TTS/train.py

379 строки
14 KiB
Python
Исходник Обычный вид История

2018-01-22 12:48:59 +03:00
import os
import sys
import time
2018-01-26 13:07:07 +03:00
import datetime
2018-01-22 19:20:20 +03:00
import shutil
2018-01-22 12:48:59 +03:00
import torch
import signal
import argparse
2018-01-22 19:20:20 +03:00
import importlib
import pickle
2018-01-22 12:48:59 +03:00
import numpy as np
import torch.nn as nn
from torch import optim
from torch import onnx
2018-01-22 17:58:12 +03:00
from torch.autograd import Variable
2018-01-22 12:48:59 +03:00
from torch.utils.data import DataLoader
2018-01-26 13:07:07 +03:00
from torch.optim.lr_scheduler import ReduceLROnPlateau
2018-01-25 18:07:46 +03:00
from tensorboardX import SummaryWriter
2018-01-22 12:48:59 +03:00
from utils.generic_utils import (Progbar, remove_experiment_folder,
2018-01-22 19:20:20 +03:00
create_experiment_folder, save_checkpoint,
2018-02-23 17:20:22 +03:00
save_best_model, load_config, lr_decay,
count_parameters, check_update)
2018-01-22 12:48:59 +03:00
from utils.model import get_param_size
from utils.visual import plot_alignment, plot_spectrogram
2018-01-22 12:48:59 +03:00
from datasets.LJSpeech import LJSpeechDataset
2018-01-22 17:58:12 +03:00
from models.tacotron import Tacotron
2018-01-22 12:48:59 +03:00
2018-03-02 18:54:35 +03:00
2018-01-22 12:48:59 +03:00
use_cuda = torch.cuda.is_available()
2018-03-02 18:54:35 +03:00
parser = argparse.ArgumentParser()
parser.add_argument('--restore_path', type=str,
help='Folder path to checkpoints', default=0)
parser.add_argument('--config_path', type=str,
help='path to config file for training',)
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = os.path.join(_, c.output_path)
OUT_PATH = create_experiment_folder(OUT_PATH)
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
# save config to tmp place to be loaded by subsequent modules.
file_name = str(os.getpid())
tmp_path = os.path.join("/tmp/", file_name+'_tts')
pickle.dump(c, open(tmp_path, "wb"))
# setup tensorboard
LOG_DIR = OUT_PATH
tb = SummaryWriter(LOG_DIR)
def signal_handler(signal, frame):
"""Ctrl+C handler to remove empty experiment folder"""
print(" !! Pressed Ctrl+C !!")
remove_experiment_folder(OUT_PATH)
sys.exit(1)
def train(model, criterion, data_loader, optimizer, epoch):
model = model.train()
epoch_time = 0
2018-03-06 16:39:54 +03:00
avg_linear_loss = 0
avg_mel_loss = 0
2018-03-02 18:54:35 +03:00
print(" | > Epoch {}/{}".format(epoch, c.epochs))
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
current_step = num_iter + args.restore_step + epoch * len(data_loader) + 1
# setup lr
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
for params_group in optimizer.param_groups:
params_group['lr'] = current_lr
optimizer.zero_grad()
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length for curriculum learning
# TODO: might be unnecessary
sorted_lengths, indices = torch.sort(
text_lengths.view(-1), dim=0, descending=True)
sorted_lengths = sorted_lengths.long().numpy()
text_input_var = text_input_var[indices]
mel_spec_var = mel_spec_var[indices]
linear_spec_var = linear_spec_var[indices]
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
# forward pass
mel_output, linear_output, alignments =\
model.forward(text_input_var, mel_spec_var,
input_lengths= torch.autograd.Variable(torch.cuda.LongTensor(sorted_lengths)))
# loss computation
mel_loss = criterion(mel_output, mel_spec_var)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
# backpass and check the grad norm
loss.backward()
grad_norm, skip_flag = check_update(model, 0.5, 100)
if skip_flag:
optimizer.zero_grad()
print(" | > Iteration skipped!!")
continue
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0]),
('grad_norm', grad_norm)])
# Plot Training Iter Stats
tb.add_scalar('TrainIterLoss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
current_step)
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
tb.add_scalar('Time/StepTime', step_time, current_step)
if current_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, linear_loss.data[0],
OUT_PATH, current_step, epoch)
# Diagnostic visualizations
const_spec = linear_output[0].data.cpu().numpy()
gt_spec = linear_spec_var[0].data.cpu().numpy()
2018-03-05 19:54:23 +03:00
const_spec = plot_spectrogram(const_spec, data_loader.dataset.ap)
gt_spec = plot_spectrogram(gt_spec, data_loader.dataset.ap)
2018-03-02 18:54:35 +03:00
tb.add_image('Visual/Reconstruction', const_spec, current_step)
tb.add_image('Visual/GroundTruth', gt_spec, current_step)
2018-01-22 12:48:59 +03:00
2018-03-02 18:54:35 +03:00
align_img = alignments[0].data.cpu().numpy()
align_img = plot_alignment(align_img)
tb.add_image('Visual/Alignment', align_img, current_step)
# Sample audio
audio_signal = linear_output[0].data.cpu().numpy()
2018-03-05 19:54:23 +03:00
data_loader.dataset.ap.griffin_lim_iters = 60
audio_signal = data_loader.dataset.ap.inv_spectrogram(audio_signal.T)
2018-03-02 18:54:35 +03:00
try:
tb.add_audio('SampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
print("\n > Error at audio signal on TB!!")
print(audio_signal.max())
print(audio_signal.min())
2018-03-06 16:39:54 +03:00
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss
2018-03-02 18:54:35 +03:00
# Plot Training Epoch Stats
tb.add_scalar('TrainEpochLoss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/LinearLoss', linear_loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0
return avg_linear_loss, current_step
def evaluate(model, criterion, data_loader, current_step):
model = model.train()
epoch_time = 0
print("\n | > Validation")
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
2018-03-06 16:39:54 +03:00
avg_linear_loss = 0
avg_mel_loss = 0
2018-03-02 18:54:35 +03:00
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
# forward pass
mel_output, linear_output, alignments =\
model.forward(text_input_var, mel_spec_var)
# loss computation
mel_loss = criterion(mel_output, mel_spec_var)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
step_time = time.time() - start_time
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0])])
2018-03-06 16:39:54 +03:00
avg_linear_loss += linear_loss.data[0]
avg_mel_loss += avg_mel_loss.data[0]
2018-03-02 18:54:35 +03:00
# Diagnostic visualizations
idx = np.random.randint(c.batch_size)
const_spec = linear_output[idx].data.cpu().numpy()
gt_spec = linear_spec_var[idx].data.cpu().numpy()
2018-03-06 16:39:54 +03:00
align_img = alignments[idx].data.cpu().numpy()
2018-03-02 18:54:35 +03:00
const_spec = plot_spectrogram(const_spec, data_loader.dataset.ap)
gt_spec = plot_spectrogram(gt_spec, data_loader.dataset.ap)
2018-03-06 16:39:54 +03:00
align_img = plot_alignment(align_img)
2018-03-02 18:54:35 +03:00
tb.add_image('ValVisual/Reconstruction', const_spec, current_step)
tb.add_image('ValVisual/GroundTruth', gt_spec, current_step)
tb.add_image('ValVisual/ValidationAlignment', align_img, current_step)
# Sample audio
audio_signal = linear_output[idx].data.cpu().numpy()
data_loader.dataset.ap.griffin_lim_iters = 60
audio_signal = data_loader.dataset.ap.inv_spectrogram(audio_signal.T)
try:
tb.add_audio('ValSampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
print("\n > Error at audio signal on TB!!")
print(audio_signal.max())
print(audio_signal.min())
# compute average losses
2018-03-06 16:39:54 +03:00
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
2018-03-02 18:54:35 +03:00
avg_total_loss = avg_mel_loss + avg_linear_loss
# Plot Learning Stats
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
return avg_linear_loss
def main(args):
2018-01-22 19:20:20 +03:00
2018-03-02 19:01:04 +03:00
# Setup the dataset
2018-03-02 18:54:35 +03:00
train_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_train.csv'),
2018-01-22 12:48:59 +03:00
os.path.join(c.data_path, 'wavs'),
2018-01-22 19:29:27 +03:00
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
2018-01-22 12:48:59 +03:00
)
2018-03-02 18:54:35 +03:00
train_loader = DataLoader(train_dataset, batch_size=c.batch_size,
shuffle=True, collate_fn=train_dataset.collate_fn,
2018-03-02 16:42:23 +03:00
drop_last=True, num_workers=c.num_loader_workers,
pin_memory=True)
2018-03-02 18:54:35 +03:00
val_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_val.csv'),
os.path.join(c.data_path, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
val_loader = DataLoader(val_dataset, batch_size=c.batch_size,
shuffle=True, collate_fn=val_dataset.collate_fn,
drop_last=True, num_workers= 4,
pin_memory=True)
2018-03-02 19:01:04 +03:00
model = Tacotron(c.embedding_size,
2018-01-22 12:48:59 +03:00
c.hidden_size,
c.num_mels,
c.num_freq,
2018-01-22 19:20:20 +03:00
c.r)
2018-01-22 12:48:59 +03:00
optimizer = optim.Adam(model.parameters(), lr=c.lr)
2018-03-02 18:54:35 +03:00
if use_cuda:
criterion = nn.L1Loss().cuda()
else:
criterion = nn.L1Loss()
2018-01-22 12:48:59 +03:00
2018-03-06 16:39:54 +03:00
if args.restore_path:
2018-02-26 16:33:54 +03:00
checkpoint = torch.load(args.restore_path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("\n > Model restored from step %d\n" % checkpoint['step'])
2018-03-05 19:48:17 +03:00
start_epoch = checkpoint['step'] // len(train_loader)
2018-02-26 16:33:54 +03:00
best_loss = checkpoint['linear_loss']
start_epoch = 0
2018-03-02 16:42:23 +03:00
args.restore_step = checkpoint['step']
2018-02-26 16:33:54 +03:00
else:
2018-01-25 18:07:46 +03:00
print("\n > Starting a new training")
2018-01-22 12:48:59 +03:00
2018-02-26 16:33:54 +03:00
if use_cuda:
model = nn.DataParallel(model.cuda())
2018-02-23 17:20:22 +03:00
num_params = count_parameters(model)
print(" | > Model has {} parameters".format(num_params))
2018-03-02 18:54:35 +03:00
2018-01-22 19:20:20 +03:00
if not os.path.exists(CHECKPOINT_PATH):
os.mkdir(CHECKPOINT_PATH)
2018-03-02 18:54:35 +03:00
2018-02-27 17:25:28 +03:00
if 'best_loss' not in locals():
best_loss = float('inf')
2018-03-02 18:54:35 +03:00
for epoch in range(0, c.epochs):
2018-03-02 18:54:35 +03:00
train_loss, current_step = train(model, criterion, train_loader, optimizer, epoch)
val_loss = evaluate(model, criterion, val_loader, current_step)
best_loss = save_best_model(model, optimizer, val_loss,
2018-02-13 12:45:52 +03:00
best_loss, OUT_PATH,
current_step, epoch)
2018-01-22 12:48:59 +03:00
if __name__ == '__main__':
2018-03-02 18:54:35 +03:00
signal.signal(signal.SIGINT, signal_handler)
2018-01-22 12:48:59 +03:00
main(args)