpi_set_device_status(), and use it instead of the horrible
horrible STRUCT_TO_INT() macro wherever applicable. Having done
that, drop STRUCT_TO_INT() (and pretend that it has never existed).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The generic ACPI hotplug code used for several types of device
doesn't handle surprise removals, mostly because those devices
currently cannot be removed by surprise in the majority of systems.
However, surprise removals should be handled by that code as well
as surprise additions of devices, so make it do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Move container-specific uevents from the core hotplug code to the
container scan handler's .attach() and .detach() callbacks.
This way the core will not have to special-case containers and
the uevents will be guaranteed to happen every time a container
is either scanned or trimmed as appropriate.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Rework the common ACPI device hotplug code so that it is suitable
for PCI host bridge hotplug and switch the PCI host bridge scan
handler to using the common hotplug code.
This allows quite a few lines of code that are not necessary any more
to be dropped from the PCI host bridge scan handler and removes
arbitrary differences in behavior between PCI host bridge hotplug
and ACPI-based hotplug of other components, like CPUs and memory.
Also acpi_device_hotplug() can be static now.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Modify the common ACPI device hotplug code to always queue up the
same function, acpi_device_hotplug(), using acpi_hotplug_execute()
and make the PCI host bridge hotplug code use that function too for
device hot removal.
This allows some code duplication to be reduced and a race condition
where the relevant ACPI handle may become invalid between the
notification handler and the function queued up by it via
acpi_hotplug_execute() to be avoided.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
If the scan handler for the given device has hotplug.enabled
unset, it doesn't really make sense to fail bus check and device
check notifications.
First, bus check may not have anything to do with the device it is
signaled for, but it may concern another device on the bus below
this one. For this reason, bus check notifications should not be
failed if hotplug is disabled for the target device.
Second, device check notifications are signaled only after a device
has already appeared (or disappeared), so failing it can only prevent
scan handlers and drivers from attaching to that (already existing)
device, which is not very useful.
Consequently, if device hotplug is disabled through the device's
scan handler, fail eject request notifications only.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Modify the ACPI namespace scanning code to register a struct
acpi_device object for every namespace node representing a device,
processor and so on, even if the device represented by that namespace
node is reported to be not present and not functional by _STA.
There are multiple reasons to do that. First of all, it avoids
quite a lot of overhead when struct acpi_device objects are
deleted every time acpi_bus_trim() is run and then added again
by a subsequent acpi_bus_scan() for the same scope, although the
namespace objects they correspond to stay in memory all the time
(which always is the case on a vast majority of systems).
Second, it will allow user space to see that there are namespace
nodes representing devices that are not present at the moment and may
be added to the system. It will also allow user space to evaluate
_SUN for those nodes to check what physical slots the "missing"
devices may be put into and it will make sense to add a sysfs
attribute for _STA evaluation after this change (that will be
useful for thermal management on some systems).
Next, it will help to consolidate the ACPI hotplug handling among
subsystems by making it possible to store hotplug-related information
in struct acpi_device objects in a standard common way.
Finally, it will help to avoid a race condition related to the
deletion of ACPI namespace nodes. Namely, namespace nodes may be
deleted as a result of a table unload triggered by _EJ0 or _DCK.
If a hotplug notification for one of those nodes is triggered
right before the deletion and it executes a hotplug callback
via acpi_hotplug_execute(), the ACPI handle passed to that
callback may be stale when the callback actually runs. One way
to work around that is to always pass struct acpi_device pointers
to hotplug callbacks after doing a get_device() on the objects in
question which eliminates the use-after-free possibility (the ACPI
handles in those objects are invalidated by acpi_scan_drop_device(),
so they will trigger ACPICA errors on attempts to use them).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
If an ACPI namespace node is removed (usually, as a result of a
table unload), and there is a data object attached to that node,
acpi_ns_delete_node() executes the removal handler submitted to
acpi_attach_data() for that object. That handler is currently empty
for struct acpi_device objects, so it is necessary to detach those
objects from the corresponding ACPI namespace nodes in advance every
time a table unload may happen. That is cumbersome and inefficient
and leads to some design constraints that turn out to be quite
inconvenient (in particular, struct acpi_device objects cannot be
registered for namespace nodes representing devices that are not
reported as present or functional by _STA).
For this reason, introduce a non-empty removal handler for ACPI
device objects that will unregister them when their ACPI namespace
nodes go away.
This code modification alone should not change functionality except
for the ordering of the ACPI hotplug workqueue which should not
matter (without subsequent code changes).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The PCI host bridge scan handler installs its own notify handler,
handle_hotplug_event_root(), by itself. Nevertheless, the ACPI
hotplug framework also installs the common notify handler,
acpi_hotplug_notify_cb(), for PCI root bridges. This causes
acpi_hotplug_notify_cb() to call _OST method with unsupported
error as hotplug.enabled is not set.
To address this issue, introduce hotplug.ignore flag, which
indicates that the scan handler installs its own notify handler by
itself. The ACPI hotplug framework does not install the common
notify handler when this flag is set.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[rjw: Changed the name of the new flag]
Cc: 3.9+ <stable@vger.kernel.org> # 3.9+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Before commit 6931007cc9 (ACPI / scan: Start matching drivers
after trying scan handlers) the match_driver flag for all devices
was set in acpi_add_single_object(), but now it is set by
acpi_bus_device_attach() which is not called for the "fixed"
devices added by acpi_bus_scan_fixed(). This means that
flags.match_driver is never set for those devices now, so make
acpi_bus_scan_fixed() set it before calling device_attach().
Fixes: 6931007cc9 (ACPI / scan: Start matching drivers after trying scan handlers)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since the PCI host bridge scan handler does not set hotplug.enabled,
the check of it in acpi_bus_device_eject() effectively prevents the
root bridge hot removal from working after commit a3b1b1ef78
(ACPI / hotplug: Merge device hot-removal routines). However, that
check is not necessary, because the other acpi_bus_device_eject()
users, acpi_hotplug_notify_cb and acpi_eject_store(), do the same
check by themselves before executing that function.
For this reason, remove the scan handler check from
acpi_bus_device_eject() to make PCI hot bridge hot removal work
again.
Fixes: a3b1b1ef78 (ACPI / hotplug: Merge device hot-removal routines)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Since acpi_bus_get_device() returns a plain int and not acpi_status,
ACPI_FAILURE() should not be used for checking its return value. Fix
that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
There are two different interfaces for queuing up work items on the
ACPI hotplug workqueue, alloc_acpi_hp_work() used by PCI and PCI host
bridge hotplug code and acpi_os_hotplug_execute() used by the common
ACPI hotplug code and docking stations. They both are somewhat
cumbersome to use and work slightly differently.
The users of alloc_acpi_hp_work() have to submit a work function that
will extract the necessary data items from a struct acpi_hp_work
object allocated by alloc_acpi_hp_work() and then will free that
object, while it would be more straightforward to simply use a work
function with one more argument and let the interface take care of
the execution details.
The users of acpi_os_hotplug_execute() also have to deal with the
fact that it takes only one argument in addition to the work function
pointer, although acpi_os_execute_deferred() actually takes care of
the allocation and freeing of memory, so it would have been able to
pass more arguments to the work function if it hadn't been
constrained by the connection with acpi_os_execute().
Moreover, while alloc_acpi_hp_work() makes GFP_KERNEL memory
allocations, which is correct, because hotplug work items are
always queued up from process context, acpi_os_hotplug_execute()
uses GFP_ATOMIC, as that is needed by acpi_os_execute(). Also,
acpi_os_execute_deferred() queued up by it waits for the ACPI event
workqueues to flush before executing the work function, whereas
alloc_acpi_hp_work() can't do anything similar. That leads to
somewhat arbitrary differences in behavior between various ACPI
hotplug code paths and has to be straightened up.
For this reason, replace both alloc_acpi_hp_work() and
acpi_os_hotplug_execute() with a single interface,
acpi_hotplug_execute(), combining their behavior and being more
friendly to its users than any of the two.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
According to the ACPI spec (5.0, Section 6.3.5), the "Device
insertion in progress (pending)" (0x80) _OST status code is
reserved for the "Insertion Processing" (0x200) source event
which is "a result of an OSPM action". Specifically, it is not
a notification, so that status code should not be used during
notification processing, which unfortunately is done by
acpi_scan_bus_device_check().
For this reason, drop the ACPI_OST_SC_INSERT_IN_PROGRESS _OST
status evaluation from there (it was a mistake to put it in there
in the first place).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: All applicable <stable@vger.kernel.org>
Since _handle_hotplug_event_root() is run from the ACPI hotplug
workqueue, it doesn't need to queue up a work item to eject a PCI
host bridge on the same workqueue. Instead, it can just carry out
the eject by calling acpi_bus_device_eject() directly, so make that
happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is no real reasn why acpi_bus_device_eject() and
acpi_bus_hot_remove_device() should work differently, so rework
acpi_bus_device_eject() so that it can be called internally by
both acpi_bus_hot_remove_device() and acpi_eject_store_work().
Accordingly, rework acpi_hotplug_notify_cb() to queue up the
execution of acpi_bus_hot_remove_device() through
acpi_os_hotplug_execute() on eject request notifications.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Notice that handle_root_bridge_removal() is the only user of
acpi_bus_hot_remove_device(), so it doesn't have to be exported
any more and can be made internal to the ACPI core.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Simplify handle_root_bridge_removal() and acpi_eject_store() by
getting rid of struct acpi_eject_event and passing device objects
directly to async routines executed via acpi_os_hotplug_execute().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
In theory, an ACPI device object may be the parent of another
device object whose hotplug is disabled by user space through its
scan handler. In that case, the eject operation targeting the
parent should fail as though the parent's own hotplug was disabled,
but currently this is not the case, because acpi_scan_hot_remove()
doesn't check the disable/enable hotplug status of the children
of the top-most object passed to it.
To fix this, modify acpi_bus_offline_companions() to return an
error code if hotplug is disabled for the given device object.
[Also change the name of the function to acpi_bus_offline(),
because it is not only about companions any more, and change
the name of acpi_bus_online_companions() accordingly.] Make
acpi_scan_hot_remove() propagate that error to its callers.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
ACPI scan handlers should always be attached to struct acpi_device
objects before any ACPI drivers, but there is a window during which
a driver may be attached to a struct acpi_device before checking if
there is a matching scan handler. Namely, that will happen if an
ACPI driver module is loaded during acpi_bus_scan() right after
the first namespace walk is complete and before the given device
is processed by the second namespace walk.
To prevent that from happening, set the match_driver flags of
struct acpi_device objects right before running device_attach()
for them in acpi_bus_device_attach().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Two functions defined in device_pm.c, acpi_dev_pm_add_dependent()
and acpi_dev_pm_remove_dependent(), have no callers and may be
dropped, so drop them.
Moreover, they are the only functions adding entries to and removing
entries from the power_dependent list in struct acpi_device, so drop
that list too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit caf5c03f (ACPI: Move acpi_bus_get_device() from bus.c to
scan.c) caused acpi_bus_get_device() to be exported using
EXPORT_SYMBOL_GPL(), but that broke some binary drivers in
existence, so revert that change.
Reported-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Change the ordering of device hotplug locks in scan.c so that
acpi_scan_lock is always acquired after device_hotplug_lock.
This will make it possible to use device_hotplug_lock around some
code paths that acquire acpi_scan_lock safely (most importantly
system suspend and hibernation). Apart from that, acpi_scan_lock
is platform-specific and device_hotplug_lock is general, so the
new ordering appears to be more appropriate from the overall
design viewpoint.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
The current protocol for handling hot remove of containers is very
fragile and causes acpi_eject_store() to acquire acpi_scan_lock
which may deadlock with the removal of the device that it is called
for (the reason is that device sysfs attributes cannot be removed
while their callbacks are being executed and ACPI device objects
are removed under acpi_scan_lock).
The problem is related to the fact that containers are handled by
acpi_bus_device_eject() in a special way, which is to emit an
offline uevent instead of just removing the container. Then, user
space is expected to handle that uevent and use the container's
"eject" attribute to actually remove it. That is fragile, because
user space may fail to complete the ejection (for example, by not
using the container's "eject" attribute at all) leaving the BIOS
kind of in a limbo. Moreover, if the eject event is not signaled
for a container itself, but for its parent device object (or
generally, for an ancestor above it in the ACPI namespace), the
container will be removed straight away without doing that whole
dance.
For this reason, modify acpi_bus_device_eject() to remove containers
synchronously like any other objects (user space will get its uevent
anyway in case it does some other things in response to it) and
remove the eject_pending ACPI device flag that is not used any more.
This way acpi_eject_store() doesn't have a reason to acquire
acpi_scan_lock any more and one possible deadlock scenario goes
away (plus the code is simplified a bit).
Reported-and-tested-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
* acpi-pm:
ACPI / PM: Add state information to error message in acpi_device_set_power()
ACPI / PM: Remove redundant power manageable check from acpi_bus_set_power()
ACPI / PM: Use ACPI_STATE_D3_COLD instead of ACPI_STATE_D3 everywhere
ACPI / PM: Make messages in acpi_device_set_power() print device names
ACPI / PM: Only set power states of devices that are power manageable
* acpi-cleanup: (21 commits)
ACPI / dock: fix error return code in dock_add()
ACPI / dock: Drop unnecessary local variable from dock_add()
ACPI / dock / PCI: Drop ACPI dock notifier chain
ACPI / dock: Do not check CONFIG_ACPI_DOCK_MODULE
ACPI / dock: Do not leak memory on falilures to add a dock station
ACPI: Drop ACPI bus notifier call chain
ACPI / dock: Rework the handling of notifications
ACPI / dock: Simplify dock_init_hotplug() and dock_release_hotplug()
ACPI / dock: Walk list in reverse order during removal of devices
ACPI / dock: Rework and simplify find_dock_devices()
ACPI / dock: Drop the hp_lock mutex from struct dock_station
ACPI: simplify acpiphp driver with new helper functions
ACPI: simplify dock driver with new helper functions
ACPI: Export acpi_(bay)|(dock)_match() from scan.c
ACPI: introduce two helper functions for _EJ0 and _LCK
ACPI: introduce helper function acpi_execute_simple_method()
ACPI: introduce helper function acpi_has_method()
ACPI / dock: simplify dock_create_acpi_device()
ACPI / dock: mark initialization functions with __init
ACPI / dock: drop redundant spin lock in dock station object
...
Move acpi_bus_get_device() from bus.c to scan.c which allows
acpi_bus_data_handler() to become static and clean up the latter.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are several places in the tree where ACPI_STATE_D3 is used
instead of ACPI_STATE_D3_COLD which should be used instead for
clarity. Modify them all to use ACPI_STATE_D3_COLD as appropriate.
[The definition of ACPI_STATE_D3 itself cannot go away at this point
as it is part of ACPICA.]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Functions acpi_dock_match() and acpi_bay_match() in scan.c can be
shared with dock.c to reduce code duplication, so export them as
global functions.
Also add a new function acpi_ata_match() to check whether an ACPI
device object represents an ATA device.
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Introduce two helper functions, acpi_evaluate_ej0() and
acpi_evaluate_lck(), that will execute the _EJ0 and _LCK ACPI
control methods, respectively, and use them to simplify the
ACPI scan code.
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Introduce helper function acpi_has_method() and use it in a number
of places to simplify code.
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
An ACPI_NOTIFY_BUS_CHECK notification means that we should scan the
entire namespace starting from the given handle even if the device
represented by that handle is present (other devices below it may
just have appeared).
For this reason, modify acpi_scan_bus_device_check() to always run
acpi_bus_scan() if the notification being handled is of type
ACPI_NOTIFY_BUS_CHECK.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: 3.10+ <stable@vger.kernel.org>
In acpi_bus_device_attach(), if there is an ACPI device object
for the given handle and that device object has a scan handler
attached to it already, there's nothing more to do for that handle.
Moreover, if acpi_scan_attach_handler() is called then, it may
execute the .attach() callback of the ACPI scan handler already
attached to the device object and that may lead to interesting
breakage.
For this reason, make acpi_bus_device_attach() return success
immediately when the handle's device object has a scan handler
attached to it.
Reported-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: 3.10+ <stable@vger.kernel.org>
The acpi_device_list list is not used, so removed it.
[rjw: Changelog]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-assorted:
ACPI / EC: Add HP Folio 13 to ec_dmi_table in order to skip DSDT scan
ACPI: Add CMOS RTC Operation Region handler support
ACPI: Remove unused flags in acpi_device_flags
ACPI: Remove useless initializers
ACPI / battery: Make sure all spaces are in correct places
ACPI: add _STA evaluation at do_acpi_find_child()
ACPI / EC: access user space with get_user()/put_user()
On HP Folio 13-2000, the BIOS defines a CMOS RTC Operation Region and
the EC's _REG methord accesses that region. Thus an appropriate
address space handler must be registered for that region before the
EC driver is loaded.
Introduce a mechanism for adding CMOS RTC address space handlers.
Register an ACPI scan handler for CMOS RTC devices such that, when
a device of that kind is detected during an ACPI namespace scan, a
common CMOS RTC operation region address space handler will be
installed for it.
References: https://bugzilla.kernel.org/show_bug.cgi?id=54621
Reported-and-tested-by: Stefan Nagy <public@stefan-nagy.at>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Cc: 3.9+ <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 3b63aaa70e (PCI: acpiphp: Do not use ACPI PCI subdriver
mechanism) introduced an ACPI dock support regression, because it
changed the relative initialization order of the ACPI dock subsystem
and the ACPI-based PCI hotplug (acpiphp).
Namely, the ACPI dock subsystem has to be initialized before
acpiphp_enumerate_slots() is first run, which after commit
3b63aaa70e happens during the initial enumeration of the PCI
hierarchy triggered by the initial ACPI namespace scan in
acpi_scan_init(). For this reason, the dock subsystem has to be
initialized before the initial ACPI namespace scan in
acpi_scan_init().
To make that happen, modify the ACPI dock subsystem to be
non-modular and add the invocation of its initialization routine,
acpi_dock_init(), to acpi_scan_init() directly before the initial
namespace scan.
[rjw: Changelog, removal of dock_exit().]
References: https://bugzilla.kernel.org/show_bug.cgi?id=59501
Reported-and-tested-by: Alexander E. Patrakov <patrakov@gmail.com>
Tested-by: Illya Klymov <xanf@xanf.me>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: 3.9+ <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI drivers must not be bound to device objects having scan handlers
attatched to them, so make acpi_device_probe() fail with -EINVAL if the
device object being probed has an ACPI scan handler.
After this change the analogous check introduced into the ACPI video
driver by commit 8c9b7a7 (ACPI / video: Do not bind to device objects
with a scan handler) is not necessary any more and may be dropped, so
drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Tony Luck <tony.luck@gmail.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
There is no particular reason why acpi_bus_driver_init() needs to be
a separate function and its location with respect to its only caller,
acpi_device_probe(), makes the code a bit difficult to follow.
Besides, it doesn't really make sense to check if 'device' is not
NULL in acpi_bus_driver_init(), because we've already dereferenced
dev->driver in acpi_device_probe() at that point and, moreover,
'device' cannot be NULL then, because acpi_device_probe() is called
via really_probe() (which also sets dev->driver for that matter).
For these reasons, drop acpi_bus_driver_init() altogether and move
the remaining code from it directly into acpi_device_probe().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the introduction of ACPI scan handlers, ACPI device objects
with an ACPI scan handler attached to them must not be bound to
by ACPI drivers any more. Unfortunately, however, the ACPI video
driver attempts to do just that if there is a _ROM ACPI control
method defined under a device object with an ACPI scan handler.
Prevent that from happening by making the video driver's "add"
routine check if the device object already has an ACPI scan handler
attached to it and return an error code in that case.
That is not sufficient, though, because acpi_bus_driver_init() would
then clear the device object's driver_data that may be set by its
scan handler, so for the fix to work acpi_bus_driver_init() has to be
modified to leave driver_data as is on errors.
References: https://bugzilla.kernel.org/show_bug.cgi?id=58091
Bisected-and-tested-by: Dmitry S. Demin <dmitryy.demin@gmail.com>
Reported-and-tested-by: Jason Cassell <bluesloth600@gmail.com>
Tracked-down-by: Aaron Lu <aaron.lu@intel.com>
Cc: 3.9+ <stable@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Commit 9f29ab11dd ("ACPI / scan: do not match drivers against objects
having scan handlers") introduced a boot regression on Tony's ia64 HP
rx2600. Tony says:
"It panics with the message:
Kernel panic - not syncing: Unable to find SBA IOMMU: Try a generic or DIG kernel
[...] my problem comes from arch/ia64/hp/common/sba_iommu.c
where the code in sba_init() says:
acpi_bus_register_driver(&acpi_sba_ioc_driver);
if (!ioc_list) {
but because of this change we never managed to call ioc_init()
so ioc_list doesn't get set up, and we die."
Revert it to avoid this breakage and we'll fix the problem it attempted
to address later.
Reported-by: Tony Luck <tony.luck@gmail.com>
Cc: 3.9+ <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the introduction of ACPI scan handlers, an ACPI device object
with an ACPI scan handler attached to it must not be bound to an ACPI
driver any more. Therefore it doesn't make sense to match those
ACPI device objects against a newly registered ACPI driver in
acpi_bus_match(), so make that function return 0 if the device
object passed to it has an ACPI scan handler attached.
This also addresses a regression related to a broken ACPI table in
the BIOS, where it has defined a _ROM method under the PCI root
bridge object. This causes the video module to treat that object
as a display controller device (since only display devices are
supposed to have a _ROM method defined according to the ACPI spec).
As a result, the ACPI video driver binds to the PCI root bridge
object and overwrites the previously assigned driver_data field of
it, causing subsequent calls to acpi_get_pci_dev() to fail.
[rjw: Subject and changelog]
References: https://bugzilla.kernel.org/show_bug.cgi?id=58091
Reported-by: Jason Cassell <bluesloth600@gmail.com>
Reported-and-bisected-by: Dmitry S. Demin <dmitryy.demin@gmail.com>
Cc: 3.9+ <stable@kernel.org>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
As indicated by comments in mm/memory_hotplug.c:remove_memory(),
if CONFIG_MEMCG is set, it may not be possible to offline all of the
memory blocks held by one module (FRU) in one pass (because one of
them may be used by the others to store page cgroup in that case
and that block has to be offlined before the other ones).
To handle that arguably corner case, add a second pass of companion
device offlining to acpi_scan_hot_remove() and make it ignore errors
returned in the first pass (and make it skip the second pass if the
first one is successful).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
The ACPI processor driver was the only user of the removal_type
field in struct acpi_device, but it doesn't use that field any more
after recent changes. Thus, removal_type has no more users, so drop
it along with the associated data type.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Pull slave-dma fixes from Vinod Koul:
"We have two patches from Andy & Rafael fixing the Lynxpoint dma"
* 'fixes' of git://git.infradead.org/users/vkoul/slave-dma:
ACPI / LPSS: register clock device for Lynxpoint DMA properly
dma: acpi-dma: parse CSRT to extract additional resources
Following commit 6b772e8f9 (ACPI: Update PNPID match handling for
notify), the acpi_scan_init_hotplug() calls acpi_set_pnp_ids() which
allocates acpi_hardware_id and copies a few strings (kstrdup). If the
devices does not have hardware_id set, the function exits without
freeing the previously allocated ids (and kmemleak complains). This
patch calls simply changes 'return' on error to a 'goto out' which
calls acpi_free_pnp_ids().
Reported-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since we have CSRT only to get additional DMA controller resources, let's get
rid of drivers/acpi/csrt.c and move its logic inside ACPI DMA helpers code.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Split the ACPI processor driver into two parts, one that is
non-modular, resides in the ACPI core and handles the enumeration
and hotplug of processors and one that implements the rest of the
existing processor driver functionality.
The non-modular part uses an ACPI scan handler object to enumerate
processors on the basis of information provided by the ACPI namespace
and to hook up with the common ACPI hotplug infrastructure. It also
populates the ACPI handle of each processor device having a
corresponding object in the ACPI namespace, which allows the driver
proper to bind to those devices, and makes the driver bind to them
if it is readily available (i.e. loaded) when the scan handler's
.attach() routine is running.
There are a few reasons to make this change.
First, switching the ACPI processor driver to using the common ACPI
hotplug infrastructure reduces code duplication and size considerably,
even though a new file is created along with a header comment etc.
Second, since the common hotplug code attempts to offline devices
before starting the (non-reversible) removal procedure, it will abort
(and possibly roll back) hot-remove operations involving processors
if cpu_down() returns an error code for one of them instead of
continuing them blindly (if /sys/firmware/acpi/hotplug/force_remove
is unset). That is a more desirable behavior than what the current
code does.
Finally, the separation of the scan/hotplug part from the driver
proper makes it possible to simplify the driver's .remove() routine,
because it doesn't need to worry about the possible cleanup related
to processor removal any more (the scan/hotplug part is responsible
for that now) and can handle device removal and driver removal
symmetricaly (i.e. as appropriate).
Some user-visible changes in sysfs are made (for example, the
'sysdev' link from the ACPI device node to the processor device's
directory is gone and a 'physical_node' link is present instead
and a corresponding 'firmware_node' is present in the processor
device's directory, the processor driver is now visible under
/sys/bus/cpu/drivers/ and bound to the processor device), but
that shouldn't affect the functionality that users care about
(frequency scaling, C-states and thermal management).
Tested on my venerable Toshiba Portege R500.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Modify the generic ACPI hotplug code to be able to check if devices
scheduled for hot-removal may be gracefully removed from the system
using the device offline/online mechanism introduced previously.
Namely, make acpi_scan_hot_remove() handling device hot-removal call
device_offline() for all physical companions of the ACPI device nodes
involved in the operation and check the results. If any of the
device_offline() calls fails, the function will not progress to the
removal phase (which cannot be aborted), unless its (new) force
argument is set (in case of a failing offline it will put the devices
offlined by it back online).
In support of 'forced' device hot-removal, add a new sysfs attribute
'force_remove' that will reside under /sys/firmware/acpi/hotplug/.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
- ARM big.LITTLE cpufreq driver from Viresh Kumar.
- exynos5440 cpufreq driver from Amit Daniel Kachhap.
- cpufreq core cleanup and code consolidation from Viresh Kumar and
Stratos Karafotis.
- cpufreq scalability improvement from Nathan Zimmer.
- AMD "frequency sensitivity feedback" powersave bias for the ondemand
cpufreq governor from Jacob Shin.
- cpuidle code consolidation and cleanups from Daniel Lezcano.
- ARM OMAP cpuidle fixes from Santosh Shilimkar and Daniel Lezcano.
- ACPICA fixes and other improvements from Bob Moore, Jung-uk Kim,
Lv Zheng, Yinghai Lu, Tang Chen, Colin Ian King, and Linn Crosetto.
- ACPI core updates related to hotplug from Toshi Kani, Paul Bolle,
Yasuaki Ishimatsu, and Rafael J. Wysocki.
- Intel Lynxpoint LPSS (Low-Power Subsystem) support improvements
from Rafael J. Wysocki and Andy Shevchenko.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJRf8M8AAoJEKhOf7ml8uNsud4P/3cabXP5lDipzibRrpOiONse
puuvIdhtNdMRMc3t1oSDjNH/w/JA51Gc+ICGFAORiyVmqxBc85mpT6J5ibqV7hNd
pCqbKJceoB5PajHZSx22e4wG9O7YN1k3r80p38IfFzA+Ct0KNSuE0ixMEfHKYjiq
p5pXswk6TY3gtBReH9agrafHqDtXw4IMTE0asMuJ+BorPW7vQeiNlrkuA+0qmDuu
26O0Pm2TVkx1ryfTjdM9zSZ9X2G4JuM8rm1/VFZWQJTExwlv3bA2Za1nvQNJlJ99
6JZ0JXfAehcEW2Ye0sqsZ8HSEabDVHM29QvvOszJ5RpBXERiOCHOkhvFleCoTpn0
Xq0rtXPrLMH1G28Ej+cxmsAjfzOLV2Byg30CAoI/GCLuQ+xh+VMCpuNYQuld25CG
9rtYd0fWESeYsAebhDcX0E3xyzJtbrHtOb9PyGwNkbAJ8YQfhVSMCOPi2SX2wa+Q
qXLXi2VaHvjBSUKcAv5BmM+Ya57Be+88D0LxbgXbUeOnYefUK1ljldKDDshkMjgG
P4LPdm4JpoB5ncXSOO1Dz9w9QnNcFexSUySd/TtKLNMha1vEHV8ISzNPYY+9IdXf
XN0VZbFnUDzdj+Fwna7zyFb1cGihDYJKAtpXvRd8Y6RGUxKx9uGLAFJZw/xZB/cR
KZKuML5O8MgJuef37F38
=H/se
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael J Wysocki:
- ARM big.LITTLE cpufreq driver from Viresh Kumar.
- exynos5440 cpufreq driver from Amit Daniel Kachhap.
- cpufreq core cleanup and code consolidation from Viresh Kumar and
Stratos Karafotis.
- cpufreq scalability improvement from Nathan Zimmer.
- AMD "frequency sensitivity feedback" powersave bias for the ondemand
cpufreq governor from Jacob Shin.
- cpuidle code consolidation and cleanups from Daniel Lezcano.
- ARM OMAP cpuidle fixes from Santosh Shilimkar and Daniel Lezcano.
- ACPICA fixes and other improvements from Bob Moore, Jung-uk Kim, Lv
Zheng, Yinghai Lu, Tang Chen, Colin Ian King, and Linn Crosetto.
- ACPI core updates related to hotplug from Toshi Kani, Paul Bolle,
Yasuaki Ishimatsu, and Rafael J Wysocki.
- Intel Lynxpoint LPSS (Low-Power Subsystem) support improvements from
Rafael J Wysocki and Andy Shevchenko.
* tag 'pm+acpi-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (192 commits)
cpufreq: Revert incorrect commit 5800043
cpufreq: MAINTAINERS: Add co-maintainer
cpuidle: add maintainer entry
ACPI / thermal: do not always return THERMAL_TREND_RAISING for active trip points
ARM: s3c64xx: cpuidle: use init/exit common routine
cpufreq: pxa2xx: initialize variables
ACPI: video: correct acpi_video_bus_add error processing
SH: cpuidle: use init/exit common routine
ARM: S5pv210: compiling issue, ARM_S5PV210_CPUFREQ needs CONFIG_CPU_FREQ_TABLE=y
ACPI: Fix wrong parameter passed to memblock_reserve
cpuidle: fix comment format
pnp: use %*phC to dump small buffers
isapnp: remove debug leftovers
ARM: imx: cpuidle: use init/exit common routine
ARM: davinci: cpuidle: use init/exit common routine
ARM: kirkwood: cpuidle: use init/exit common routine
ARM: calxeda: cpuidle: use init/exit common routine
ARM: tegra: cpuidle: use init/exit common routine for tegra3
ARM: tegra: cpuidle: use init/exit common routine for tegra2
ARM: OMAP4: cpuidle: use init/exit common routine
...
* acpi-lpss:
ACPI / LPSS: make code less confusing for reader
ACPI / LPSS: Add support for exposing LTR registers to user space
ACPI / scan: Add special handler for Intel Lynxpoint LPSS devices
Currently the pci_slot driver doesn't update PCI slot devices when PCI
device hotplug event happens, which may cause memory leak and returning
stale information to user.
Now the pci_slot driver has been changed as built-in driver, so invoke
PCI slot enumeration and destroy routines directly from the PCI core.
And remove ACPI PCI sub-driver related code because it isn't needed
any more.
[bhelgas: removed "extern" from function declarations]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Toshi Kani <toshi.kani@hp.com>
ACPI spec states that the OS evaluates _STA after calling _EJ0
in order to verify if eject was successful. Added a check to
verify if the enabled bit of the status value is cleared after
_EJ0.
Note, the present bit is not checked since some FW implementations
do not clear the present bit until the hardware is physically
removed.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When the kernel calls _OSC with OSC_SB_HOTPLUG_OST_SUPPORT bit
set at boot-time, the OS is responsible for calling _OST for
ACPI hotplug events. However, when hotplug.enabled attribute
is unset for ACPI scan drivers, their notify handlers are removed
and _OST is not called for ACPI hotplug events as a result.
This patch keeps the notify handler of ACPI scan drivers,
acpi_hotplug_notify_cb(), installed regardless of the state of
hotplug.enabled. The notify handler then checks if hotplug.enabled
is set for the associated scan handler. If unset, the notify
handler calls _OST with a proper error code. The patch also
eliminates ACPI namespace walk when hotplug.enabled is changed
via sysfs.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When installing/removing a notify handler to/from an ACPI device
object, ACPI core tries to match its associated scan handler to
see if it supports hotplug. However, the matching logic of the
notify handler is different from the matching logic of attaching
a scan handler to an ACPI device object. This patch updates the
matching logic of the notify handlers to be consistent with the
attach handling.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch introduces acpi_set_pnp_ids() and acpi_free_pnp_ids(),
which are updated from acpi_device_set_id() and acpi_free_ids(),
to setup and free acpi_device_pnp for a given acpi_handle. They
can be called without acpi_device.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch updates the internal operations of acpi_device_set_id()
to setup acpi_device_pnp without using acpi_device. There is no
functional change to acpi_device_set_id() in this patch.
acpi_pnp_type is added to acpi_device_pnp, so that PNPID type is
self-contained within acpi_device_pnp. acpi_add_id(), acpi_bay_match(),
acpi_dock_match(), acpi_ibm_smbus_match() and acpi_is_video_device()
are changed to take acpi_handle as an argument, instead of acpi_device.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Devices on the Intel Lynxpoint Low Power Subsystem (LPSS) have some
common features that aren't shared with any other platform devices,
including the clock and LTR (Latency Tolerance Reporting) registers.
It is better to handle those features in common code than to bother
device drivers with doing that (I/O functionality-wise the LPSS
devices are generally compatible with other devices that don't
have those special registers and may be handled by the same drivers).
The clock registers of the LPSS devices are now taken care of by
the special clk-x86-lpss driver, but the MMIO mappings used for
accessing those registers can also be used for accessing the LTR
registers on those devices (LTR support for the Lynxpoint LPSS is
going to be added by a subsequent patch). Thus it is convenient
to add a special ACPI scan handler for the Lynxpoint LPSS devices
that will create the MMIO mappings for accessing the clock (and
LTR in the future) registers and will register the LPSS devices'
clocks, so the clk-x86-lpss driver will only need to take care of
the main Lynxpoint LPSS clock.
Introduce a special ACPI scan handler for Intel Lynxpoint LPSS
devices as described above. This also reduces overhead related to
browsing the ACPI namespace in search of the LPSS devices before the
registration of their clocks, removes some LPSS-specific (and
somewhat ugly) code from acpi_platform.c and shrinks the overall code
size slightly.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Mike Turquette <mturquette@linaro.org>
Make the ACPI memory hotplug driver use struct acpi_scan_handler
for representing the object used to set up ACPI memory hotplug
functionality and to remove hotplug memory ranges and data
structures used by the driver before unregistering ACPI device
nodes representing memory. Register the new struct acpi_scan_handler
object with the help of acpi_scan_add_handler_with_hotplug() to allow
user space to manipulate the attributes of the memory hotplug
profile.
This results in a significant reduction of the drvier's code size
and removes some ACPI hotplug code duplication.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Introduce user space interface for manipulating hotplug profiles
associated with ACPI scan handlers.
The interface consists of sysfs directories under
/sys/firmware/acpi/hotplug/, one for each hotplug profile, containing
an attribute allowing user space to manipulate the enabled field of
the corresponding profile. Namely, switching the enabled attribute
from '0' to '1' will cause the common hotplug notify handler to be
installed for all ACPI namespace objects representing devices matching
the scan handler associated with the given hotplug profile (and
analogously for the converse switch).
Drivers willing to use the new user space interface should add their
ACPI scan handlers with the help of new funtion
acpi_scan_add_handler_with_hotplug().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Introduce new helper routine acpi_scan_handler_matching() for
checking if the given ACPI scan handler matches a given device ID
and rework acpi_scan_match_handler() to use the new routine (that
routine will also be useful for other purposes in the future).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Multiple drivers handling hotplug-capable ACPI device nodes install
notify handlers covering the same types of events in a very similar
way. Moreover, those handlers are installed in separate namespace
walks, although that really should be done during namespace scans
carried out by acpi_bus_scan(). This leads to substantial code
duplication, unnecessary overhead and behavior that is hard to
follow.
For this reason, introduce common code in drivers/acpi/scan.c for
handling hotplug-related notification and carrying out device
insertion and eject operations in a generic fashion, such that it
may be used by all of the relevant drivers in the future. To cover
the existing differences between those drivers introduce struct
acpi_hotplug_profile for representing collections of hotplug
settings associated with different ACPI scan handlers that can be
used by the drivers to make the common code reflect their current
behavior.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Introduce helper routine acpi_scan_match_handler() that will find the
ACPI scan handler matching a given device ID, if there is one, and
rework acpi_scan_attach_handler() to use the new routine (that
routine will also be useful for other purposes going forward).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
- Fixes for blackfin and microblaze build problems introduced by the
removal of global pm_idle. From Lars-Peter Clausen.
- OPP core build fix from Shawn Guo.
- Error condition check fix for the new imx6q-cpufreq driver from
Wei Yongjun.
- Fix for an AER driver crash related to the lack of APEI
initialization for acpi=off. From Rafael J. Wysocki.
- Fix for a USB breakage on Thinkpad T430 related to ACPI power
resources and PCI wakeup from Rafael J. Wysocki.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJRKUy/AAoJEKhOf7ml8uNsKskQAIj8rzVUsQcyk77U2NmACLhE
EGdcxiwLrOc5bR2NEwyF66VN398pYrC2BqtCsj7vE070YEdt8VOcfOQ7FNtp3Z8R
hgGkpALL6QusV3V+f9rOxberqbU+Ei7XzeZs/74gilTF5+xFDt8Vd+PkJSMzpOug
BX06ZP5NWALL2qUKbJsz6TTLY1IjkxNrcn4iWMNcCZfCFS4r9KFd9SJhiD9lDY66
FdE2H69IDWrIEoPuEQHVk79YZu9CKUldMdBAIYfyWGSpxZ5IU/fmvIKlamFgTT7I
Voz0l69TTSlQYp+6WG7HCla6B371BwYEvZOgjgXNzW+gVPaqj9+wTpOln1GX4oZc
qBukY59b1NgaJahwX/lHaJZckoF0gcBoqCp3eW3LMPe6tkVk/Kd4cRrTCUXgUMtX
IHMZc/jkqMQmvEspXqzc+/mZAf9RBzUMG7mgDG4yrxPoSLBUZM1DOWG93lqc6T9u
nPhvb444GaDRilAc8vW/Bnc5hzaMYGlpoX2MCi0aisevcvD6c5aW4HZ80UirZMPA
OiOvQJ4vbtdFTrlupv0kBE+fKFXyb+qYtVkrAemcAyvo4KmEbS5n1p79NnI8S4Sp
DNk/Fh+nUG0t9EKS0bnH/MZYVWqPaTPIq7StUf/iicngLfSIGj4zPflL0GjjC6Wf
gWqNH0wjit/64gUQsQAN
=FCbx
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-fixes-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management fixes from Rafael Wysocki:
- Fixes for blackfin and microblaze build problems introduced by the
removal of global pm_idle. From Lars-Peter Clausen.
- OPP core build fix from Shawn Guo.
- Error condition check fix for the new imx6q-cpufreq driver from Wei
Yongjun.
- Fix for an AER driver crash related to the lack of APEI
initialization for acpi=off. From Rafael J Wysocki.
- Fix for a USB breakage on Thinkpad T430 related to ACPI power
resources and PCI wakeup from Rafael J. Wysocki.
* tag 'pm+acpi-fixes-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / PM: Take unusual configurations of power resources into account
imx6q-cpufreq: fix return value check in imx6q_cpufreq_probe()
PM / OPP: fix condition for empty of_init_opp_table()
ACPI / APEI: Fix crash in apei_hest_parse() for acpi=off
microblaze idle: Fix compile error
blackfin idle: Fix compile error
Host bridge hotplug
- Major overhaul of ACPI host bridge add/start (Rafael Wysocki, Yinghai Lu)
- Major overhaul of PCI/ACPI binding (Rafael Wysocki, Yinghai Lu)
- Split out ACPI host bridge and ACPI PCI device hotplug (Yinghai Lu)
- Stop caching _PRT and make independent of bus numbers (Yinghai Lu)
PCI device hotplug
- Clean up cpqphp dead code (Sasha Levin)
- Disable ARI unless device and upstream bridge support it (Yijing Wang)
- Initialize all hot-added devices (not functions 0-7) (Yijing Wang)
Power management
- Don't touch ASPM if disabled (Joe Lawrence)
- Fix ASPM link state management (Myron Stowe)
Miscellaneous
- Fix PCI_EXP_FLAGS accessor (Alex Williamson)
- Disable Bus Master in pci_device_shutdown (Konstantin Khlebnikov)
- Document hotplug resource and MPS parameters (Yijing Wang)
- Add accessor for PCIe capabilities (Myron Stowe)
- Drop pciehp suspend/resume messages (Paul Bolle)
- Make pci_slot built-in only (not a module) (Jiang Liu)
- Remove unused PCI/ACPI bind ops (Jiang Liu)
- Removed used pci_root_bus (Bjorn Helgaas)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJRKS3hAAoJEFmIoMA60/r8xxoP/j1CS4oCZAnBIVT9fKBkis+/
CENcfHIUKj6J9iMfJEVvqBELvqaLqtpeNwAGMcGPxV7VuT3K1QumChfaTpRDP0HC
VDRmrjcmfenEK+YPOG7acsrTyqk2wjpLOyu9MKRxtC5u7tF6376KQpkEFpO4haL4
eUHTxfE76OkrPBSvx3+PUSf6jqrvrNbjX8K6HdDVVlm3sVAQKmYJU/Wphv2NPOqa
CAMyCzEGybFjr8hDRwvWgr+06c718GMwQUbnrPdHXAe7lMNMrN/XVBmU9ABN3Aas
icd3lrDs+yPObgcO/gT8+sAZErCtdJ9zuHGYHdYpRbIQj/5JT4TMk7tw/Bj7vKY9
Mqmho9GR5YmYTRN9f1r+2n5AQ/KYWXJDrRNOnt5/ys5BOM3vwJ7WJ902zpSwtFQp
nLX+oD/hLfzpnoIQGDuBAoAXp2Kam3XWRgVvG78buRNrPj+kUzimk14a8qQeY+CB
El6UKuwi5Uv/qgs1gAqqjmZmsAkon2DnsRZa6Fl8NTkDlis7LY4gp9OU38ySFpB+
PhCmRyCZmDDqTVtwj6XzR3nPQ5LBSbvsTfgMxYMIUSXHa06tyb2q5p4mEIas0OmU
RKaP5xQqZuTgD8fbdYrx0xgSrn7JHt/j/X//Qs6unlLCWhlpm3LjJZKxyw2FwBGr
o4Lci+PiBh3MowCrju9D
=ER3b
-----END PGP SIGNATURE-----
Merge tag 'pci-v3.9-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI changes from Bjorn Helgaas:
"Host bridge hotplug
- Major overhaul of ACPI host bridge add/start (Rafael Wysocki, Yinghai Lu)
- Major overhaul of PCI/ACPI binding (Rafael Wysocki, Yinghai Lu)
- Split out ACPI host bridge and ACPI PCI device hotplug (Yinghai Lu)
- Stop caching _PRT and make independent of bus numbers (Yinghai Lu)
PCI device hotplug
- Clean up cpqphp dead code (Sasha Levin)
- Disable ARI unless device and upstream bridge support it (Yijing Wang)
- Initialize all hot-added devices (not functions 0-7) (Yijing Wang)
Power management
- Don't touch ASPM if disabled (Joe Lawrence)
- Fix ASPM link state management (Myron Stowe)
Miscellaneous
- Fix PCI_EXP_FLAGS accessor (Alex Williamson)
- Disable Bus Master in pci_device_shutdown (Konstantin Khlebnikov)
- Document hotplug resource and MPS parameters (Yijing Wang)
- Add accessor for PCIe capabilities (Myron Stowe)
- Drop pciehp suspend/resume messages (Paul Bolle)
- Make pci_slot built-in only (not a module) (Jiang Liu)
- Remove unused PCI/ACPI bind ops (Jiang Liu)
- Removed used pci_root_bus (Bjorn Helgaas)"
* tag 'pci-v3.9-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (51 commits)
PCI/ACPI: Don't cache _PRT, and don't associate them with bus numbers
PCI: Fix PCI Express Capability accessors for PCI_EXP_FLAGS
ACPI / PCI: Make pci_slot built-in only, not a module
PCI/PM: Clear state_saved during suspend
PCI: Use atomic_inc_return() rather than atomic_add_return()
PCI: Catch attempts to disable already-disabled devices
PCI: Disable Bus Master unconditionally in pci_device_shutdown()
PCI: acpiphp: Remove dead code for PCI host bridge hotplug
PCI: acpiphp: Create companion ACPI devices before creating PCI devices
PCI: Remove unused "rc" in virtfn_add_bus()
PCI: pciehp: Drop suspend/resume ENTRY messages
PCI/ASPM: Don't touch ASPM if forcibly disabled
PCI/ASPM: Deallocate upstream link state even if device is not PCIe
PCI: Document MPS parameters pci=pcie_bus_safe, pci=pcie_bus_perf, etc
PCI: Document hpiosize= and hpmemsize= resource reservation parameters
PCI: Use PCI Express Capability accessor
PCI: Introduce accessor to retrieve PCIe Capabilities Register
PCI: Put pci_dev in device tree as early as possible
PCI: Skip attaching driver in device_add()
PCI: acpiphp: Keep driver loaded even if no slots found
...
Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device
wakeup) moved the initial disabling of system wakeup for PCI devices
into a place where it can actually work and that exposed a hidden old
issue with crap^Wunusual system designs where the same power
resources are used for both wakeup power and device power control at
run time.
Namely, say there is one power resource such that the ACPI power
state D0 of a PCI device depends on that power resource (i.e. the
device is in D0 when that power resource is "on") and it is used
as a wakeup power resource for the same device. Then, calling
acpi_pci_sleep_wake(pci_dev, false) for the device in question will
cause the reference counter of that power resource to drop to 0,
which in turn will cause it to be turned off. As a result, the
device will go into D3cold at that point, although it should have
stayed in D0.
As it turns out, that happens to USB controllers on some laptops
and USB becomes unusable on those machines as a result, which is
a major regression from v3.8.
To fix this problem, (1) increment the reference counters of wakup
power resources during their initialization if they are "on"
initially, (2) prevent acpi_disable_wakeup_device_power() from
decrementing the reference counters of wakeup power resources that
were not enabled for wakeup power previously, and (3) prevent
acpi_enable_wakeup_device_power() from incrementing the reference
counters of wakeup power resources that already are enabled for
wakeup power.
In addition to that, if it is impossible to determine the initial
states of wakeup power resources, avoid enabling wakeup for devices
whose wakeup power depends on those power resources.
Reported-by: Dave Jones <davej@redhat.com>
Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
As discussed in thread at https://patchwork.kernel.org/patch/1946851/,
there's no value in supporting CONFIG_ACPI_PCI_SLOT=m any more.
So change Kconfig and code to only support building pci_slot as
built-in driver.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
* acpi-cleanup: (21 commits)
ACPI / hotplug: Fix concurrency issues and memory leaks
ACPI: Remove the use of CONFIG_ACPI_CONTAINER_MODULE
ACPI / scan: Full transition to D3cold in acpi_device_unregister()
ACPI / scan: Make acpi_bus_hot_remove_device() acquire the scan lock
ACPI: Drop the container.h header file
ACPI / Documentation: refer to correct file for acpi_platform_device_ids[] table
ACPI / scan: Make container driver use struct acpi_scan_handler
ACPI / scan: Remove useless #ifndef from acpi_eject_store()
ACPI: Unbind ACPI drv when probe failed
ACPI: sysfs eject support for ACPI scan handlers
ACPI / scan: Follow priorities of IDs when matching scan handlers
ACPI / PCI: pci_slot: replace printk(KERN_xxx) with pr_xxx()
ACPI / dock: Fix acpi_bus_get_device() check in drivers/acpi/dock.c
ACPI / scan: Clean up acpi_bus_get_parent()
ACPI / platform: Use struct acpi_scan_handler for creating devices
ACPI / PCI: Make PCI IRQ link driver use struct acpi_scan_handler
ACPI / PCI: Make PCI root driver use struct acpi_scan_handler
ACPI / scan: Introduce struct acpi_scan_handler
ACPI / scan: Make scanning of fixed devices follow the general scheme
ACPI: Drop device start operation that is not used
...
This changeset is aimed at fixing a few different but related
problems in the ACPI hotplug infrastructure.
First of all, since notify handlers may be run in parallel with
acpi_bus_scan(), acpi_bus_trim() and acpi_bus_hot_remove_device()
and some of them are installed for ACPI handles that have no struct
acpi_device objects attached (i.e. before those objects are created),
those notify handlers have to take acpi_scan_lock to prevent races
from taking place (e.g. a struct acpi_device is found to be present
for the given ACPI handle, but right after that it is removed by
acpi_bus_trim() running in parallel to the given notify handler).
Moreover, since some of them call acpi_bus_scan() and
acpi_bus_trim(), this leads to the conclusion that acpi_scan_lock
should be acquired by the callers of these two funtions rather by
these functions themselves.
For these reasons, make all notify handlers that can handle device
addition and eject events take acpi_scan_lock and remove the
acpi_scan_lock locking from acpi_bus_scan() and acpi_bus_trim().
Accordingly, update all of their users to make sure that they
are always called under acpi_scan_lock.
Furthermore, since eject operations are carried out asynchronously
with respect to the notify events that trigger them, with the help
of acpi_bus_hot_remove_device(), even if notify handlers take the
ACPI scan lock, it still is possible that, for example,
acpi_bus_trim() will run between acpi_bus_hot_remove_device() and
the notify handler that scheduled its execution and that
acpi_bus_trim() will remove the device node passed to
acpi_bus_hot_remove_device() for ejection. In that case, the struct
acpi_device object obtained by acpi_bus_hot_remove_device() will be
invalid and not-so-funny things will ensue. To protect agaist that,
make the users of acpi_bus_hot_remove_device() run get_device() on
ACPI device node objects that are about to be passed to it and make
acpi_bus_hot_remove_device() run put_device() on them and check if
their ACPI handles are not NULL (make acpi_device_unregister() clear
the device nodes' ACPI handles for that check to work).
Finally, observe that acpi_os_hotplug_execute() actually can fail,
in which case its caller ought to free memory allocated for the
context object to prevent leaks from happening. It also needs to
run put_device() on the device node that it ran get_device() on
previously in that case. Modify the code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
In order to drop reference counts of all power resources used by an
ACPI device node being removed, acpi_device_unregister() calls
acpi_power_transition(device, ACPI_STATE_D3_COLD), which effectively
transitions the device node into D3cold if it uses any power
resources. However, for some device nodes it may not be appropriate
to remove power from them entirely before putting them into D3hot
before. On the other hand, executing _PS3 for devices that don't
use power resources before removing them shouldn't really hurt.
In fact, that is done by acpi_bus_hot_remove_device(), but this is
not the right place to do it, because the bus trimming may have
caused power to be removed from the device node in question already
before.
For these reasons, make acpi_device_unregister() carry out full
power-off transition for all device nodes supporting that and remove
the direct evaluation of _PS3 from acpi_bus_hot_remove_device().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI scan lock has been introduced to prevent acpi_bus_scan()
and acpi_bus_trim() from running in parallel with each other for
overlapping ACPI namespace scopes. However, it is not sufficient
to do that, because if acpi_bus_scan() is run (for an overlapping
namespace scope) right after the acpi_bus_trim() in
acpi_bus_hot_remove_device(), the subsequent eject will remove
devices without removing the corresponding struct acpi_device
objects (and possibly companion "physical" device objects).
Therefore acpi_bus_hot_remove_device() has to acquire the scan
lock before carrying out the bus trimming and hold it through
the evaluation of _EJ0, so make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Make the ACPI container driver use struct acpi_scan_handler for
representing the object used to initialize ACPI containers and remove
the ACPI driver structure used previously and the data structures
created by it, since in fact they were not used for any purpose.
This simplifies the code and reduces the kernel's memory footprint by
avoiding the registration of a struct device_driver object with the
driver core and creation of its sysfs directory which is unnecessary.
In addition to that, make the namespace walk callback used for
installing the notify handlers for ACPI containers more
straightforward.
This change includes fixes from Toshi Kani.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Since the FORCE_EJECT symbol is never defined, the
#ifndef FORCE_EJECT in acpi_eject_store() is always true, so drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
When acpi_device_install_notify_handler() failed in acpi_device_probe(),
it calls acpi_drv->ops.remove() and fails the probe. However, the ACPI
driver is left bound to the acpi_device. Fix it by clearing the driver
and driver_data fields.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Changed sysfs eject, acpi_eject_store(), so that it doesn't return
error codes for devices nodes with ACPI scan handlers attached and
no ACPI drivers.
[rjw: Changelog]
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The IDs of ACPI device nodes stored in their pnp.ids member arrays
are sorted by decreasing priority (i.e. the highest-priority ID is
the first entry). This means that when matching scan handlers to
device nodes, the namespace scanning code should walk the list of
scan handlers for each device node ID instead of walking the list
of device node IDs for each handler (the latter causes the first
handler matching any of the device node IDs to be chosen, although
there may be another handler matching an ID of a higher priority
which should be preferred). Make the code follow this observation.
This change has been suggested and justified by Toshi Kani.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
* acpi-lpss:
ACPI / platform: create LPSS clocks if Lynxpoint devices are found during scan
clk: x86: add support for Lynxpoint LPSS clocks
x86: add support for Intel Low Power Subsystem
ACPI / platform: fix comment about the platform device name
ACPI: add support for CSRT table
* acpi-pm: (35 commits)
ACPI / PM: Handle missing _PSC in acpi_bus_update_power()
ACPI / PM: Do not power manage devices in unknown initial states
ACPI / PM: Fix acpi_bus_get_device() check in drivers/acpi/device_pm.c
ACPI / PM: Fix /proc/acpi/wakeup for devices w/o bus or parent
ACPI / PM: Fix consistency check for power resources during resume
ACPI / PM: Expose lists of device power resources to user space
sysfs: Functions for adding/removing symlinks to/from attribute groups
ACPI / PM: Expose current status of ACPI power resources
ACPI / PM: Expose power states of ACPI devices to user space
ACPI / scan: Prevent device add uevents from racing with user space
ACPI / PM: Fix device power state value after transitions to D3cold
ACPI / PM: Use string "D3cold" to represent ACPI_STATE_D3_COLD
ACPI / PM: Sanitize checks in acpi_power_on_resources()
ACPI / PM: Always evaluate _PSn after setting power resources
ACPI / PM: Introduce helper for executing _PSn methods
ACPI / PM: Make acpi_bus_init_power() more robust
ACPI / PM: Fix build for unusual combination of Kconfig options
ACPI / PM: remove leading whitespace from #ifdef
ACPI / PM: Consolidate suspend-specific and hibernate-specific code
ACPI / PM: Move device power management functions to device_pm.c
...
* acpi-scan: (30 commits)
ACPI / scan: Fix acpi_bus_get_device() check in acpi_match_device()
ACPI / scan: Make namespace scanning and trimming mutually exclusive
ACPI / scan: Make it clear that acpi_bus_trim() cannot fail
ACPI / scan: Drop acpi_bus_add() and use acpi_bus_scan() instead
ACPI: update ej_event interface to take acpi_device
ACPI / scan: Add second pass to acpi_bus_trim()
ACPI / scan: Change the implementation of acpi_bus_trim()
ACPI / scan: Drop the second argument of acpi_bus_trim()
ACPI / scan: Drop the second argument of acpi_device_unregister()
ACPI: Remove the ops field from struct acpi_device
ACPI: remove unused acpi_op_bind and acpi_op_unbind
ACPI / scan: Fix check of device_attach() return value.
ACPI / scan: Treat power resources in a special way
ACPI: Remove unused struct acpi_pci_root.id member
ACPI: Drop ACPI device .bind() and .unbind() callbacks
ACPI / PCI: Move the _PRT setup and cleanup code to pci-acpi.c
ACPI / PCI: Rework the setup and cleanup of device wakeup
ACPI: Add .setup() and .cleanup() callbacks to struct acpi_bus_type
ACPI: Make acpi_bus_scan() and acpi_bus_add() take only one argument
ACPI: Replace ACPI device add_type field with a match_driver flag
...
In general, for ACPI device power management to work, the initial
power states of devices must be known (otherwise, we wouldn't be able
to keep track of power resources, for example). Hence, if it is
impossible to determine the initial ACPI power states of some
devices, they can't be regarded as power-manageable using ACPI.
For this reason, modify acpi_bus_get_power_flags() to clear the
power_manageable flag if acpi_bus_init_power() fails and add some
extra fallback code to acpi_bus_init_power() to cover broken
BIOSes that provide _PS0/_PS3 without _PSC for some devices.
Verified to work on my HP nx6325 that has this problem.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Peter Wu <lekensteyn@gmail.com>
Make acpi_bus_get_parent() more straightforward and remove an
unnecessary local variable ret from it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Since acpi_bus_get_device() returns int and not acpi_status, change
acpi_match_device() so that it doesn't apply ACPI_FAILURE() to the
return value of acpi_bus_get_device().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Currently, the ACPI namespace scanning code creates platform device
objects for ACPI device nodes whose IDs match the contents of the
acpi_platform_device_ids[] table. However, this adds a superfluous
special case into acpi_bus_device_attach() and makes it more
difficult to follow than it has to be. It also will make it more
difficult to implement removal code for those platform device objects
in the future.
For the above reasons, introduce a struct acpi_scan_handler object
for creating platform devices and move the code related to that from
acpi_bus_device_attach() to the .attach() callback of that object.
Also move the acpi_platform_device_ids[] table to acpi_platform.c.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Make the ACPI PCI IRQ link driver use struct acpi_scan_handler
for representing the object used to set up ACPI interrupt links and
to remove data structures used for this purpose before unregistering
the corresponding ACPI device nodes.
This simplifies the code slightly and reduces the kernel's memory
footprint by avoiding the registration of a struct device_driver
object with the driver core and creation of its sysfs directory
which is unnecessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Introduce struct acpi_scan_handler for representing objects that
will do configuration tasks depending on ACPI device nodes'
hardware IDs (HIDs).
Currently, those tasks are done either directly by the ACPI namespace
scanning code or by ACPI device drivers designed specifically for
this purpose. None of the above is desirable, however, because
doing that directly in the namespace scanning code makes that code
overly complicated and difficult to follow and doing that in
"special" device drivers leads to a great deal of confusion about
their role and to confusing interactions with the driver core (for
example, sysfs directories are created for those drivers, but they
are completely unnecessary and only increase the kernel's memory
footprint in vain).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Make acpi_bus_scan_fixed() use device_attach() directly to attach
drivers, if any, to the fixed devices in analogy with how
acpi_bus_scan() works, which allows the last argument of
acpi_add_single_object() to be dropped and the manipulation of the
flags.match_driver bit to be moved to acpi_init_device_object()
and acpi_device_add_finalize().
After these changes all of the functions for the initialization
and registration of struct acpi_device objects work in the same
way for all of them.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
There is no guarantee that acpi_bus_scan() and acpi_bus_trim() will
not be run in parallel for the same scope of the ACPI namespace,
which may lead to a great deal of confusion, so introduce a new mutex
to prevent that from happening.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
The second argument of ACPI driver .remove() operation is only used
by the ACPI processor driver and the value passed to that driver
through it is always available from the given struct acpi_device
object's removal_type field. For this reason, the second ACPI driver
.remove() argument is in fact useless, so drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Since acpi_bus_trim() cannot fail, change its definition to a void
function, so that its callers don't check the return value in vain
and update the callers.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
The acpiphp driver is confusing because it contains partial support for PCI
host bridge hotplug as well as support for hotplug of PCI devices.
This patch moves the host bridge hot-add support to pci_root.c and adds
hot-remove support in pci_root.c.
How to test it: if sci_emu patch is applied, find out root bus number to
ACPI root name mapping from dmesg or /sys. To remove root bus:
echo "\_SB.PCIB 3" > /sys/kernel/debug/acpi/sci_notify
To add back root bus:
echo "\_SB.PCIB 1" > /sys/kernel/debug/acpi/sci_notify
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since ACPI power resources are going to be used more extensively on
new hardware platforms, it becomes necessary for user space (powertop
in particular) to observe some properties of those resources for
diagnostics purposes.
For this reason, expose the current status of each ACPI power
resource to user space via sysfs by adding a new resource_in_use
attribute to the sysfs directory representing the given power
resource.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Make it possible to retrieve the current power state of a device with
ACPI power management from user space via sysfs by adding two new
attributes, power_state and real_power_state, to the sysfs directory
associated with the struct acpi_device object representing the
device's ACPI node.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
ACPI core adds sysfs device files after the given devices have been
registered with device_register(), which is not appropriate, because
it may lead to race conditions with user space tools using those
files.
Fix the problem by delaying the KOBJ_ADD uevent for ACPI devices
until after all of the devices' sysfs files have been created.
This also fixes a use-after-free in acpi_device_unregister().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Intel Lynxpoint LPSS peripheral drivers depend on LPSS clock tree being
created in order to function properly. The clock tree is exposed as a
platform driver that binds to a device named 'clk-lpt'.
To support this we modify the acpi_create_platform_device() to take one
additional parameter called flags. This is passed from
acpi_platform_device_ids[] array when acpi_create_platform_device() is
called.
We then introduce a new flag ACPI_PLATFORM_CLK which is used to tell
acpi_create_platform_device() to create the platform clocks as well.
Finally we set the ACPI_PLATFORM_CLK flags for all the Lynxpoint LPSS
devices and make sure that when this flag is set we create the
corresponding clock tree platform device.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Core System Resources Table (CSRT) is a proprietary ACPI table that
contains resources for certain devices that are not found in the DSDT
table. Typically a shared DMA controller might be found here.
This patch adds support for this table. We go through all entries in the
table and make platform devices of them. The resources from the table are
passed with the platform device.
There is one special resource in the table and it is the DMA request line
base and number of request lines. This information might be needed by the
DMA controller driver as it needs to map the ACPI DMA request line number
to the actual request line understood by the hardware. This range is passed
as IORESOURCE_DMA resource.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The only difference between acpi_bus_scan() and acpi_bus_add() is the
invocation of acpi_update_all_gpes() in the latter which in fact is
unnecessary, because acpi_update_all_gpes() has already been called
by acpi_scan_init() and the way it is implemented guarantees the next
invocations of it to do nothing.
For this reason, drop acpi_bus_add() and make all its callers use
acpi_bus_scan() directly instead of it. Additionally, rearrange the
code in acpi_scan_init() slightly to improve the visibility of the
acpi_update_all_gpes() call in there.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
The system level attribute of ACPI power resources is the lowest
system sleep level (S0, S2 etc.) in which the given resource can be
"on" (ACPI 5.0, Section 7.1). On the other hand, wakeup power
resources have to be "on" for devices depending on them to be able to
signal wakeup. Therefore devices cannot wake up the system from
sleep states higher than the minimum of the system level attributes
of their wakeup power resources.
Use the wakeup power resources' system level values to get the
deepest system sleep state (highest system sleep level) the given
device can wake up the system from.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some ACPI power resource initialization errors, like memory
allocation errors, are not taken into account appropriately in some
cases, which may lead to a device having an incomplete list of power
resources that one of its power states depends on, for one example.
Rework the power resource initialization and namespace scanning code
so that power resource initialization errors are treated more
seriously.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The lists of ACPI power resources are currently extracted in two
different ways, one for wakeup power resources and one for power
resources that device power states depend on. There is no reason
why it should be done differently in those two cases, so introduce
a common routine for extracting power resources lists from data
returned by AML, acpi_extract_power_resources(), and make the
namespace scanning code use it for both wakeup and device power
states power resources.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The local variables in acpi_bus_get_power_flags() need not be
initialized upfront, so change the code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To reduce indentation level and improve code readability, move the
initialization code related to device power states from
acpi_bus_get_power_flags() to a new routine,
acpi_bus_init_power_state().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI power resources have an order attribute that should be taken
into account when turning them on and off, but it is not used now.
Modify the power resources management code to preserve the
spec-compliant ordering of wakeup power resources.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI power resources have an order attribute that should be taken
into account when turning them on and off, but it is not used now.
Modify the power resources management code to preserve the
spec-compliant ordering of power resources that power states of
devices depend on (analogous changes will be done separately for
power resources used for wakeup).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI power resources driver is not very useful, because the only
thing it really does is to restore the state of the power resources
that were "on" before system suspend or hibernation, but that may be
achieved in a different way.
Drop the ACPI power resources driver entirely and add
acpi_resume_power_resources() that will walk the list of all
registered power resources during system resume and turn on the ones
that were "on" before the preceding system suspend or hibernation.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI power resources need to be treated in a special way by the
namespace scanning code, because they need to be ready to use as
soon as they have been discovered (even before registering ACPI
device nodes using them for power management).
For this reason, it doesn't make sense to separate the preparation
of struct acpi_device objects representing them in the device
hierarchy from the creation of struct acpi_power_resource objects
actually used for power resource manipulation. Accordingly, it
doesn't make sense to define non-empty .add() and .remove() callbacks
in the power resources "driver" (in fact, it is questionable whether
or not it is useful to register such a "driver" at all).
Rearrange the code in scan.c and power.c so that power resources are
initialized entirely by one routine, acpi_add_power_resource(), that
also prepares their struct acpi_device objects and registers them
with the driver core, telling it to use a special release routine,
acpi_release_power_resource(), for removing objects that represent
power resources from memory. Make the ACPI namespace scanning code
in scan.c always use acpi_add_power_resource() for preparing and
registering objects that represent power resources.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Simplify the code preparing struct acpi_device objects for
registration by removing useless code, moving different pieces of
code into the functions they belong to and making a couple of int
functions always returning 0 void.
This also fixes a possible memory leak in ACPI device registration
error code path by making acpi_device_register() detach data from
device->handle if device_register() fails and prepares the scanning
code for special-casing ACPI power resources (next patch).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 0090def6 (ACPI: Add interface to register/unregister device
to/from power resources) made it possible to indicate to the ACPI
core that if the given device depends on any power resources, then
it should be resumed as soon as all of the power resources required
by it to transition to the D0 power state have been turned on.
Unfortunately, however, this was a mistake, because all devices
depending on power resources should be treated this way (i.e. they
should be resumed when all power resources required by their D0
state have been turned on) and for the majority of those devices
the ACPI core can figure out by itself which (physical) devices
depend on what power resources.
For this reason, replace the code added by commit 0090def6 with a
new, much more straightforward, mechanism that will be used
internally by the ACPI core and remove all references to that code
from kernel subsystems using ACPI.
For the cases when there are (physical) devices that should be
resumed whenever a not directly related ACPI device node goes into
D0 as a result of power resources configuration changes, like in
the SATA case, add two new routines, acpi_dev_pm_add_dependent()
and acpi_dev_pm_remove_dependent(), allowing subsystems to manage
such dependencies. Convert the SATA subsystem to use the new
functions accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Should use acpi_device pointer directly instead of use handle and
get the device pointer again later.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>