TTS/train.py

649 строки
26 KiB
Python
Исходник Обычный вид История

import argparse
2018-01-22 12:48:59 +03:00
import os
import sys
import time
import traceback
2018-01-22 12:48:59 +03:00
import numpy as np
import torch
2018-01-22 12:48:59 +03:00
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
2018-12-18 14:58:09 +03:00
from datasets.TTSDataset import MyDataset
from distribute import (DistributedSampler, apply_gradient_allreduce,
init_distributed, reduce_tensor)
from layers.losses import L1LossMasked, MSELossMasked
from utils.audio import AudioProcessor
from utils.generic_utils import (NoamLR, check_update, count_parameters,
create_experiment_folder, get_git_branch,
2019-07-19 09:46:23 +03:00
load_config, remove_experiment_folder,
save_best_model, save_checkpoint, weight_decay,
2019-07-16 22:15:04 +03:00
set_init_dict, copy_config_file, setup_model,
2019-07-22 03:11:20 +03:00
split_dataset, gradual_training_scheduler)
2018-12-13 20:18:37 +03:00
from utils.logger import Logger
2019-06-26 13:59:14 +03:00
from utils.speakers import load_speaker_mapping, save_speaker_mapping, \
2019-07-10 19:38:55 +03:00
get_speakers
from utils.synthesis import synthesis
from utils.text.symbols import phonemes, symbols
from utils.visual import plot_alignment, plot_spectrogram
2019-07-10 19:38:55 +03:00
from datasets.preprocess import get_preprocessor_by_name
2018-08-12 16:02:06 +03:00
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(54321)
2018-01-22 12:48:59 +03:00
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
2018-01-22 12:48:59 +03:00
2018-03-02 18:54:35 +03:00
2019-07-19 12:35:06 +03:00
def setup_loader(ap, is_val=False, verbose=False):
global meta_data_train
global meta_data_eval
if "meta_data_train" not in globals():
2019-07-16 22:15:04 +03:00
if c.meta_file_train is not None:
meta_data_train = get_preprocessor_by_name(c.dataset)(c.data_path, c.meta_file_train)
else:
2019-07-16 22:15:04 +03:00
meta_data_train = get_preprocessor_by_name(c.dataset)(c.data_path)
if "meta_data_eval" not in globals() and c.run_eval:
if c.meta_file_val is not None:
meta_data_eval = get_preprocessor_by_name(c.dataset)(c.data_path, c.meta_file_val)
else:
2019-07-16 22:15:04 +03:00
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
if is_val and not c.run_eval:
loader = None
else:
dataset = MyDataset(
c.r,
c.text_cleaner,
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
2019-07-17 13:11:16 +03:00
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
2019-01-16 15:09:47 +03:00
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
2019-04-12 17:12:15 +03:00
enable_eos_bos=c.enable_eos_bos_chars,
verbose=verbose)
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.eval_batch_size if is_val else c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=c.num_val_loader_workers
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
ap, global_step, epoch):
2019-07-19 12:35:06 +03:00
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
2019-07-10 19:38:55 +03:00
if c.use_speaker_embedding:
speaker_mapping = load_speaker_mapping(OUT_PATH)
model.train()
2018-03-02 18:54:35 +03:00
epoch_time = 0
avg_postnet_loss = 0
avg_decoder_loss = 0
avg_stop_loss = 0
2018-07-27 17:13:55 +03:00
avg_step_time = 0
2019-07-22 03:11:20 +03:00
avg_loader_time = 0
print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
2019-07-22 03:11:20 +03:00
end_time = time.time()
2018-03-02 18:54:35 +03:00
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
2019-06-26 13:59:14 +03:00
speaker_names = data[2]
linear_input = data[3] if c.model in ["Tacotron", "TacotronGST"] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
avg_text_length = torch.mean(text_lengths.float())
2018-12-11 17:08:02 +03:00
avg_spec_length = torch.mean(mel_lengths.float())
2019-07-22 03:11:20 +03:00
loader_time = time.time() - end_time
2019-07-10 19:38:55 +03:00
if c.use_speaker_embedding:
speaker_ids = [speaker_mapping[speaker_name]
for speaker_name in speaker_names]
speaker_ids = torch.LongTensor(speaker_ids)
else:
speaker_ids = None
2018-05-11 14:24:57 +03:00
# set stop targets view, we predict a single stop token per r frames prediction
2018-08-02 17:34:17 +03:00
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
2018-04-03 13:24:57 +03:00
global_step += 1
2018-03-02 18:54:35 +03:00
# setup lr
2018-11-03 21:47:28 +03:00
if c.lr_decay:
scheduler.step()
2018-03-02 18:54:35 +03:00
optimizer.zero_grad()
2019-07-19 09:46:23 +03:00
if optimizer_st:
optimizer_st.zero_grad()
2018-03-02 18:54:35 +03:00
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron", "TacotronGST"] else None
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
# forward pass model
decoder_output, postnet_output, alignments, stop_tokens = model(
2019-07-19 09:46:23 +03:00
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
2018-04-03 13:24:57 +03:00
2018-03-02 18:54:35 +03:00
# loss computation
stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
2019-04-10 17:41:08 +03:00
if c.loss_masking:
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
2019-04-10 17:41:08 +03:00
postnet_loss = criterion(postnet_output, linear_input, mel_lengths)
else:
postnet_loss = criterion(postnet_output, mel_input, mel_lengths)
else:
2019-04-10 17:41:08 +03:00
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
2019-04-10 17:41:08 +03:00
postnet_loss = criterion(postnet_output, linear_input)
else:
postnet_loss = criterion(postnet_output, mel_input)
loss = decoder_loss + postnet_loss
if not c.separate_stopnet and c.stopnet:
loss += stop_loss
2018-03-02 18:54:35 +03:00
loss.backward()
optimizer, current_lr = weight_decay(optimizer, c.wd)
2019-03-12 18:54:42 +03:00
grad_norm, _ = check_update(model, c.grad_clip)
2018-03-02 18:54:35 +03:00
optimizer.step()
# backpass and check the grad norm for stop loss
if c.separate_stopnet:
stop_loss.backward()
optimizer_st, _ = weight_decay(optimizer_st, c.wd)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
optimizer_st.step()
else:
grad_norm_st = 0
2019-07-22 16:10:19 +03:00
step_time = time.time() - start_time
epoch_time += step_time
2018-03-02 18:54:35 +03:00
if global_step % c.print_step == 0:
print(
" | > Step:{}/{} GlobalStep:{} TotalLoss:{:.5f} PostnetLoss:{:.5f} "
"DecoderLoss:{:.5f} StopLoss:{:.5f} GradNorm:{:.5f} "
2019-07-22 03:11:20 +03:00
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
"LoaderTime:{:.2f} LR:{:.6f}".format(
num_iter, batch_n_iter, global_step, loss.item(),
postnet_loss.item(), decoder_loss.item(), stop_loss.item(),
2019-07-22 03:11:20 +03:00
grad_norm, grad_norm_st, avg_text_length, avg_spec_length, step_time,
loader_time, current_lr),
flush=True)
# aggregate losses from processes
if num_gpus > 1:
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
loss = reduce_tensor(loss.data, num_gpus)
2019-05-14 23:35:11 +03:00
stop_loss = reduce_tensor(stop_loss.data, num_gpus) if c.stopnet else stop_loss
if args.rank == 0:
avg_postnet_loss += float(postnet_loss.item())
avg_decoder_loss += float(decoder_loss.item())
2019-07-19 09:46:23 +03:00
avg_stop_loss += stop_loss if isinstance(stop_loss, float) else float(stop_loss.item())
avg_step_time += step_time
2019-07-22 03:11:20 +03:00
avg_loader_time += loader_time
# Plot Training Iter Stats
iter_stats = {"loss_posnet": postnet_loss.item(),
2019-07-19 09:46:23 +03:00
"loss_decoder": decoder_loss.item(),
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
"step_time": step_time}
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, optimizer_st,
postnet_loss.item(), OUT_PATH, global_step,
epoch)
# Diagnostic visualizations
const_spec = postnet_output[0].data.cpu().numpy()
2019-07-19 09:46:23 +03:00
gt_spec = linear_input[0].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(const_spec, ap),
"ground_truth": plot_spectrogram(gt_spec, ap),
"alignment": plot_alignment(align_img)
}
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_spec.T)
else:
train_audio = ap.inv_mel_spectrogram(const_spec.T)
tb_logger.tb_train_audios(global_step,
2019-07-19 09:46:23 +03:00
{'TrainAudio': train_audio},
c.audio["sample_rate"])
2019-07-22 16:10:19 +03:00
end_time = time.time()
2019-07-22 03:11:20 +03:00
avg_postnet_loss /= (num_iter + 1)
avg_decoder_loss /= (num_iter + 1)
avg_stop_loss /= (num_iter + 1)
avg_total_loss = avg_decoder_loss + avg_postnet_loss + avg_stop_loss
2018-07-27 17:13:55 +03:00
avg_step_time /= (num_iter + 1)
2019-07-22 03:11:20 +03:00
avg_loader_time /= (num_iter + 1)
2018-04-03 13:24:57 +03:00
2018-07-11 13:42:59 +03:00
# print epoch stats
print(
" | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
"AvgStopLoss:{:.5f} EpochTime:{:.2f} "
"AvgStepTime:{:.2f}".format(global_step, avg_total_loss,
avg_postnet_loss, avg_decoder_loss,
2019-07-22 03:11:20 +03:00
avg_stop_loss, epoch_time, avg_step_time,
avg_loader_time),
flush=True)
2018-07-11 13:42:59 +03:00
# Plot Epoch Stats
if args.rank == 0:
# Plot Training Epoch Stats
epoch_stats = {"loss_postnet": avg_postnet_loss,
2019-07-19 09:46:23 +03:00
"loss_decoder": avg_decoder_loss,
"stop_loss": avg_stop_loss,
"epoch_time": epoch_time}
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return avg_postnet_loss, global_step
2018-03-02 18:54:35 +03:00
2018-04-03 13:24:57 +03:00
def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
2019-07-19 12:35:06 +03:00
data_loader = setup_loader(ap, is_val=True)
2019-07-10 19:38:55 +03:00
if c.use_speaker_embedding:
speaker_mapping = load_speaker_mapping(OUT_PATH)
model.eval()
2018-03-02 18:54:35 +03:00
epoch_time = 0
avg_postnet_loss = 0
avg_decoder_loss = 0
avg_stop_loss = 0
print("\n > Validation")
2019-05-28 15:40:56 +03:00
if c.test_sentences_file is None:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist."
]
else:
with open(c.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
2018-05-11 02:44:37 +03:00
with torch.no_grad():
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
2019-06-26 13:59:14 +03:00
speaker_names = data[2]
linear_input = data[3] if c.model in ["Tacotron", "TacotronGST"] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
2019-07-10 19:38:55 +03:00
if c.use_speaker_embedding:
speaker_ids = [speaker_mapping[speaker_name]
for speaker_name in speaker_names]
speaker_ids = torch.LongTensor(speaker_ids)
else:
speaker_ids = None
# set stop targets view, we predict a single stop token per r frames prediction
2018-08-02 17:34:17 +03:00
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r,
-1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda()
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
linear_input = linear_input.cuda() if c.model in ["Tacotron", "TacotronGST"] else None
stop_targets = stop_targets.cuda()
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda()
# forward pass
decoder_output, postnet_output, alignments, stop_tokens =\
model.forward(text_input, text_lengths, mel_input,
speaker_ids=speaker_ids)
# loss computation
stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
2019-04-10 17:41:08 +03:00
if c.loss_masking:
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
2019-04-10 17:41:08 +03:00
postnet_loss = criterion(postnet_output, linear_input, mel_lengths)
else:
postnet_loss = criterion(postnet_output, mel_input, mel_lengths)
else:
2019-04-10 17:41:08 +03:00
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
2019-04-10 17:41:08 +03:00
postnet_loss = criterion(postnet_output, linear_input)
else:
postnet_loss = criterion(postnet_output, mel_input)
loss = decoder_loss + postnet_loss + stop_loss
step_time = time.time() - start_time
epoch_time += step_time
if num_iter % c.print_step == 0:
2018-08-02 17:34:17 +03:00
print(
" | > TotalLoss: {:.5f} PostnetLoss: {:.5f} DecoderLoss:{:.5f} "
"StopLoss: {:.5f} ".format(loss.item(),
postnet_loss.item(),
decoder_loss.item(),
stop_loss.item()),
2018-08-02 17:34:17 +03:00
flush=True)
# aggregate losses from processes
if num_gpus > 1:
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
2019-05-14 19:10:35 +03:00
if c.stopnet:
stop_loss = reduce_tensor(stop_loss.data, num_gpus)
avg_postnet_loss += float(postnet_loss.item())
avg_decoder_loss += float(decoder_loss.item())
avg_stop_loss += stop_loss.item()
2018-04-03 13:24:57 +03:00
if args.rank == 0:
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
const_spec = postnet_output[idx].data.cpu().numpy()
gt_spec = linear_input[idx].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[idx].data.cpu().numpy()
align_img = alignments[idx].data.cpu().numpy()
eval_figures = {
"prediction": plot_spectrogram(const_spec, ap),
"ground_truth": plot_spectrogram(gt_spec, ap),
"alignment": plot_alignment(align_img)
}
tb_logger.tb_eval_figures(global_step, eval_figures)
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
eval_audio = ap.inv_spectrogram(const_spec.T)
else:
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
# compute average losses
avg_postnet_loss /= (num_iter + 1)
avg_decoder_loss /= (num_iter + 1)
avg_stop_loss /= (num_iter + 1)
# Plot Validation Stats
epoch_stats = {"loss_postnet": avg_postnet_loss,
2019-07-19 09:46:23 +03:00
"loss_decoder": avg_decoder_loss,
"stop_loss": avg_stop_loss}
tb_logger.tb_eval_stats(global_step, epoch_stats)
if args.rank == 0 and epoch > c.test_delay_epochs:
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
2019-07-12 11:50:20 +03:00
speaker_id = 0 if c.use_speaker_embedding else None
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens = synthesis(
model, test_sentence, c, use_cuda, ap,
speaker_id=speaker_id)
file_path = os.path.join(AUDIO_PATH, str(global_step))
os.makedirs(file_path, exist_ok=True)
file_path = os.path.join(file_path,
2019-07-19 09:46:23 +03:00
"TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios['{}-audio'.format(idx)] = wav
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(postnet_output, ap)
test_figures['{}-alignment'.format(idx)] = plot_alignment(alignment)
except:
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios, c.audio['sample_rate'])
tb_logger.tb_test_figures(global_step, test_figures)
return avg_postnet_loss
2018-04-03 13:24:57 +03:00
2019-07-19 12:35:06 +03:00
#FIXME: move args definition/parsing inside of main?
def main(args): #pylint: disable=redefined-outer-name
# Audio processor
ap = AudioProcessor(**c.audio)
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id,
c.distributed["backend"], c.distributed["url"])
2019-01-21 16:52:40 +03:00
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
2019-07-10 19:38:55 +03:00
if c.use_speaker_embedding:
speakers = get_speakers(c.data_path, c.meta_file_train, c.dataset)
if args.restore_path:
prev_out_path = os.path.dirname(args.restore_path)
speaker_mapping = load_speaker_mapping(prev_out_path)
assert all([speaker in speaker_mapping
for speaker in speakers]), "As of now you, you cannot " \
"introduce new speakers to " \
"a previously trained model."
else:
speaker_mapping = {name: i
for i, name in enumerate(speakers)}
save_speaker_mapping(OUT_PATH, speaker_mapping)
num_speakers = len(speaker_mapping)
print("Training with {} speakers: {}".format(num_speakers,
", ".join(speakers)))
else:
num_speakers = 0
model = setup_model(num_chars, num_speakers, c)
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
2018-03-22 22:34:16 +03:00
optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
if c.stopnet and c.separate_stopnet:
optimizer_st = optim.Adam(
model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
else:
optimizer_st = None
2018-04-03 13:24:57 +03:00
2019-04-10 17:41:08 +03:00
if c.loss_masking:
criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"] else MSELossMasked()
2019-04-10 17:41:08 +03:00
else:
criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"] else nn.MSELoss()
criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None
2018-01-22 12:48:59 +03:00
2018-03-06 16:39:54 +03:00
if args.restore_path:
2018-02-26 16:33:54 +03:00
checkpoint = torch.load(args.restore_path)
try:
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
# optimizer.load_state_dict(checkpoint['optimizer'])
2019-07-19 09:46:23 +03:00
if c.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint['model'])
except:
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint, c)
model.load_state_dict(model_dict)
del model_dict
2019-02-12 12:04:39 +03:00
for group in optimizer.param_groups:
group['lr'] = c.lr
2018-08-02 17:34:17 +03:00
print(
" > Model restored from step %d" % checkpoint['step'], flush=True)
2018-03-02 16:42:23 +03:00
args.restore_step = checkpoint['step']
2018-02-26 16:33:54 +03:00
else:
args.restore_step = 0
if use_cuda:
model = model.cuda()
criterion.cuda()
2019-07-19 09:46:23 +03:00
if criterion_st:
criterion_st.cuda()
2018-02-26 16:33:54 +03:00
# DISTRUBUTED
if num_gpus > 1:
model = apply_gradient_allreduce(model)
if c.lr_decay:
2018-11-26 16:09:42 +03:00
scheduler = NoamLR(
optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
2018-02-23 17:20:22 +03:00
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
2018-04-03 13:24:57 +03:00
2018-02-27 17:25:28 +03:00
if 'best_loss' not in locals():
best_loss = float('inf')
2018-04-03 13:24:57 +03:00
global_step = args.restore_step
for epoch in range(0, c.epochs):
2019-07-20 13:33:21 +03:00
# set gradual training
2019-07-22 03:11:20 +03:00
if c.gradual_training is not None:
r, c.batch_size = gradual_training_scheduler(global_step, c)
2019-07-22 03:11:20 +03:00
c.r = r
model.decoder._set_r(r)
2019-07-20 13:33:21 +03:00
print(" > Number of outputs per iteration:", model.decoder.r)
train_loss, global_step = train(model, criterion, criterion_st,
2019-05-14 22:33:37 +03:00
optimizer, optimizer_st, scheduler,
ap, global_step, epoch)
val_loss = evaluate(model, criterion, criterion_st, ap, global_step, epoch)
2018-08-02 17:34:17 +03:00
print(
" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
2018-08-02 17:34:17 +03:00
train_loss, val_loss),
flush=True)
target_loss = train_loss
if c.run_eval:
target_loss = val_loss
best_loss = save_best_model(model, optimizer, target_loss, best_loss,
OUT_PATH, global_step, epoch)
2018-02-13 12:45:52 +03:00
2018-04-03 13:24:57 +03:00
2018-01-22 12:48:59 +03:00
if __name__ == '__main__':
2018-07-17 16:59:31 +03:00
parser = argparse.ArgumentParser()
2018-08-02 17:34:17 +03:00
parser.add_argument(
'--restore_path',
type=str,
help='Path to model outputs (checkpoint, tensorboard etc.).',
2018-08-02 17:34:17 +03:00
default=0)
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
2018-08-02 17:34:17 +03:00
)
parser.add_argument(
'--debug',
type=bool,
default=True,
help='Do not verify commit integrity to run training.')
parser.add_argument(
'--data_path',
type=str,
default='',
help='Defines the data path. It overwrites config.json.')
parser.add_argument(
'--output_path',
type=str,
help='path for training outputs.',
default='')
parser.add_argument(
'--output_folder',
type=str,
default='',
2019-07-22 03:11:20 +03:00
help='folder name for training outputs.'
)
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument(
'--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
2018-07-17 16:59:31 +03:00
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
2018-11-02 18:13:51 +03:00
if args.data_path != '':
c.data_path = args.data_path
if args.output_path == '':
OUT_PATH = os.path.join(_, c.output_path)
else:
OUT_PATH = args.output_path
if args.group_id == '' and args.output_folder == '':
OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
else:
OUT_PATH = os.path.join(OUT_PATH, args.output_folder)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_config_file(args.config_path, os.path.join(OUT_PATH, 'config.json'), new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
2019-07-19 09:46:23 +03:00
if args.rank == 0:
LOG_DIR = OUT_PATH
tb_logger = Logger(LOG_DIR)
2018-07-17 16:59:31 +03:00
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
2019-07-19 09:46:23 +03:00
os._exit(0) #pylint: disable=protected-access
except Exception: #pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)