TTS/train.py

511 строки
19 KiB
Python
Исходник Обычный вид История

2018-01-22 12:48:59 +03:00
import os
import sys
import time
2018-01-22 19:20:20 +03:00
import shutil
2018-01-22 12:48:59 +03:00
import torch
import argparse
2018-01-22 19:20:20 +03:00
import importlib
import traceback
2018-01-22 12:48:59 +03:00
import numpy as np
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
2018-01-25 18:07:46 +03:00
from tensorboardX import SummaryWriter
2018-01-22 12:48:59 +03:00
2018-08-02 17:34:17 +03:00
from utils.generic_utils import (
2018-11-02 18:13:51 +03:00
remove_experiment_folder, create_experiment_folder,
2018-08-02 17:34:17 +03:00
save_checkpoint, save_best_model, load_config, lr_decay, count_parameters,
check_update, get_commit_hash, sequence_mask, AnnealLR)
from utils.visual import plot_alignment, plot_spectrogram
2018-01-22 17:58:12 +03:00
from models.tacotron import Tacotron
2018-07-13 16:24:50 +03:00
from layers.losses import L1LossMasked
from utils.audio import AudioProcessor
2018-11-02 18:13:51 +03:00
from utils.synthesis import synthesis
2018-08-12 16:02:06 +03:00
2018-05-11 13:47:30 +03:00
torch.manual_seed(1)
2018-01-22 12:48:59 +03:00
use_cuda = torch.cuda.is_available()
2018-03-02 18:54:35 +03:00
2018-08-02 17:34:17 +03:00
def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
scheduler, ap, epoch):
2018-03-02 18:54:35 +03:00
model = model.train()
epoch_time = 0
2018-03-06 16:39:54 +03:00
avg_linear_loss = 0
avg_mel_loss = 0
avg_stop_loss = 0
2018-07-27 17:13:55 +03:00
avg_step_time = 0
2018-07-25 20:14:07 +03:00
print(" | > Epoch {}/{}".format(epoch, c.epochs), flush=True)
2018-11-02 18:13:51 +03:00
n_priority_freq = int(3000 / (c.audio['sample_rate'] * 0.5) * c.audio['num_freq'])
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
2018-03-02 18:54:35 +03:00
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
2018-05-25 15:17:08 +03:00
linear_input = data[2]
mel_input = data[3]
2018-03-22 23:46:52 +03:00
mel_lengths = data[4]
2018-05-11 14:24:57 +03:00
stop_targets = data[5]
2018-05-11 14:24:57 +03:00
# set stop targets view, we predict a single stop token per r frames prediction
2018-08-02 17:34:17 +03:00
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r, -1)
2018-05-11 14:24:57 +03:00
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
2018-04-03 13:24:57 +03:00
current_step = num_iter + args.restore_step + \
epoch * len(data_loader) + 1
2018-03-02 18:54:35 +03:00
# setup lr
2018-11-03 21:47:28 +03:00
if c.lr_decay:
scheduler.step()
2018-03-02 18:54:35 +03:00
optimizer.zero_grad()
optimizer_st.zero_grad()
2018-03-02 18:54:35 +03:00
# dispatch data to GPU
if use_cuda:
2018-05-11 02:05:03 +03:00
text_input = text_input.cuda()
2018-07-13 15:50:55 +03:00
text_lengths = text_lengths.cuda()
2018-05-11 02:05:03 +03:00
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
linear_input = linear_input.cuda()
2018-05-11 14:24:57 +03:00
stop_targets = stop_targets.cuda()
# compute mask for padding
mask = sequence_mask(text_lengths)
2018-03-02 18:54:35 +03:00
# forward pass
if use_cuda:
mel_output, linear_output, alignments, stop_tokens = torch.nn.parallel.data_parallel(
model, (text_input, mel_input, mask))
else:
mel_output, linear_output, alignments, stop_tokens = model(text_input, mel_input, mask)
2018-04-03 13:24:57 +03:00
2018-03-02 18:54:35 +03:00
# loss computation
2018-05-11 14:24:57 +03:00
stop_loss = criterion_st(stop_tokens, stop_targets)
2018-05-11 02:05:03 +03:00
mel_loss = criterion(mel_output, mel_input, mel_lengths)
2018-08-02 17:34:17 +03:00
linear_loss = 0.5 * criterion(linear_output, linear_input, mel_lengths)\
2018-04-03 13:24:57 +03:00
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
2018-05-11 02:05:03 +03:00
linear_input[:, :, :n_priority_freq],
mel_lengths)
loss = mel_loss + linear_loss
2018-03-02 18:54:35 +03:00
# backpass and check the grad norm for spec losses
loss.backward(retain_graph=True)
2018-11-03 21:47:28 +03:00
# custom weight decay
for group in optimizer.param_groups:
for param in group['params']:
param.data = param.data.add(-c.wd * group['lr'], param.data)
grad_norm, skip_flag = check_update(model, 1)
2018-03-02 18:54:35 +03:00
if skip_flag:
optimizer.zero_grad()
2018-07-25 20:14:07 +03:00
print(" | > Iteration skipped!!", flush=True)
2018-03-02 18:54:35 +03:00
continue
optimizer.step()
# backpass and check the grad norm for stop loss
stop_loss.backward()
for group in optimizer_st.param_groups:
for param in group['params']:
param.data = param.data.add(-c.wd * group['lr'], param.data)
grad_norm_st, skip_flag = check_update(model.decoder.stopnet, 0.5)
if skip_flag:
optimizer_st.zero_grad()
print(" | | > Iteration skipped fro stopnet!!")
continue
optimizer_st.step()
2018-03-02 18:54:35 +03:00
step_time = time.time() - start_time
epoch_time += step_time
if current_step % c.print_step == 0:
print(
" | | > Step:{}/{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f} "
"MelLoss:{:.5f} StopLoss:{:.5f} GradNorm:{:.5f} "
"GradNormST:{:.5f} StepTime:{:.2f}".format(
num_iter, batch_n_iter, current_step, loss.item(),
linear_loss.item(), mel_loss.item(), stop_loss.item(),
2018-08-13 16:04:00 +03:00
grad_norm, grad_norm_st, step_time),
flush=True)
2018-05-11 02:22:17 +03:00
avg_linear_loss += linear_loss.item()
avg_mel_loss += mel_loss.item()
avg_stop_loss += stop_loss.item()
2018-07-27 17:13:55 +03:00
avg_step_time += step_time
2018-03-02 18:54:35 +03:00
# Plot Training Iter Stats
2018-05-11 02:22:17 +03:00
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.item(),
2018-03-02 18:54:35 +03:00
current_step)
2018-05-11 02:22:17 +03:00
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.item(), current_step)
2018-03-02 18:54:35 +03:00
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
tb.add_scalar('Params/GradNormSt', grad_norm_st, current_step)
2018-03-02 18:54:35 +03:00
tb.add_scalar('Time/StepTime', step_time, current_step)
if current_step % c.save_step == 0:
if c.checkpoint:
# save model
2018-08-02 17:34:17 +03:00
save_checkpoint(model, optimizer, optimizer_st,
linear_loss.item(), OUT_PATH, current_step,
epoch)
2018-03-02 18:54:35 +03:00
# Diagnostic visualizations
const_spec = linear_output[0].data.cpu().numpy()
2018-05-11 02:05:03 +03:00
gt_spec = linear_input[0].data.cpu().numpy()
2018-03-02 18:54:35 +03:00
const_spec = plot_spectrogram(const_spec, ap)
gt_spec = plot_spectrogram(gt_spec, ap)
2018-08-11 17:53:09 +03:00
tb.add_figure('Visual/Reconstruction', const_spec, current_step)
tb.add_figure('Visual/GroundTruth', gt_spec, current_step)
2018-01-22 12:48:59 +03:00
2018-03-02 18:54:35 +03:00
align_img = alignments[0].data.cpu().numpy()
align_img = plot_alignment(align_img)
2018-08-11 17:53:09 +03:00
tb.add_figure('Visual/Alignment', align_img, current_step)
2018-03-02 18:54:35 +03:00
# Sample audio
audio_signal = linear_output[0].data.cpu().numpy()
ap.griffin_lim_iters = 60
audio_signal = ap.inv_spectrogram(audio_signal.T)
2018-03-02 18:54:35 +03:00
try:
2018-08-02 17:34:17 +03:00
tb.add_audio(
'SampleAudio',
audio_signal,
current_step,
sample_rate=c.sample_rate)
2018-03-02 18:54:35 +03:00
except:
2018-03-10 02:37:58 +03:00
pass
2018-04-03 13:24:57 +03:00
2018-03-06 16:39:54 +03:00
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_stop_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss
2018-07-27 17:13:55 +03:00
avg_step_time /= (num_iter + 1)
2018-04-03 13:24:57 +03:00
2018-07-11 13:42:59 +03:00
# print epoch stats
print(
" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "
"AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} "
"AvgStopLoss:{:.5f} EpochTime:{:.2f} "
"AvgStepTime:{:.2f}".format(current_step, avg_total_loss,
avg_linear_loss, avg_mel_loss,
avg_stop_loss, epoch_time, avg_step_time),
flush=True)
2018-07-11 13:42:59 +03:00
2018-03-02 18:54:35 +03:00
# Plot Training Epoch Stats
tb.add_scalar('TrainEpochLoss/TotalLoss', avg_total_loss, current_step)
tb.add_scalar('TrainEpochLoss/LinearLoss', avg_linear_loss, current_step)
tb.add_scalar('TrainEpochLoss/MelLoss', avg_mel_loss, current_step)
tb.add_scalar('TrainEpochLoss/StopLoss', avg_stop_loss, current_step)
2018-03-02 18:54:35 +03:00
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0
return avg_linear_loss, current_step
2018-04-03 13:24:57 +03:00
def evaluate(model, criterion, criterion_st, data_loader, ap, current_step):
2018-03-10 02:37:58 +03:00
model = model.eval()
2018-03-02 18:54:35 +03:00
epoch_time = 0
2018-03-06 16:39:54 +03:00
avg_linear_loss = 0
avg_mel_loss = 0
avg_stop_loss = 0
print(" | > Validation")
2018-08-02 17:34:17 +03:00
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist."
]
2018-11-02 18:13:51 +03:00
n_priority_freq = int(3000 / (c.audio['sample_rate'] * 0.5) * c.audio['num_freq'])
2018-05-11 02:44:37 +03:00
with torch.no_grad():
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_targets = data[5]
# set stop targets view, we predict a single stop token per r frames prediction
2018-08-02 17:34:17 +03:00
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r,
-1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda()
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
linear_input = linear_input.cuda()
stop_targets = stop_targets.cuda()
# forward pass
mel_output, linear_output, alignments, stop_tokens =\
model.forward(text_input, mel_input)
# loss computation
stop_loss = criterion_st(stop_tokens, stop_targets)
mel_loss = criterion(mel_output, mel_input, mel_lengths)
linear_loss = 0.5 * criterion(linear_output, linear_input, mel_lengths) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_input[:, :, :n_priority_freq],
mel_lengths)
loss = mel_loss + linear_loss + stop_loss
step_time = time.time() - start_time
epoch_time += step_time
if num_iter % c.print_step == 0:
2018-08-02 17:34:17 +03:00
print(
" | | > TotalLoss: {:.5f} LinearLoss: {:.5f} MelLoss:{:.5f} "
"StopLoss: {:.5f} ".format(loss.item(),
linear_loss.item(),
mel_loss.item(),
stop_loss.item()),
2018-08-02 17:34:17 +03:00
flush=True)
avg_linear_loss += linear_loss.item()
avg_mel_loss += mel_loss.item()
avg_stop_loss += stop_loss.item()
2018-04-03 13:24:57 +03:00
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
const_spec = linear_output[idx].data.cpu().numpy()
gt_spec = linear_input[idx].data.cpu().numpy()
align_img = alignments[idx].data.cpu().numpy()
2018-11-02 18:13:51 +03:00
const_spec = plot_spectrogram(const_spec, ap)
gt_spec = plot_spectrogram(gt_spec, ap)
align_img = plot_alignment(align_img)
2018-08-11 17:53:09 +03:00
tb.add_figure('ValVisual/Reconstruction', const_spec, current_step)
tb.add_figure('ValVisual/GroundTruth', gt_spec, current_step)
tb.add_figure('ValVisual/ValidationAlignment', align_img,
2018-09-18 13:56:07 +03:00
current_step)
# Sample audio
audio_signal = linear_output[idx].data.cpu().numpy()
ap.griffin_lim_iters = 60
audio_signal = ap.inv_spectrogram(audio_signal.T)
try:
2018-08-02 17:34:17 +03:00
tb.add_audio(
'ValSampleAudio',
audio_signal,
current_step,
sample_rate=c.sample_rate)
except:
# sometimes audio signal is out of boundaries
pass
# compute average losses
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_stop_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss
# Plot Learning Stats
2018-08-02 17:34:17 +03:00
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss,
current_step)
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss,
current_step)
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
2018-08-02 17:34:17 +03:00
tb.add_scalar('ValEpochLoss/Stop_loss', avg_stop_loss,
current_step)
2018-05-25 15:17:08 +03:00
2018-07-20 14:10:25 +03:00
# test sentences
ap.griffin_lim_iters = 60
2018-07-20 14:10:25 +03:00
for idx, test_sentence in enumerate(test_sentences):
2018-08-11 17:09:47 +03:00
try:
2018-11-02 18:13:51 +03:00
wav, alignment, linear_spec, stop_tokens = synthesis(model, test_sentence, c,
use_cuda, ap)
2018-09-16 14:32:59 +03:00
file_path = os.path.join(AUDIO_PATH, str(current_step))
os.makedirs(file_path, exist_ok=True)
2018-09-18 13:56:07 +03:00
file_path = os.path.join(file_path,
"TestSentence_{}.wav".format(idx))
2018-09-16 14:32:59 +03:00
ap.save_wav(wav, file_path)
wav_name = 'TestSentences/{}'.format(idx)
tb.add_audio(
2018-11-02 18:13:51 +03:00
wav_name, wav, current_step, sample_rate=c.audio['sample_rate'])
align_img = alignments[0].data.cpu().numpy()
linear_spec = plot_spectrogram(linear_spec, ap)
align_img = plot_alignment(align_img)
2018-09-18 13:56:07 +03:00
tb.add_figure('TestSentences/{}_Spectrogram'.format(idx),
linear_spec, current_step)
tb.add_figure('TestSentences/{}_Alignment'.format(idx), align_img,
2018-09-18 13:56:07 +03:00
current_step)
2018-07-20 14:10:25 +03:00
except:
print(" !! Error as creating Test Sentence -", idx)
2018-07-20 14:10:25 +03:00
pass
2018-03-02 18:54:35 +03:00
return avg_linear_loss
2018-04-03 13:24:57 +03:00
2018-03-02 18:54:35 +03:00
def main(args):
2018-11-02 18:13:51 +03:00
preprocessor = importlib.import_module('datasets.preprocess')
preprocessor = getattr(preprocessor, c.dataset.lower())
MyDataset = importlib.import_module('datasets.'+c.data_loader)
MyDataset = getattr(MyDataset, "MyDataset")
audio = importlib.import_module('utils.' + c.audio['audio_processor'])
AudioProcessor = getattr(audio, 'AudioProcessor')
2018-11-02 18:13:51 +03:00
ap = AudioProcessor(**c.audio)
2018-01-22 19:20:20 +03:00
2018-03-02 19:01:04 +03:00
# Setup the dataset
2018-11-02 18:13:51 +03:00
train_dataset = MyDataset(
2018-08-02 17:34:17 +03:00
c.data_path,
c.meta_file_train,
c.r,
c.text_cleaner,
2018-11-02 18:13:51 +03:00
preprocessor=preprocessor,
2018-08-02 17:34:17 +03:00
ap=ap,
2018-09-26 17:52:47 +03:00
batch_group_size=8*c.batch_size,
2018-08-02 17:34:17 +03:00
min_seq_len=c.min_seq_len)
train_loader = DataLoader(
train_dataset,
batch_size=c.batch_size,
shuffle=False,
collate_fn=train_dataset.collate_fn,
drop_last=False,
num_workers=c.num_loader_workers,
pin_memory=True)
2018-04-03 13:24:57 +03:00
if c.run_eval:
2018-11-02 18:13:51 +03:00
val_dataset = MyDataset(
c.data_path, c.meta_file_val, c.r, c.text_cleaner, preprocessor=preprocessor, ap=ap, batch_group_size=0)
2018-08-02 17:34:17 +03:00
val_loader = DataLoader(
val_dataset,
batch_size=c.eval_batch_size,
shuffle=False,
collate_fn=val_dataset.collate_fn,
drop_last=False,
num_workers=4,
pin_memory=True)
else:
val_loader = None
2018-11-02 18:13:51 +03:00
model = Tacotron(c.embedding_size, ap.num_freq, ap.num_mels, c.r)
2018-07-30 14:52:39 +03:00
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
2018-03-22 22:34:16 +03:00
optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
2018-09-18 13:56:07 +03:00
optimizer_st = optim.Adam(
model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
2018-04-03 13:24:57 +03:00
criterion = L1LossMasked()
criterion_st = nn.BCELoss()
2018-01-22 12:48:59 +03:00
2018-03-06 16:39:54 +03:00
if args.restore_path:
2018-02-26 16:33:54 +03:00
checkpoint = torch.load(args.restore_path)
model.load_state_dict(checkpoint['model'])
2018-07-25 20:14:07 +03:00
if use_cuda:
model = model.cuda()
2018-07-25 20:14:07 +03:00
criterion.cuda()
criterion_st.cuda()
2018-02-26 16:33:54 +03:00
optimizer.load_state_dict(checkpoint['optimizer'])
2018-09-06 15:36:53 +03:00
# optimizer_st.load_state_dict(checkpoint['optimizer_st'])
2018-05-17 05:20:40 +03:00
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
2018-08-02 17:34:17 +03:00
print(
" > Model restored from step %d" % checkpoint['step'], flush=True)
2018-03-05 19:48:17 +03:00
start_epoch = checkpoint['step'] // len(train_loader)
2018-02-26 16:33:54 +03:00
best_loss = checkpoint['linear_loss']
2018-03-02 16:42:23 +03:00
args.restore_step = checkpoint['step']
2018-02-26 16:33:54 +03:00
else:
args.restore_step = 0
2018-07-30 14:52:39 +03:00
print("\n > Starting a new training", flush=True)
2018-07-25 20:14:07 +03:00
if use_cuda:
model = model.cuda()
2018-07-25 20:14:07 +03:00
criterion.cuda()
criterion_st.cuda()
2018-02-26 16:33:54 +03:00
2018-11-02 18:13:51 +03:00
scheduler = AnnealLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
2018-02-23 17:20:22 +03:00
num_params = count_parameters(model)
2018-07-30 14:52:39 +03:00
print(" | > Model has {} parameters".format(num_params), flush=True)
2018-04-03 13:24:57 +03:00
2018-01-22 19:20:20 +03:00
if not os.path.exists(CHECKPOINT_PATH):
os.mkdir(CHECKPOINT_PATH)
2018-04-03 13:24:57 +03:00
2018-02-27 17:25:28 +03:00
if 'best_loss' not in locals():
best_loss = float('inf')
2018-04-03 13:24:57 +03:00
for epoch in range(0, c.epochs):
2018-08-02 17:34:17 +03:00
train_loss, current_step = train(model, criterion, criterion_st,
train_loader, optimizer, optimizer_st,
scheduler, ap, epoch)
2018-08-02 17:34:17 +03:00
val_loss = evaluate(model, criterion, criterion_st, val_loader, ap,
current_step)
print(
" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(
train_loss, val_loss),
flush=True)
best_loss = save_best_model(model, optimizer, train_loss, best_loss,
OUT_PATH, current_step, epoch)
2018-09-20 12:08:12 +03:00
# shuffle batch groups
2018-11-02 18:13:51 +03:00
train_loader.dataset.sort_items()
2018-02-13 12:45:52 +03:00
2018-04-03 13:24:57 +03:00
2018-01-22 12:48:59 +03:00
if __name__ == '__main__':
2018-07-17 16:59:31 +03:00
parser = argparse.ArgumentParser()
2018-08-02 17:34:17 +03:00
parser.add_argument(
'--restore_path',
type=str,
help='Folder path to checkpoints',
default=0)
parser.add_argument(
'--config_path',
type=str,
help='path to config file for training',
)
parser.add_argument(
'--debug',
type=bool,
default=False,
help='do not ask for git has before run.')
parser.add_argument(
'--data_path',
type=str,
2018-11-02 18:13:51 +03:00
help='dataset path.',
default=''
)
2018-07-17 16:59:31 +03:00
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = os.path.join(_, c.output_path)
OUT_PATH = create_experiment_folder(OUT_PATH, c.model_name, args.debug)
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
2018-09-16 14:32:59 +03:00
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
os.makedirs(AUDIO_PATH, exist_ok=True)
2018-07-17 16:59:31 +03:00
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
2018-11-02 18:13:51 +03:00
if args.data_path != '':
c.data_path = args.data_path
2018-07-17 16:59:31 +03:00
# setup tensorboard
LOG_DIR = OUT_PATH
tb = SummaryWriter(LOG_DIR)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0)
except Exception:
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)