gecko-dev/gfx/ipc/GPUProcessHost.cpp

253 строки
6.0 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GPUProcessHost.h"
#include "chrome/common/process_watcher.h"
#include "gfxPrefs.h"
#include "mozilla/gfx/Logging.h"
#include "nsITimer.h"
#include "mozilla/Preferences.h"
namespace mozilla {
namespace gfx {
using namespace ipc;
GPUProcessHost::GPUProcessHost(Listener* aListener)
: GeckoChildProcessHost(GeckoProcessType_GPU),
mListener(aListener),
mTaskFactory(this),
mLaunchPhase(LaunchPhase::Unlaunched),
mProcessToken(0),
mShutdownRequested(false),
mChannelClosed(false)
{
MOZ_COUNT_CTOR(GPUProcessHost);
}
GPUProcessHost::~GPUProcessHost()
{
MOZ_COUNT_DTOR(GPUProcessHost);
}
bool
GPUProcessHost::Launch()
{
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Unlaunched);
MOZ_ASSERT(!mGPUChild);
Bug 1373739 - Make headless compositing Windows-compatible, in addition to Linux. r=dvander To make the HeadlessCompositorWidget work under Windows as well as Linux, I had to change the way that I hooked it into the existing CompositorWidget system. Under GTK, the CompositorWidgetInitData and CompositorWidgetDelegate types provided the information needed by the headless compositor widget already (the widget client size). On Windows, however, the definitions of these types differ, and the client size information is simply retrieved from the platform APIs when needed. After this patch, CompositorWidgetDelegate is renamed to PlatformCompositorWidgetDelegate, and a new base class called CompositorWidgetDelegate is added with "AsPlatformSpecificDelegate()" and "AsHeadlessCompositorWidget()" methods. In non-headless mode, widgets use AsPlatformSpecificDelegate() to access the Windows- and GTK-specific delegate APIs. In headless mode, AsHeadlessCompositorWidget() is used to access the singular CompositorWidget implementation for headless. Meanwhile, the CompositorWidgetInitData IPDL type is made into a union which always contains a headless-specific HeadlessCompositorWidgetInitData struct and under GTK and Windows also contains an {X11,Win}CompositorWidgetInitData struct. This also includes a small patch to ensure that the GPU process and hardware-accelerated compositing are always disabled under headless mode. These features weren't activated by default in the Linux environments I tested in, but did end up activating (and then promptly crashing Firefox) when I tested on Windows. MozReview-Commit-ID: CocPoHBDV7H --HG-- extra : rebase_source : 4581fa63aa3a9f32a8dc2672015a35b9be01b20f
2017-07-07 03:45:34 +03:00
MOZ_ASSERT(!gfxPlatform::IsHeadless());
#if defined(XP_WIN) && defined(MOZ_SANDBOX)
mSandboxLevel = Preferences::GetInt("security.sandbox.gpu.level");
#endif
mLaunchPhase = LaunchPhase::Waiting;
mLaunchTime = TimeStamp::Now();
if (!GeckoChildProcessHost::AsyncLaunch()) {
mLaunchPhase = LaunchPhase::Complete;
return false;
}
return true;
}
bool
GPUProcessHost::WaitForLaunch()
{
if (mLaunchPhase == LaunchPhase::Complete) {
return !!mGPUChild;
}
int32_t timeoutMs = gfxPrefs::GPUProcessTimeoutMs();
// If one of the following environment variables are set we can effectively
// ignore the timeout - as we can guarantee the compositor process will be terminated
if (PR_GetEnv("MOZ_DEBUG_CHILD_PROCESS") || PR_GetEnv("MOZ_DEBUG_CHILD_PAUSE")) {
timeoutMs = 0;
}
// Our caller expects the connection to be finished after we return, so we
// immediately set up the IPDL actor and fire callbacks. The IO thread will
// still dispatch a notification to the main thread - we'll just ignore it.
bool result = GeckoChildProcessHost::WaitUntilConnected(timeoutMs);
InitAfterConnect(result);
return result;
}
void
GPUProcessHost::OnChannelConnected(int32_t peer_pid)
{
MOZ_ASSERT(!NS_IsMainThread());
GeckoChildProcessHost::OnChannelConnected(peer_pid);
// Post a task to the main thread. Take the lock because mTaskFactory is not
// thread-safe.
RefPtr<Runnable> runnable;
{
MonitorAutoLock lock(mMonitor);
runnable = mTaskFactory.NewRunnableMethod(&GPUProcessHost::OnChannelConnectedTask);
}
NS_DispatchToMainThread(runnable);
}
void
GPUProcessHost::OnChannelError()
{
MOZ_ASSERT(!NS_IsMainThread());
GeckoChildProcessHost::OnChannelError();
// Post a task to the main thread. Take the lock because mTaskFactory is not
// thread-safe.
RefPtr<Runnable> runnable;
{
MonitorAutoLock lock(mMonitor);
runnable = mTaskFactory.NewRunnableMethod(&GPUProcessHost::OnChannelErrorTask);
}
NS_DispatchToMainThread(runnable);
}
void
GPUProcessHost::OnChannelConnectedTask()
{
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(true);
}
}
void
GPUProcessHost::OnChannelErrorTask()
{
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(false);
}
}
static uint64_t sProcessTokenCounter = 0;
void
GPUProcessHost::InitAfterConnect(bool aSucceeded)
{
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Waiting);
MOZ_ASSERT(!mGPUChild);
mLaunchPhase = LaunchPhase::Complete;
if (aSucceeded) {
mProcessToken = ++sProcessTokenCounter;
mGPUChild = MakeUnique<GPUChild>(this);
DebugOnly<bool> rv =
mGPUChild->Open(GetChannel(), base::GetProcId(GetChildProcessHandle()));
MOZ_ASSERT(rv);
mGPUChild->Init();
}
if (mListener) {
mListener->OnProcessLaunchComplete(this);
}
}
void
GPUProcessHost::Shutdown()
{
MOZ_ASSERT(!mShutdownRequested);
mListener = nullptr;
if (mGPUChild) {
// OnChannelClosed uses this to check if the shutdown was expected or
// unexpected.
mShutdownRequested = true;
// The channel might already be closed if we got here unexpectedly.
if (!mChannelClosed) {
mGPUChild->Close();
}
#ifndef NS_FREE_PERMANENT_DATA
// No need to communicate shutdown, the GPU process doesn't need to
// communicate anything back.
KillHard("NormalShutdown");
#endif
// If we're shutting down unexpectedly, we're in the middle of handling an
// ActorDestroy for PGPUChild, which is still on the stack. We'll return
// back to OnChannelClosed.
//
// Otherwise, we'll wait for OnChannelClose to be called whenever PGPUChild
// acknowledges shutdown.
return;
}
DestroyProcess();
}
void
GPUProcessHost::OnChannelClosed()
{
mChannelClosed = true;
if (!mShutdownRequested && mListener) {
// This is an unclean shutdown. Notify our listener that we're going away.
mListener->OnProcessUnexpectedShutdown(this);
} else {
DestroyProcess();
}
// Release the actor.
GPUChild::Destroy(Move(mGPUChild));
MOZ_ASSERT(!mGPUChild);
}
void
GPUProcessHost::KillHard(const char* aReason)
{
ProcessHandle handle = GetChildProcessHandle();
if (!base::KillProcess(handle, base::PROCESS_END_KILLED_BY_USER, false)) {
NS_WARNING("failed to kill subprocess!");
}
SetAlreadyDead();
}
uint64_t
GPUProcessHost::GetProcessToken() const
{
return mProcessToken;
}
static void
DelayedDeleteSubprocess(GeckoChildProcessHost* aSubprocess)
{
XRE_GetIOMessageLoop()->
PostTask(mozilla::MakeAndAddRef<DeleteTask<GeckoChildProcessHost>>(aSubprocess));
}
void
GPUProcessHost::KillProcess()
{
KillHard("DiagnosticKill");
}
void
GPUProcessHost::DestroyProcess()
{
// Cancel all tasks. We don't want anything triggering after our caller
// expects this to go away.
{
MonitorAutoLock lock(mMonitor);
mTaskFactory.RevokeAll();
}
MessageLoop::current()->
PostTask(NewRunnableFunction("DestroyProcessRunnable", DelayedDeleteSubprocess, this));
}
} // namespace gfx
} // namespace mozilla