If we enable SR-IOV on a vfio-pci owned PF, the resulting VFs are not
fully isolated from the PF. The PF can always cause a denial of service
to the VF, even if by simply resetting itself. The degree to which a PF
can access the data passed through a VF or interfere with its operation
is dependent on a given SR-IOV implementation. Therefore we want to
avoid a scenario where an existing vfio-pci based userspace driver might
assume the PF driver is trusted, for example assigning a PF to one VM
and VF to another with some expectation of isolation. IOMMU grouping
could be a solution to this, but imposes an unnecessarily strong
relationship between PF and VF drivers if they need to operate with the
same IOMMU context. Instead we introduce a "VF token", which is
essentially just a shared secret between PF and VF drivers, implemented
as a UUID.
The VF token can be set by a vfio-pci based PF driver and must be known
by the vfio-pci based VF driver in order to gain access to the device.
This allows the degree to which this VF token is considered secret to be
determined by the applications and environment. For example a VM might
generate a random UUID known only internally to the hypervisor while a
userspace networking appliance might use a shared, or even well know,
UUID among the application drivers.
To incorporate this VF token, the VFIO_GROUP_GET_DEVICE_FD interface is
extended to accept key=value pairs in addition to the device name. This
allows us to most easily deny user access to the device without risk
that existing userspace drivers assume region offsets, IRQs, and other
device features, leading to more elaborate error paths. The format of
these options are expected to take the form:
"$DEVICE_NAME $OPTION1=$VALUE1 $OPTION2=$VALUE2"
Where the device name is always provided first for compatibility and
additional options are specified in a space separated list. The
relation between and requirements for the additional options will be
vfio bus driver dependent, however unknown or unused option within this
schema should return error. This allow for future use of unknown
options as well as a positive indication to the user that an option is
used.
An example VF token option would take this form:
"0000:03:00.0 vf_token=2ab74924-c335-45f4-9b16-8569e5b08258"
When accessing a VF where the PF is making use of vfio-pci, the user
MUST provide the current vf_token. When accessing a PF, the user MUST
provide the current vf_token IF there are active VF users or MAY provide
a vf_token in order to set the current VF token when no VF users are
active. The former requirement assures VF users that an unassociated
driver cannot usurp the PF device. These semantics also imply that a
VF token MUST be set by a PF driver before VF drivers can access their
device, the default token is random and mechanisms to read the token are
not provided in order to protect the VF token of previous users. Use of
the vf_token option outside of these cases will return an error, as
discussed above.
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>