gecko-dev/gfx/layers/composite/AsyncCompositionManager.cpp

999 строки
41 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h> // for uint32_t
#include "AnimationCommon.h" // for ComputedTimingFunction
#include "CompositorParent.h" // for CompositorParent, etc
#include "FrameMetrics.h" // for FrameMetrics
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
#include "Layers.h" // for Layer, ContainerLayer, etc
#include "gfxPoint.h" // for gfxPoint, gfxSize
#include "gfxPoint3D.h" // for gfxPoint3D
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
#include "mozilla/layers/AsyncPanZoomController.h"
#include "mozilla/layers/Compositor.h" // for Compositor
#include "nsAnimationManager.h" // for ElementAnimations
#include "nsCSSPropList.h"
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h" // for NS_ASSERTION, etc
#include "nsDeviceContext.h" // for nsDeviceContext
#include "nsDisplayList.h" // for nsDisplayTransform, etc
#include "nsMathUtils.h" // for NS_round
#include "nsPoint.h" // for nsPoint
#include "nsRect.h" // for nsIntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsStyleAnimation.h" // for StyleAnimationValue, etc
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "GeckoProfiler.h"
struct nsCSSValueSharedList;
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
enum Op { Resolve, Detach };
static bool
IsSameDimension(dom::ScreenOrientation o1, dom::ScreenOrientation o2)
{
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const nsIntRect& rect)
{
return rect.width != rect.height;
}
template<Op OP>
static void
WalkTheTree(Layer* aLayer,
bool& aReady,
const TargetConfig& aTargetConfig)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
dom::ScreenOrientation chromeOrientation = aTargetConfig.orientation();
dom::ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
aReady = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
} else {
ref->DetachReferentLayer(referent);
WalkTheTree<OP>(referent, aReady, aTargetConfig);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aReady, aTargetConfig);
}
}
void
AsyncCompositionManager::ResolveRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
mReadyForCompose = true;
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::DetachRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
WalkTheTree<Detach>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mLayerManager->SetWorldTransform(
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation()));
}
}
static bool
GetBaseTransform2D(Layer* aLayer, Matrix* aTransform)
{
// Start with the animated transform if there is one
return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ?
aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform);
}
static void
TranslateShadowLayer2D(Layer* aLayer,
const gfxPoint& aTranslation)
{
Matrix layerTransform;
if (!GetBaseTransform2D(aLayer, &layerTransform)) {
return;
}
// Apply the 2D translation to the layer transform.
layerTransform._31 += aTranslation.x;
layerTransform._32 += aTranslation.y;
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
Matrix4x4 layerTransform3D = Matrix4x4::From2D(layerTransform);
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
layerTransform3D.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
}
layerTransform3D = layerTransform3D *
Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
layerComposite->SetShadowTransform(layerTransform3D);
layerComposite->SetShadowTransformSetByAnimation(false);
const nsIntRect* clipRect = aLayer->GetClipRect();
if (clipRect) {
nsIntRect transformedClipRect(*clipRect);
transformedClipRect.MoveBy(aTranslation.x, aTranslation.y);
layerComposite->SetShadowClipRect(&transformedClipRect);
}
}
static bool
AccumulateLayerTransforms2D(Layer* aLayer,
Layer* aAncestor,
Matrix& aMatrix)
{
// Accumulate the transforms between this layer and the subtree root layer.
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
Matrix l2D;
if (!GetBaseTransform2D(l, &l2D)) {
return false;
}
aMatrix *= l2D;
}
return true;
}
static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
const LayerMargin& aFixedLayerMargins)
{
// Work out the necessary translation, in root scrollable layer space.
// Because fixed layer margins are stored relative to the root scrollable
// layer, we can just take the difference between these values.
LayerPoint translation;
const LayerPoint& anchor = aLayer->GetFixedPositionAnchor();
const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins();
if (fixedMargins.left >= 0) {
if (anchor.x > 0) {
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
} else {
translation.x += aFixedLayerMargins.left - fixedMargins.left;
}
}
if (fixedMargins.top >= 0) {
if (anchor.y > 0) {
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
} else {
translation.y += aFixedLayerMargins.top - fixedMargins.top;
}
}
return translation;
}
static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
// Determine the amount of overlap between the 1D vector |aTranslation|
// and the interval [aMin, aMax].
if (aTranslation > 0) {
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
} else {
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
}
}
void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
Layer* aTransformedSubtreeRoot,
const Matrix4x4& aPreviousTransformForRoot,
const Matrix4x4& aCurrentTransformForRoot,
const LayerMargin& aFixedLayerMargins)
{
bool isRootFixed = aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition();
bool isStickyForSubtree = aLayer->GetIsStickyPosition() &&
aTransformedSubtreeRoot->AsContainerLayer() &&
aLayer->GetStickyScrollContainerId() ==
aTransformedSubtreeRoot->AsContainerLayer()->GetFrameMetrics().GetScrollId();
if (aLayer != aTransformedSubtreeRoot && (isRootFixed || isStickyForSubtree)) {
// Insert a translation so that the position of the anchor point is the same
// before and after the change to the transform of aTransformedSubtreeRoot.
// This currently only works for fixed layers with 2D transforms.
// Accumulate the transforms between this layer and the subtree root layer.
Matrix ancestorTransform;
if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot,
ancestorTransform)) {
return;
}
Matrix oldRootTransform;
Matrix newRootTransform;
if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) ||
!aCurrentTransformForRoot.Is2D(&newRootTransform)) {
return;
}
// Calculate the cumulative transforms between the subtree root with the
// old transform and the current transform.
Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform;
Matrix newCumulativeTransform = ancestorTransform * newRootTransform;
if (newCumulativeTransform.IsSingular()) {
return;
}
Matrix newCumulativeTransformInverse = newCumulativeTransform;
newCumulativeTransformInverse.Invert();
// Now work out the translation necessary to make sure the layer doesn't
// move given the new sub-tree root transform.
Matrix layerTransform;
if (!GetBaseTransform2D(aLayer, &layerTransform)) {
return;
}
// Calculate any offset necessary, in previous transform sub-tree root
// space. This is used to make sure fixed position content respects
// content document fixed position margins.
LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);
// Add the above offset to the anchor point so we can offset the layer by
// and amount that's specified in old subtree layer space.
const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor();
LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace;
// Add the local layer transform to the two points to make the equation
// below this section more convenient.
Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y);
Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y);
Point locallyTransformedAnchor = layerTransform * anchor;
Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor;
// Transforming the locallyTransformedAnchor by oldCumulativeTransform
// returns the layer's anchor point relative to the parent of
// aTransformedSubtreeRoot, before the new transform was applied.
// Then, applying newCumulativeTransformInverse maps that point relative
// to the layer's parent, which is the same coordinate space as
// locallyTransformedAnchor again, allowing us to subtract them and find
// out the offset necessary to make sure the layer stays stationary.
Point oldAnchorPositionInNewSpace =
newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor);
Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor;
if (aLayer->GetIsStickyPosition()) {
// For sticky positioned layers, the difference between the two rectangles
// defines a pair of translation intervals in each dimension through which
// the layer should not move relative to the scroll container. To
// accomplish this, we limit each dimension of the |translation| to that
// part of it which overlaps those intervals.
const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
}
// Finally, apply the 2D translation to the layer transform.
TranslateShadowLayer2D(aLayer, ThebesPoint(translation));
// The transform has now been applied, so there's no need to iterate over
// child layers.
return;
}
// Fixed layers are relative to their nearest scrollable layer, so when we
// encounter a scrollable layer, bail. ApplyAsyncContentTransformToTree will
// have already recursed on this layer and called AlignFixedAndStickyLayers
// on it with its own transforms.
if (aLayer->AsContainerLayer() &&
aLayer->AsContainerLayer()->GetFrameMetrics().IsScrollable() &&
aLayer != aTransformedSubtreeRoot) {
return;
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot,
aPreviousTransformForRoot,
aCurrentTransformForRoot, aFixedLayerMargins);
}
}
static void
SampleValue(float aPortion, Animation& aAnimation, StyleAnimationValue& aStart,
StyleAnimationValue& aEnd, Animatable* aValue)
{
StyleAnimationValue interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
"Must have same unit");
StyleAnimationValue::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueSharedList* interpolatedList =
interpolatedValue.GetCSSValueSharedListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in css pixels, so here we must
// adjust to dev pixels.
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
/ double(data.appUnitsPerDevPixel());
gfxPoint3D transformOrigin = data.transformOrigin();
transformOrigin.x = transformOrigin.x * cssPerDev;
transformOrigin.y = transformOrigin.y * cssPerDev;
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
transformOrigin,
perspectiveOrigin,
data.perspective());
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
gfxPoint3D scaledOrigin =
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.Translate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
Matrix4x4 realTransform;
ToMatrix4x4(transform, realTransform);
functions.AppendElement(TransformMatrix(realTransform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
for (uint32_t i = animations.Length(); i-- !=0; ) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
activeAnimations = true;
TimeDuration elapsedDuration = aPoint - animation.startTime();
// Skip animations that are yet to start.
//
// Currently, this should only happen when the refresh driver is under test
// control and is made to produce a time in the past or is restored from
// test control causing it to jump backwards in time.
//
// Since activeAnimations is true, this could mean we keep compositing
// unnecessarily during the delay, but so long as this only happens while
// the refresh driver is under test control that should be ok.
if (elapsedDuration.ToSeconds() < 0) {
continue;
}
AnimationTiming timing;
timing.mIterationDuration = animation.duration();
// Currently animations run on the compositor have their delay factored
// into their start time, hence the delay is effectively zero.
timing.mDelay = TimeDuration(0);
timing.mIterationCount = animation.iterationCount();
timing.mDirection = animation.direction();
// Animations typically only run on the compositor during their active
// interval but if we end up sampling them outside that range (for
// example, while they are waiting to be removed) we currently just
// assume that we should fill.
timing.mFillMode = NS_STYLE_ANIMATION_FILL_MODE_BOTH;
ComputedTiming computedTiming =
ElementAnimation::GetComputedTimingAt(elapsedDuration, timing);
NS_ABORT_IF_FALSE(0.0 <= computedTiming.mTimeFraction &&
computedTiming.mTimeFraction <= 1.0,
"time fraction should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < computedTiming.mTimeFraction) {
++segment;
++segmentIndex;
}
double positionInSegment =
(computedTiming.mTimeFraction - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion =
animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix = matrix * Matrix4x4().Scale(c->GetInheritedXScale(),
c->GetInheritedYScale(),
1);
}
layerComposite->SetShadowTransform(matrix);
layerComposite->SetShadowTransformSetByAnimation(true);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
Matrix4x4
CombineWithCSSTransform(const gfx3DMatrix& treeTransform, Layer* aLayer)
{
Matrix4x4 result;
ToMatrix4x4(treeTransform, result);
result = result * aLayer->GetTransform();
return result;
}
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
Layer *aLayer,
bool* aWantNextFrame)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
}
ContainerLayer* container = aLayer->AsContainerLayer();
if (!container) {
return appliedTransform;
}
if (AsyncPanZoomController* controller = container->GetAsyncPanZoomController()) {
LayerComposite* layerComposite = aLayer->AsLayerComposite();
Matrix4x4 oldTransform = aLayer->GetTransform();
ViewTransform treeTransformWithoutOverscroll, overscrollTransform;
ScreenPoint scrollOffset;
*aWantNextFrame |=
controller->SampleContentTransformForFrame(aCurrentFrame,
&treeTransformWithoutOverscroll,
scrollOffset,
&overscrollTransform);
const FrameMetrics& metrics = container->GetFrameMetrics();
CSSToLayerScale paintScale = metrics.LayersPixelsPerCSSPixel();
CSSRect displayPort(metrics.mCriticalDisplayPort.IsEmpty() ?
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
LayerMargin fixedLayerMargins(0, 0, 0, 0);
ScreenPoint offset(0, 0);
SyncFrameMetrics(scrollOffset, treeTransformWithoutOverscroll.mScale.scale,
metrics.mScrollableRect, mLayersUpdated, displayPort,
paintScale, mIsFirstPaint, fixedLayerMargins, offset);
mIsFirstPaint = false;
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
Matrix4x4 transform = CombineWithCSSTransform(
treeTransformWithoutOverscroll * overscrollTransform, aLayer);
// GetTransform already takes the pre- and post-scale into account. Since we
// will apply the pre- and post-scale again when computing the effective
// transform, we must apply the inverses here.
transform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
transform = transform * Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
layerComposite->SetShadowTransform(transform);
NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
"overwriting animated transform!");
// Apply resolution scaling to the old transform - the layer tree as it is
// doesn't have the necessary transform to display correctly.
LayoutDeviceToLayerScale resolution = metrics.mCumulativeResolution;
oldTransform.Scale(resolution.scale, resolution.scale, 1);
// For the purpose of aligning fixed and sticky layers, we disregard
// the overscroll transform when computing the 'aCurrentTransformForRoot'
// parameter. This ensures that the overscroll transform is not unapplied,
// and therefore that the visual effect applies to fixed and sticky layers.
Matrix4x4 transformWithoutOverscroll = CombineWithCSSTransform(
treeTransformWithoutOverscroll, aLayer);
AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform,
transformWithoutOverscroll, fixedLayerMargins);
appliedTransform = true;
}
2013-12-12 22:34:50 +04:00
if (container->GetScrollbarDirection() != Layer::NONE) {
ApplyAsyncTransformToScrollbar(aCurrentFrame, container);
}
return appliedTransform;
}
static bool
LayerHasNonContainerDescendants(ContainerLayer* aContainer)
{
for (Layer* child = aContainer->GetFirstChild();
child; child = child->GetNextSibling()) {
ContainerLayer* container = child->AsContainerLayer();
if (!container || LayerHasNonContainerDescendants(container)) {
return true;
}
}
return false;
}
static bool
LayerIsContainerForScrollbarTarget(Layer* aTarget, ContainerLayer* aScrollbar)
{
if (!aTarget->AsContainerLayer()) {
return false;
}
AsyncPanZoomController* apzc = aTarget->AsContainerLayer()->GetAsyncPanZoomController();
if (!apzc) {
return false;
}
const FrameMetrics& metrics = aTarget->AsContainerLayer()->GetFrameMetrics();
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
return false;
}
return true;
}
static void
ApplyAsyncTransformToScrollbarForContent(TimeStamp aCurrentFrame, ContainerLayer* aScrollbar,
Layer* aContent, bool aScrollbarIsChild)
{
ContainerLayer* content = aContent->AsContainerLayer();
// We only apply the transform if the scroll-target layer has non-container
// children (i.e. when it has some possibly-visible content). This is to
// avoid moving scroll-bars in the situation that only a scroll information
// layer has been built for a scroll frame, as this would result in a
// disparity between scrollbars and visible content.
if (!LayerHasNonContainerDescendants(content)) {
return;
}
const FrameMetrics& metrics = content->GetFrameMetrics();
AsyncPanZoomController* apzc = content->GetAsyncPanZoomController();
if (aScrollbarIsChild) {
// Because we try to apply the scrollbar transform before we apply the async transform on
// the actual content, we need to ensure that the APZC has updated any pending animations
// to the current frame timestamp before we extract the transforms from it. The code in this
// block accomplishes that and throws away the temp variables.
// TODO: it might be cleaner to do a pass through the layer tree to advance all the APZC
// transforms before updating the layer shadow transforms. That will allow removal of this code.
ViewTransform treeTransform;
ScreenPoint scrollOffset;
apzc->SampleContentTransformForFrame(aCurrentFrame, &treeTransform, scrollOffset);
}
gfx3DMatrix asyncTransform = gfx3DMatrix(apzc->GetCurrentAsyncTransform());
gfx3DMatrix nontransientTransform = apzc->GetNontransientAsyncTransform();
gfx3DMatrix transientTransform = asyncTransform * nontransientTransform.Inverse();
// |transientTransform| represents the amount by which we have scrolled and
// zoomed since the last paint. Because the scrollbar was sized and positioned based
// on the painted content, we need to adjust it based on transientTransform so that
// it reflects what the user is actually seeing now.
// - The scroll thumb needs to be scaled in the direction of scrolling by the inverse
// of the transientTransform scale (representing the zoom). This is because zooming
// in decreases the fraction of the whole scrollable rect that is in view.
// - It needs to be translated in opposite direction of the transientTransform
// translation (representing the scroll). This is because scrolling down, which
// translates the layer content up, should result in moving the scroll thumb down.
// The amount of the translation to the scroll thumb should be such that the ratio
// of the translation to the size of the scroll port is the same as the ratio
// of the scroll amount to the size of the scrollable rect.
Matrix4x4 scrollbarTransform;
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
float scale = metrics.CalculateCompositedSizeInCssPixels().height / metrics.mScrollableRect.height;
scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f, 1.f / transientTransform.GetYScale(), 1.f);
scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(0, -transientTransform._42 * scale, 0);
}
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
float scale = metrics.CalculateCompositedSizeInCssPixels().width / metrics.mScrollableRect.width;
scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f / transientTransform.GetXScale(), 1.f, 1.f);
scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(-transientTransform._41 * scale, 0, 0);
}
Matrix4x4 transform = scrollbarTransform * aScrollbar->GetTransform();
if (aScrollbarIsChild) {
// If the scrollbar layer is a child of the content it is a scrollbar for, then we
// need to do an extra untransform to cancel out the transient async transform on
// the content. This is needed because otherwise that transient async transform is
// part of the effective transform of this scrollbar, and the scrollbar will jitter
// as the content scrolls.
Matrix4x4 targetUntransform;
ToMatrix4x4(transientTransform.Inverse(), targetUntransform);
transform = transform * targetUntransform;
}
// GetTransform already takes the pre- and post-scale into account. Since we
// will apply the pre- and post-scale again when computing the effective
// transform, we must apply the inverses here.
transform.Scale(1.0f/aScrollbar->GetPreXScale(),
1.0f/aScrollbar->GetPreYScale(),
1);
transform = transform * Matrix4x4().Scale(1.0f/aScrollbar->GetPostXScale(),
1.0f/aScrollbar->GetPostYScale(),
1);
aScrollbar->AsLayerComposite()->SetShadowTransform(transform);
}
static Layer*
FindScrolledLayerForScrollbar(ContainerLayer* aLayer, bool* aOutIsAncestor)
{
// Search all siblings of aLayer and of its ancestors.
for (Layer* ancestor = aLayer; ancestor; ancestor = ancestor->GetParent()) {
for (Layer* scrollTarget = ancestor;
scrollTarget;
scrollTarget = scrollTarget->GetPrevSibling()) {
if (scrollTarget != aLayer &&
LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
*aOutIsAncestor = (scrollTarget == ancestor);
return scrollTarget;
}
}
for (Layer* scrollTarget = ancestor->GetNextSibling();
scrollTarget;
scrollTarget = scrollTarget->GetNextSibling()) {
if (LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
*aOutIsAncestor = false;
return scrollTarget;
}
}
}
return nullptr;
}
void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(TimeStamp aCurrentFrame, ContainerLayer* aLayer)
{
// If this layer corresponds to a scrollbar, then there should be a layer that
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
// That is the content that this scrollbar is for. We pick up the transient
// async transform from that layer and use it to update the scrollbar position.
// Note that it is possible that the content layer is no longer there; in
// this case we don't need to do anything because there can't be an async
// transform on the content.
bool isAncestor = false;
Layer* scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
if (scrollTarget) {
ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget,
isAncestor);
}
}
void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
{
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ContainerLayer* container = aLayer->AsContainerLayer();
const FrameMetrics& metrics = container->GetFrameMetrics();
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
gfx3DMatrix currentTransform;
To3DMatrix(aLayer->GetTransform(), currentTransform);
Matrix4x4 oldTransform = aLayer->GetTransform();
gfx3DMatrix treeTransform;
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel();
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
if (mIsFirstPaint) {
mContentRect = metrics.mScrollableRect;
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
mIsFirstPaint = false;
} else if (!metrics.mScrollableRect.IsEqualEdges(mContentRect)) {
mContentRect = metrics.mScrollableRect;
SetPageRect(mContentRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
LayerIntRect displayPort = RoundedToInt(
(metrics.mCriticalDisplayPort.IsEmpty()
? metrics.mDisplayPort
: metrics.mCriticalDisplayPort
) * geckoZoom);
displayPort += scrollOffsetLayerPixels;
LayerMargin fixedLayerMargins(0, 0, 0, 0);
ScreenPoint offset(0, 0);
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
// however, we can assume there is no async zooming in progress and so the following statement
// works fine.
CSSToScreenScale userZoom(metrics.mDevPixelsPerCSSPixel * metrics.mCumulativeResolution * LayerToScreenScale(1));
ScreenPoint userScroll = metrics.GetScrollOffset() * userZoom;
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated,
userScroll, userZoom, fixedLayerMargins,
offset);
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the user zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
LayerToScreenScale zoomAdjust = userZoom / geckoZoom;
LayerPoint geckoScroll(0, 0);
if (metrics.IsScrollable()) {
geckoScroll = metrics.GetScrollOffset() * geckoZoom;
}
LayerPoint translation = (userScroll / zoomAdjust) - geckoScroll;
treeTransform = gfx3DMatrix(ViewTransform(-translation,
userZoom
/ metrics.mDevPixelsPerCSSPixel
/ metrics.GetParentResolution()));
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix computedTransform = treeTransform * currentTransform;
computedTransform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
1.0f/container->GetPostYScale(),
1);
Matrix4x4 matrix;
ToMatrix4x4(computedTransform, matrix);
layerComposite->SetShadowTransform(matrix);
NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
"overwriting animated transform!");
// Apply resolution scaling to the old transform - the layer tree as it is
// doesn't have the necessary transform to display correctly.
oldTransform.Scale(metrics.mResolution.scale, metrics.mResolution.scale, 1);
// Make sure that overscroll and under-zoom are represented in the old
// transform so that fixed position content moves and scales accordingly.
// These calculations will effectively scale and offset fixed position layers
// in screen space when the compensatory transform is performed in
// AlignFixedAndStickyLayers.
ScreenRect contentScreenRect = mContentRect * userZoom;
gfxPoint3D overscrollTranslation;
if (userScroll.x < contentScreenRect.x) {
overscrollTranslation.x = contentScreenRect.x - userScroll.x;
} else if (userScroll.x + metrics.mCompositionBounds.width > contentScreenRect.XMost()) {
overscrollTranslation.x = contentScreenRect.XMost() -
(userScroll.x + metrics.mCompositionBounds.width);
}
if (userScroll.y < contentScreenRect.y) {
overscrollTranslation.y = contentScreenRect.y - userScroll.y;
} else if (userScroll.y + metrics.mCompositionBounds.height > contentScreenRect.YMost()) {
overscrollTranslation.y = contentScreenRect.YMost() -
(userScroll.y + metrics.mCompositionBounds.height);
}
oldTransform.Translate(overscrollTranslation.x,
overscrollTranslation.y,
overscrollTranslation.z);
gfx::Size underZoomScale(1.0f, 1.0f);
if (mContentRect.width * userZoom.scale < metrics.mCompositionBounds.width) {
underZoomScale.width = (mContentRect.width * userZoom.scale) /
metrics.mCompositionBounds.width;
}
if (mContentRect.height * userZoom.scale < metrics.mCompositionBounds.height) {
underZoomScale.height = (mContentRect.height * userZoom.scale) /
metrics.mCompositionBounds.height;
}
oldTransform.Scale(underZoomScale.width, underZoomScale.height, 1);
// Make sure fixed position layers don't move away from their anchor points
// when we're asynchronously panning or zooming
AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform,
aLayer->GetLocalTransform(), fixedLayerMargins);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
{
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
js::ProfileEntry::Category::GRAPHICS);
Layer* root = mLayerManager->GetRoot();
if (!root) {
return false;
}
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i]);
}
}
}
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
const CSSToLayerScale& aZoom,
const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aLayersUpdated,
ScreenPoint& aScrollOffset,
CSSToScreenScale& aScale,
LayerMargin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
aDisplayResolution,
aLayersUpdated,
aScrollOffset,
aScale,
aFixedLayerMargins,
aOffset);
#endif
}
void
AsyncCompositionManager::SyncFrameMetrics(const ScreenPoint& aScrollOffset,
float aZoom,
const CSSRect& aCssPageRect,
bool aLayersUpdated,
const CSSRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aIsFirstPaint,
LayerMargin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
aLayersUpdated, aDisplayPort,
aDisplayResolution, aIsFirstPaint,
aFixedLayerMargins, aOffset);
#endif
}
} // namespace layers
} // namespace mozilla